1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
# Owner(s): ["module: dynamo"]
from unittest import skipIf, SkipTest
import numpy
import pytest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
xpassIfTorchDynamo_np,
)
# If we are going to trace through these, we should use NumPy
# If testing on eager mode, we use torch._numpy
if TEST_WITH_TORCHDYNAMO:
import numpy as np
import numpy.core.numeric as _util # for normalize_axis_tuple
from numpy.testing import (
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
)
else:
import torch._numpy as np
from torch._numpy import _util
from torch._numpy.testing import (
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_equal,
)
class TestFlatnonzero(TestCase):
def test_basic(self):
x = np.arange(-2, 3)
assert_equal(np.flatnonzero(x), [0, 1, 3, 4])
class TestAny(TestCase):
def test_basic(self):
y1 = [0, 0, 1, 0]
y2 = [0, 0, 0, 0]
y3 = [1, 0, 1, 0]
assert np.any(y1)
assert np.any(y3)
assert not np.any(y2)
def test_nd(self):
y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]]
assert np.any(y1)
assert_equal(np.any(y1, axis=0), [1, 1, 0])
assert_equal(np.any(y1, axis=1), [0, 1, 1])
assert_equal(np.any(y1), True)
assert isinstance(np.any(y1, axis=1), np.ndarray)
# YYY: deduplicate
def test_method_vs_function(self):
y = np.array([[0, 1, 0, 3], [1, 0, 2, 0]])
assert_equal(np.any(y), y.any())
class TestAll(TestCase):
def test_basic(self):
y1 = [0, 1, 1, 0]
y2 = [0, 0, 0, 0]
y3 = [1, 1, 1, 1]
assert not np.all(y1)
assert np.all(y3)
assert not np.all(y2)
assert np.all(~np.array(y2))
def test_nd(self):
y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
assert not np.all(y1)
assert_equal(np.all(y1, axis=0), [0, 0, 1])
assert_equal(np.all(y1, axis=1), [0, 0, 1])
assert_equal(np.all(y1), False)
def test_method_vs_function(self):
y = np.array([[0, 1, 0, 3], [1, 0, 2, 0]])
assert_equal(np.all(y), y.all())
class TestMean(TestCase):
def test_mean(self):
A = [[1, 2, 3], [4, 5, 6]]
assert np.mean(A) == 3.5
assert np.all(np.mean(A, 0) == np.array([2.5, 3.5, 4.5]))
assert np.all(np.mean(A, 1) == np.array([2.0, 5.0]))
# XXX: numpy emits a warning on empty slice
assert np.isnan(np.mean([]))
m = np.asarray(A)
assert np.mean(A) == m.mean()
def test_mean_values(self):
# rmat = np.random.random((4, 5))
rmat = np.arange(20, dtype=float).reshape((4, 5))
cmat = rmat + 1j * rmat
import warnings
with warnings.catch_warnings():
warnings.simplefilter("error")
for mat in [rmat, cmat]:
for axis in [0, 1]:
tgt = mat.sum(axis=axis)
res = np.mean(mat, axis=axis) * mat.shape[axis]
assert_allclose(res, tgt)
for axis in [None]:
tgt = mat.sum(axis=axis)
res = np.mean(mat, axis=axis) * mat.size
assert_allclose(res, tgt)
def test_mean_float16(self):
# This fail if the sum inside mean is done in float16 instead
# of float32.
assert np.mean(np.ones(100000, dtype="float16")) == 1
@xpassIfTorchDynamo_np # (reason="XXX: mean(..., where=...) not implemented")
def test_mean_where(self):
a = np.arange(16).reshape((4, 4))
wh_full = np.array(
[
[False, True, False, True],
[True, False, True, False],
[True, True, False, False],
[False, False, True, True],
]
)
wh_partial = np.array([[False], [True], [True], [False]])
_cases = [
(1, True, [1.5, 5.5, 9.5, 13.5]),
(0, wh_full, [6.0, 5.0, 10.0, 9.0]),
(1, wh_full, [2.0, 5.0, 8.5, 14.5]),
(0, wh_partial, [6.0, 7.0, 8.0, 9.0]),
]
for _ax, _wh, _res in _cases:
assert_allclose(a.mean(axis=_ax, where=_wh), np.array(_res))
assert_allclose(np.mean(a, axis=_ax, where=_wh), np.array(_res))
a3d = np.arange(16).reshape((2, 2, 4))
_wh_partial = np.array([False, True, True, False])
_res = [[1.5, 5.5], [9.5, 13.5]]
assert_allclose(a3d.mean(axis=2, where=_wh_partial), np.array(_res))
assert_allclose(np.mean(a3d, axis=2, where=_wh_partial), np.array(_res))
with pytest.warns(RuntimeWarning) as w:
assert_allclose(
a.mean(axis=1, where=wh_partial), np.array([np.nan, 5.5, 9.5, np.nan])
)
with pytest.warns(RuntimeWarning) as w:
assert_equal(a.mean(where=False), np.nan)
with pytest.warns(RuntimeWarning) as w:
assert_equal(np.mean(a, where=False), np.nan)
@instantiate_parametrized_tests
class TestSum(TestCase):
def test_sum(self):
m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
tgt = [[6], [15], [24]]
out = np.sum(m, axis=1, keepdims=True)
assert_equal(tgt, out)
am = np.asarray(m)
assert_equal(np.sum(m), am.sum())
def test_sum_stability(self):
a = np.ones(500, dtype=np.float32)
zero = np.zeros(1, dtype="float32")[0]
assert_allclose((a / 10.0).sum() - a.size / 10.0, zero, atol=1.5e-4)
a = np.ones(500, dtype=np.float64)
assert_allclose((a / 10.0).sum() - a.size / 10.0, 0.0, atol=1.5e-13)
def test_sum_boolean(self):
a = np.arange(7) % 2 == 0
res = a.sum()
assert_equal(res, 4)
res_float = a.sum(dtype=np.float64)
assert_allclose(res_float, 4.0, atol=1e-15)
assert res_float.dtype == "float64"
@skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on NumPy 1.23.x")
@xpassIfTorchDynamo_np # (reason="sum: does not warn on overflow")
def test_sum_dtypes_warnings(self):
for dt in (int, np.float16, np.float32, np.float64):
for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127, 128, 1024, 1235):
# warning if sum overflows, which it does in float16
import warnings
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always", RuntimeWarning)
tgt = dt(v * (v + 1) / 2)
overflow = not np.isfinite(tgt)
assert_equal(len(w), 1 * overflow)
d = np.arange(1, v + 1, dtype=dt)
assert_almost_equal(np.sum(d), tgt)
assert_equal(len(w), 2 * overflow)
assert_almost_equal(np.sum(np.flip(d)), tgt)
assert_equal(len(w), 3 * overflow)
def test_sum_dtypes_2(self):
for dt in (int, np.float16, np.float32, np.float64):
d = np.ones(500, dtype=dt)
assert_almost_equal(np.sum(d[::2]), 250.0)
assert_almost_equal(np.sum(d[1::2]), 250.0)
assert_almost_equal(np.sum(d[::3]), 167.0)
assert_almost_equal(np.sum(d[1::3]), 167.0)
assert_almost_equal(np.sum(np.flip(d)[::2]), 250.0)
assert_almost_equal(np.sum(np.flip(d)[1::2]), 250.0)
assert_almost_equal(np.sum(np.flip(d)[::3]), 167.0)
assert_almost_equal(np.sum(np.flip(d)[1::3]), 167.0)
# sum with first reduction entry != 0
d = np.ones((1,), dtype=dt)
d += d
assert_almost_equal(d, 2.0)
@parametrize("dt", [np.complex64, np.complex128])
def test_sum_complex_1(self, dt):
for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127, 128, 1024, 1235):
tgt = dt(v * (v + 1) / 2) - dt((v * (v + 1) / 2) * 1j)
d = np.empty(v, dtype=dt)
d.real = np.arange(1, v + 1)
d.imag = -np.arange(1, v + 1)
assert_allclose(np.sum(d), tgt, atol=1.5e-5)
assert_allclose(np.sum(np.flip(d)), tgt, atol=1.5e-7)
@parametrize("dt", [np.complex64, np.complex128])
def test_sum_complex_2(self, dt):
d = np.ones(500, dtype=dt) + 1j
assert_allclose(np.sum(d[::2]), 250.0 + 250j, atol=1.5e-7)
assert_allclose(np.sum(d[1::2]), 250.0 + 250j, atol=1.5e-7)
assert_allclose(np.sum(d[::3]), 167.0 + 167j, atol=1.5e-7)
assert_allclose(np.sum(d[1::3]), 167.0 + 167j, atol=1.5e-7)
assert_allclose(np.sum(np.flip(d)[::2]), 250.0 + 250j, atol=1.5e-7)
assert_allclose(np.sum(np.flip(d)[1::2]), 250.0 + 250j, atol=1.5e-7)
assert_allclose(np.sum(np.flip(d)[::3]), 167.0 + 167j, atol=1.5e-7)
assert_allclose(np.sum(np.flip(d)[1::3]), 167.0 + 167j, atol=1.5e-7)
# sum with first reduction entry != 0
d = np.ones((1,), dtype=dt) + 1j
d += d
assert_allclose(d, 2.0 + 2j, atol=1.5e-7)
@xpassIfTorchDynamo_np # (reason="initial=... need implementing")
def test_sum_initial(self):
# Integer, single axis
assert_equal(np.sum([3], initial=2), 5)
# Floating point
assert_almost_equal(np.sum([0.2], initial=0.1), 0.3)
# Multiple non-adjacent axes
assert_equal(
np.sum(np.ones((2, 3, 5), dtype=np.int64), axis=(0, 2), initial=2),
[12, 12, 12],
)
@xpassIfTorchDynamo_np # (reason="where=... need implementing")
def test_sum_where(self):
# More extensive tests done in test_reduction_with_where.
assert_equal(np.sum([[1.0, 2.0], [3.0, 4.0]], where=[True, False]), 4.0)
assert_equal(
np.sum([[1.0, 2.0], [3.0, 4.0]], axis=0, initial=5.0, where=[True, False]),
[9.0, 5.0],
)
parametrize_axis = parametrize(
"axis", [0, 1, 2, -1, -2, (0, 1), (1, 0), (0, 1, 2), (1, -1, 0)]
)
parametrize_func = parametrize(
"func",
[
np.any,
np.all,
np.argmin,
np.argmax,
np.min,
np.max,
np.mean,
np.sum,
np.prod,
np.std,
np.var,
np.count_nonzero,
],
)
fails_axes_tuples = {
np.any,
np.all,
np.argmin,
np.argmax,
np.prod,
}
fails_out_arg = {
np.count_nonzero,
}
restricts_dtype_casts = {np.var, np.std}
fails_empty_tuple = {np.argmin, np.argmax}
@instantiate_parametrized_tests
class TestGenericReductions(TestCase):
"""Run a set of generic tests to verify that self.func acts like a
reduction operation.
Specifically, this class checks axis=... and keepdims=... parameters.
To check the out=... parameter, see the _GenericHasOutTestMixin class below.
To use: subclass, define self.func and self.allowed_axes.
"""
@parametrize_func
def test_bad_axis(self, func):
# Basic check of functionality
m = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
assert_raises(TypeError, func, m, axis="foo")
assert_raises(np.AxisError, func, m, axis=3)
assert_raises(TypeError, func, m, axis=np.array([[1], [2]]))
assert_raises(TypeError, func, m, axis=1.5)
# TODO: add tests with np.int32(3) etc, when implemented
@parametrize_func
def test_array_axis(self, func):
a = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
assert_equal(func(a, axis=np.array(-1)), func(a, axis=-1))
with assert_raises(TypeError):
func(a, axis=np.array([1, 2]))
@parametrize_func
def test_axis_empty_generic(self, func):
if func in fails_empty_tuple:
raise SkipTest("func(..., axis=()) is not valid")
a = np.array([[0, 0, 1], [1, 0, 1]])
assert_array_equal(func(a, axis=()), func(np.expand_dims(a, axis=0), axis=0))
@parametrize_func
def test_axis_bad_tuple(self, func):
# Basic check of functionality
m = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
if func in fails_axes_tuples:
raise SkipTest(f"{func.__name__} does not allow tuple axis.")
with assert_raises(ValueError):
func(m, axis=(1, 1))
@parametrize_axis
@parametrize_func
def test_keepdims_generic(self, axis, func):
if func in fails_axes_tuples:
raise SkipTest(f"{func.__name__} does not allow tuple axis.")
a = np.arange(2 * 3 * 4).reshape((2, 3, 4))
with_keepdims = func(a, axis, keepdims=True)
expanded = np.expand_dims(func(a, axis=axis), axis=axis)
assert_array_equal(with_keepdims, expanded)
@skipIf(numpy.__version__ < "1.24", reason="NP_VER: fails on CI w/old numpy")
@parametrize_func
def test_keepdims_generic_axis_none(self, func):
a = np.arange(2 * 3 * 4).reshape((2, 3, 4))
with_keepdims = func(a, axis=None, keepdims=True)
scalar = func(a, axis=None)
expanded = np.full((1,) * a.ndim, fill_value=scalar)
assert_array_equal(with_keepdims, expanded)
@parametrize_func
def test_out_scalar(self, func):
# out no axis: scalar
if func in fails_out_arg:
raise SkipTest(f"{func.__name__} does not have out= arg.")
a = np.arange(2 * 3 * 4).reshape((2, 3, 4))
result = func(a)
out = np.empty_like(result)
result_with_out = func(a, out=out)
assert result_with_out is out
assert_array_equal(result, result_with_out)
def _check_out_axis(self, axis, dtype, keepdims):
# out with axis
a = np.arange(2 * 3 * 4).reshape((2, 3, 4))
result = self.func(a, axis=axis, keepdims=keepdims).astype(dtype)
out = np.empty_like(result, dtype=dtype)
result_with_out = self.func(a, axis=axis, keepdims=keepdims, out=out)
assert result_with_out is out
assert result_with_out.dtype == dtype
assert_array_equal(result, result_with_out)
# TODO: what if result.dtype != out.dtype; does out typecast the result?
# out of wrong shape (any/out does not broadcast)
# np.any(m, out=np.empty_like(m)) raises a ValueError (wrong number
# of dimensions.)
# pytorch.any emits a warning and resizes the out array.
# Here we follow pytorch, since the result is a superset
# of the numpy functionality
@parametrize("keepdims", [True, False])
@parametrize("dtype", [bool, "int32", "float64"])
@parametrize_func
@parametrize_axis
def test_out_axis(self, func, axis, dtype, keepdims):
# out with axis
if func in fails_out_arg:
raise SkipTest(f"{func.__name__} does not have out= arg.")
if func in fails_axes_tuples:
raise SkipTest(f"{func.__name__} does not hangle tuple axis.")
if func in restricts_dtype_casts:
raise SkipTest(f"{func.__name__}: test implies float->int casts")
a = np.arange(2 * 3 * 4).reshape((2, 3, 4))
result = func(a, axis=axis, keepdims=keepdims).astype(dtype)
out = np.empty_like(result, dtype=dtype)
result_with_out = func(a, axis=axis, keepdims=keepdims, out=out)
assert result_with_out is out
assert result_with_out.dtype == dtype
assert_array_equal(result, result_with_out)
# TODO: what if result.dtype != out.dtype; does out typecast the result?
# out of wrong shape (any/out does not broadcast)
# np.any(m, out=np.empty_like(m)) raises a ValueError (wrong number
# of dimensions.)
# pytorch.any emits a warning and resizes the out array.
# Here we follow pytorch, since the result is a superset
# of the numpy functionality
@parametrize_func
@parametrize_axis
def test_keepdims_out(self, func, axis):
if func in fails_out_arg:
raise SkipTest(f"{func.__name__} does not have out= arg.")
if func in fails_axes_tuples:
raise SkipTest(f"{func.__name__} does not hangle tuple axis.")
d = np.ones((3, 5, 7, 11))
if axis is None:
shape_out = (1,) * d.ndim
else:
axis_norm = _util.normalize_axis_tuple(axis, d.ndim)
shape_out = tuple(
1 if i in axis_norm else d.shape[i] for i in range(d.ndim)
)
out = np.empty(shape_out)
result = func(d, axis=axis, keepdims=True, out=out)
assert result is out
assert_equal(result.shape, shape_out)
@instantiate_parametrized_tests
class TestGenericCumSumProd(TestCase):
"""Run a set of generic tests to verify that cumsum/cumprod are sane."""
@parametrize("func", [np.cumsum, np.cumprod])
def test_bad_axis(self, func):
# Basic check of functionality
m = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
assert_raises(TypeError, func, m, axis="foo")
assert_raises(np.AxisError, func, m, axis=3)
assert_raises(TypeError, func, m, axis=np.array([[1], [2]]))
assert_raises(TypeError, func, m, axis=1.5)
# TODO: add tests with np.int32(3) etc, when implemented
@parametrize("func", [np.cumsum, np.cumprod])
def test_array_axis(self, func):
a = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
assert_equal(func(a, axis=np.array(-1)), func(a, axis=-1))
with assert_raises(TypeError):
func(a, axis=np.array([1, 2]))
@parametrize("func", [np.cumsum, np.cumprod])
def test_axis_empty_generic(self, func):
a = np.array([[0, 0, 1], [1, 0, 1]])
assert_array_equal(func(a, axis=None), func(a.ravel(), axis=0))
@parametrize("func", [np.cumsum, np.cumprod])
def test_axis_bad_tuple(self, func):
# Basic check of functionality
m = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
with assert_raises(TypeError):
func(m, axis=(1, 1))
if __name__ == "__main__":
run_tests()
|