1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
# Owner(s): ["module: dynamo"]
"""
Poking around ufunc casting/broadcasting/dtype/out behavior.
The goal is to validate on numpy, and tests should work when replacing
>>> import numpy as no
by
>>> import torch._numpy as np
"""
import operator
from unittest import skipIf as skip, SkipTest
from pytest import raises as assert_raises
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
)
if TEST_WITH_TORCHDYNAMO:
import numpy as np
from numpy.testing import assert_equal
else:
import torch._numpy as np
from torch._numpy.testing import assert_equal
parametrize_unary_ufuncs = parametrize("ufunc", [np.sin])
parametrize_casting = parametrize(
"casting", ["no", "equiv", "safe", "same_kind", "unsafe"]
)
@instantiate_parametrized_tests
class TestUnaryUfuncs(TestCase):
def get_x(self, ufunc):
return np.arange(5, dtype="float64")
@parametrize_unary_ufuncs
def test_scalar(self, ufunc):
# check that ufunc accepts a scalar and the result is convertible to scalar
x = self.get_x(ufunc)[0]
float(ufunc(x))
@skip(True, reason="XXX: unary ufuncs ignore the dtype=... parameter")
@parametrize_unary_ufuncs
def test_x_and_dtype(self, ufunc):
x = self.get_x(ufunc)
res = ufunc(x, dtype="float")
assert res.dtype == np.dtype("float")
@skip(True, reason="XXX: unary ufuncs ignore the dtype=... parameter")
@parametrize_casting
@parametrize_unary_ufuncs
@parametrize("dtype", ["float64", "complex128", "float32"])
def test_x_and_dtype_casting(self, ufunc, casting, dtype):
x = self.get_x(ufunc)
if not np.can_cast(x, dtype, casting=casting):
with assert_raises(TypeError):
ufunc(x, dtype=dtype, casting=casting)
else:
assert ufunc(x, dtype=dtype, casting=casting).dtype == dtype
@parametrize_casting
@parametrize_unary_ufuncs
@parametrize("out_dtype", ["float64", "complex128", "float32"])
def test_x_and_out_casting(self, ufunc, casting, out_dtype):
x = self.get_x(ufunc)
out = np.empty_like(x, dtype=out_dtype)
if not np.can_cast(x, out_dtype, casting=casting):
with assert_raises(TypeError):
ufunc(x, out=out, casting=casting)
else:
result = ufunc(x, out=out, casting=casting)
assert result.dtype == out_dtype
assert result is out
@parametrize_unary_ufuncs
def test_x_and_out_broadcast(self, ufunc):
x = self.get_x(ufunc)
out = np.empty((x.shape[0], x.shape[0]))
x_b = np.broadcast_to(x, out.shape)
res_out = ufunc(x, out=out)
res_bcast = ufunc(x_b)
# TODO: switching the order causes a graph break, failing the test.
# See test/dynamo/test_misc.py -k test_numpy_graph_break
assert res_out is out
assert_equal(res_out, res_bcast)
out = np.empty((1, x.shape[0]))
x_b = np.broadcast_to(x, out.shape)
res_out = ufunc(x, out=out)
res_bcast = ufunc(x_b)
assert res_out is out
assert_equal(res_out, res_bcast)
ufunc_op_iop_numeric = [
(np.add, operator.__add__, operator.__iadd__),
(np.subtract, operator.__sub__, operator.__isub__),
(np.multiply, operator.__mul__, operator.__imul__),
]
ufuncs_with_dunders = [ufunc for ufunc, _, _ in ufunc_op_iop_numeric]
numeric_binary_ufuncs = [
np.float_power,
np.power,
]
# these are not implemented for complex inputs
no_complex = [
np.floor_divide,
np.hypot,
np.arctan2,
np.copysign,
np.fmax,
np.fmin,
np.fmod,
np.heaviside,
np.logaddexp,
np.logaddexp2,
np.maximum,
np.minimum,
]
parametrize_binary_ufuncs = parametrize(
"ufunc", ufuncs_with_dunders + numeric_binary_ufuncs + no_complex
)
# TODO: these snowflakes need special handling
"""
'bitwise_and',
'bitwise_or',
'bitwise_xor',
'equal',
'lcm',
'ldexp',
'left_shift',
'less',
'less_equal',
'gcd',
'greater',
'greater_equal',
'logical_and',
'logical_or',
'logical_xor',
'matmul',
'not_equal',
"""
@instantiate_parametrized_tests
class TestBinaryUfuncs(TestCase):
def get_xy(self, ufunc):
return np.arange(5, dtype="float64"), np.arange(8, 13, dtype="float64")
@parametrize_binary_ufuncs
def test_scalar(self, ufunc):
# check that ufunc accepts a scalar and the result is convertible to scalar
xy = self.get_xy(ufunc)
x, y = xy[0][0], xy[1][0]
float(ufunc(x, y))
@parametrize_binary_ufuncs
def test_vector_vs_scalar(self, ufunc):
x, y = self.get_xy(ufunc)
assert_equal(ufunc(x, y), [ufunc(a, b) for a, b in zip(x, y)])
@parametrize_casting
@parametrize_binary_ufuncs
@parametrize("out_dtype", ["float64", "complex128", "float32"])
def test_xy_and_out_casting(self, ufunc, casting, out_dtype):
x, y = self.get_xy(ufunc)
out = np.empty_like(x, dtype=out_dtype)
if ufunc in no_complex and np.issubdtype(out_dtype, np.complexfloating):
raise SkipTest(f"{ufunc} does not accept complex.")
can_cast_x = np.can_cast(x, out_dtype, casting=casting)
can_cast_y = np.can_cast(y, out_dtype, casting=casting)
if not (can_cast_x and can_cast_y):
with assert_raises(TypeError):
ufunc(x, out=out, casting=casting)
else:
result = ufunc(x, y, out=out, casting=casting)
assert result.dtype == out_dtype
assert result is out
@parametrize_binary_ufuncs
def test_xy_and_out_broadcast(self, ufunc):
x, y = self.get_xy(ufunc)
y = y[:, None]
out = np.empty((2, y.shape[0], x.shape[0]))
x_b = np.broadcast_to(x, out.shape)
y_b = np.broadcast_to(y, out.shape)
res_out = ufunc(x, y, out=out)
res_bcast = ufunc(x_b, y_b)
# TODO: switching the order causes a graph break, failing the test.
# See test/dynamo/test_misc.py -k test_numpy_graph_break
assert res_out is out
assert_equal(res_out, res_bcast)
dtypes_numeric = [np.int32, np.float32, np.float64, np.complex128]
@instantiate_parametrized_tests
class TestNdarrayDunderVsUfunc(TestCase):
"""Test ndarray dunders which delegate to ufuncs, vs ufuncs."""
@parametrize("ufunc, op, iop", ufunc_op_iop_numeric)
def test_basic(self, ufunc, op, iop):
"""basic op/rop/iop, no dtypes, no broadcasting"""
# __add__
a = np.array([1, 2, 3])
assert_equal(op(a, 1), ufunc(a, 1))
assert_equal(op(a, a.tolist()), ufunc(a, a.tolist()))
assert_equal(op(a, a), ufunc(a, a))
# __radd__
a = np.array([1, 2, 3])
assert_equal(op(1, a), ufunc(1, a))
assert_equal(op(a.tolist(), a), ufunc(a, a.tolist()))
# __iadd__
a0 = np.array([2, 4, 6])
a = a0.copy()
iop(a, 2) # modifies a in-place
assert_equal(a, op(a0, 2))
a0 = np.array([2, 4, 6])
a = a0.copy()
iop(a, a)
assert_equal(a, op(a0, a0))
@parametrize("ufunc, op, iop", ufunc_op_iop_numeric)
@parametrize("other_dtype", dtypes_numeric)
def test_other_scalar(self, ufunc, op, iop, other_dtype):
"""Test op/iop/rop when the other argument is a scalar of a different dtype."""
a = np.array([1, 2, 3])
b = other_dtype(3)
if ufunc in no_complex and issubclass(other_dtype, np.complexfloating):
raise SkipTest(f"{ufunc} does not accept complex.")
# __op__
result = op(a, b)
assert_equal(result, ufunc(a, b))
if result.dtype != np.result_type(a, b):
assert result.dtype == np.result_type(a, b)
# __rop__
result = op(b, a)
assert_equal(result, ufunc(b, a))
if result.dtype != np.result_type(a, b):
assert result.dtype == np.result_type(a, b)
# __iop__ : casts the result to self.dtype, raises if cannot
can_cast = np.can_cast(
np.result_type(a.dtype, other_dtype), a.dtype, casting="same_kind"
)
if can_cast:
a0 = a.copy()
result = iop(a, b)
assert_equal(result, ufunc(a0, b))
if result.dtype != np.result_type(a, b):
assert result.dtype == np.result_type(a0, b)
else:
with assert_raises((TypeError, RuntimeError)): # XXX np.UFuncTypeError
iop(a, b)
@parametrize("ufunc, op, iop", ufunc_op_iop_numeric)
@parametrize("other_dtype", dtypes_numeric)
def test_other_array(self, ufunc, op, iop, other_dtype):
"""Test op/iop/rop when the other argument is an array of a different dtype."""
a = np.array([1, 2, 3])
b = np.array([5, 6, 7], dtype=other_dtype)
if ufunc in no_complex and issubclass(other_dtype, np.complexfloating):
raise SkipTest(f"{ufunc} does not accept complex.")
# __op__
result = op(a, b)
assert_equal(result, ufunc(a, b))
if result.dtype != np.result_type(a, b):
assert result.dtype == np.result_type(a, b)
# __rop__(other array)
result = op(b, a)
assert_equal(result, ufunc(b, a))
if result.dtype != np.result_type(a, b):
assert result.dtype == np.result_type(a, b)
# __iop__
can_cast = np.can_cast(
np.result_type(a.dtype, other_dtype), a.dtype, casting="same_kind"
)
if can_cast:
a0 = a.copy()
result = iop(a, b)
assert_equal(result, ufunc(a0, b))
if result.dtype != np.result_type(a, b):
assert result.dtype == np.result_type(a0, b)
else:
with assert_raises((TypeError, RuntimeError)): # XXX np.UFuncTypeError
iop(a, b)
@parametrize("ufunc, op, iop", ufunc_op_iop_numeric)
def test_other_array_bcast(self, ufunc, op, iop):
"""Test op/rop/iop with broadcasting"""
# __op__
a = np.array([1, 2, 3])
result_op = op(a, a[:, None])
result_ufunc = ufunc(a, a[:, None])
assert result_op.shape == result_ufunc.shape
assert_equal(result_op, result_ufunc)
if result_op.dtype != result_ufunc.dtype:
assert result_op.dtype == result_ufunc.dtype
# __rop__
a = np.array([1, 2, 3])
result_op = op(a[:, None], a)
result_ufunc = ufunc(a[:, None], a)
assert result_op.shape == result_ufunc.shape
assert_equal(result_op, result_ufunc)
if result_op.dtype != result_ufunc.dtype:
assert result_op.dtype == result_ufunc.dtype
# __iop__ : in-place ops (`self += other` etc) do not broadcast self
b = a[:, None].copy()
with assert_raises((ValueError, RuntimeError)): # XXX ValueError in numpy
iop(a, b)
# however, `self += other` broadcasts other
aa = np.broadcast_to(a, (3, 3)).copy()
aa0 = aa.copy()
result = iop(aa, a)
result_ufunc = ufunc(aa0, a)
assert result.shape == result_ufunc.shape
assert_equal(result, result_ufunc)
if result_op.dtype != result_ufunc.dtype:
assert result_op.dtype == result_ufunc.dtype
class TestUfuncDtypeKwd(TestCase):
def test_binary_ufunc_dtype(self):
# default computation uses float64:
r64 = np.add(1, 1e-15)
assert r64.dtype == "float64"
assert r64 - 1 > 0
# force the float32 dtype: loss of precision
r32 = np.add(1, 1e-15, dtype="float32")
assert r32.dtype == "float32"
assert r32 == 1
# now force the cast
rb = np.add(1.0, 1e-15, dtype=bool, casting="unsafe")
assert rb.dtype == bool
def test_binary_ufunc_dtype_and_out(self):
# all in float64: no precision loss
out64 = np.empty(2, dtype=np.float64)
r64 = np.add([1.0, 2.0], 1.0e-15, out=out64)
assert (r64 != [1.0, 2.0]).all()
assert r64.dtype == np.float64
# all in float32: loss of precision, result is float32
out32 = np.empty(2, dtype=np.float32)
r32 = np.add([1.0, 2.0], 1.0e-15, dtype=np.float32, out=out32)
assert (r32 == [1, 2]).all()
assert r32.dtype == np.float32
# dtype is float32, so computation is in float32: precision loss
# the result is then cast to float64
out64 = np.empty(2, dtype=np.float64)
r = np.add([1.0, 2.0], 1.0e-15, dtype=np.float32, out=out64)
assert (r == [1, 2]).all()
assert r.dtype == np.float64
# Internal computations are in float64, but the final cast to out.dtype
# truncates the precision => precision loss.
out32 = np.empty(2, dtype=np.float32)
r = np.add([1.0, 2.0], 1.0e-15, dtype=np.float64, out=out32)
assert (r == [1, 2]).all()
assert r.dtype == np.float32
if __name__ == "__main__":
run_tests()
|