File: tensor_constructors.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (134 lines) | stat: -rw-r--r-- 4,457 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# mypy: disable-error-code="possibly-undefined"
# flake8: noqa
import torch
from torch.testing._internal.common_utils import TEST_NUMPY


if TEST_NUMPY:
    import numpy as np

# From the docs, there are quite a few ways to create a tensor:
# https://pytorch.org/docs/stable/tensors.html

# torch.tensor()
reveal_type(torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]]))  # E: {Tensor}
reveal_type(torch.tensor([0, 1]))  # E: {Tensor}
reveal_type(
    torch.tensor(
        [[0.11111, 0.222222, 0.3333333]],
        dtype=torch.float64,
        device=torch.device("cuda:0"),
    )
)  # E: {Tensor}
reveal_type(torch.tensor(3.14159))  # E: {Tensor}

# torch.sparse_coo_tensor
i = torch.tensor([[0, 1, 1], [2, 0, 2]])  # E: {Tensor}
v = torch.tensor([3, 4, 5], dtype=torch.float32)  # E: {Tensor}
reveal_type(torch.sparse_coo_tensor(i, v, [2, 4]))  # E: {Tensor}
reveal_type(torch.sparse_coo_tensor(i, v))  # E: {Tensor}
reveal_type(
    torch.sparse_coo_tensor(
        i, v, [2, 4], dtype=torch.float64, device=torch.device("cuda:0")
    )
)  # E: {Tensor}
reveal_type(torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1]))  # E: {Tensor}
reveal_type(
    torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2])
)  # E: {Tensor}

# torch.as_tensor
if TEST_NUMPY:
    a = np.array([1, 2, 3])
    reveal_type(torch.as_tensor(a))  # E: {Tensor}
    reveal_type(torch.as_tensor(a, device=torch.device("cuda")))  # E: {Tensor}

# torch.as_strided
x = torch.randn(3, 3)
reveal_type(torch.as_strided(x, (2, 2), (1, 2)))  # E: {Tensor}
reveal_type(torch.as_strided(x, (2, 2), (1, 2), 1))  # E: {Tensor}

# torch.from_numpy
if TEST_NUMPY:
    a = np.array([1, 2, 3])
    reveal_type(torch.from_numpy(a))  # E: {Tensor}

# torch.zeros/zeros_like
reveal_type(torch.zeros(2, 3))  # E: {Tensor}
reveal_type(torch.zeros(5))  # E: {Tensor}
reveal_type(torch.zeros_like(torch.empty(2, 3)))  # E: {Tensor}

# torch.ones/ones_like
reveal_type(torch.ones(2, 3))  # E: {Tensor}
reveal_type(torch.ones(5))  # E: {Tensor}
reveal_type(torch.ones_like(torch.empty(2, 3)))  # E: {Tensor}

# torch.arange
reveal_type(torch.arange(5))  # E: {Tensor}
reveal_type(torch.arange(1, 4))  # E: {Tensor}
reveal_type(torch.arange(1, 2.5, 0.5))  # E: {Tensor}

# torch.range
reveal_type(torch.range(1, 4))  # E: {Tensor}
reveal_type(torch.range(1, 4, 0.5))  # E: {Tensor}

# torch.linspace
reveal_type(torch.linspace(3, 10, steps=5))  # E: {Tensor}
reveal_type(torch.linspace(-10, 10, steps=5))  # E: {Tensor}
reveal_type(torch.linspace(start=-10, end=10, steps=5))  # E: {Tensor}
reveal_type(torch.linspace(start=-10, end=10, steps=1))  # E: {Tensor}

# torch.logspace
reveal_type(torch.logspace(start=-10, end=10, steps=5))  # E: {Tensor}
reveal_type(torch.logspace(start=0.1, end=1.0, steps=5))  # E: {Tensor}
reveal_type(torch.logspace(start=0.1, end=1.0, steps=1))  # E: {Tensor}
reveal_type(torch.logspace(start=2, end=2, steps=1, base=2))  # E: {Tensor}

# torch.eye
reveal_type(torch.eye(3))  # E: {Tensor}

# torch.empty/empty_like/empty_strided
reveal_type(torch.empty(2, 3))  # E: {Tensor}
reveal_type(torch.empty_like(torch.empty(2, 3), dtype=torch.int64))  # E: {Tensor}
reveal_type(torch.empty_strided((2, 3), (1, 2)))  # E: {Tensor}

# torch.full/full_like
reveal_type(torch.full((2, 3), 3.141592))  # E: {Tensor}
reveal_type(torch.full_like(torch.full((2, 3), 3.141592), 2.71828))  # E: {Tensor}

# torch.quantize_per_tensor
reveal_type(
    torch.quantize_per_tensor(
        torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8
    )
)  # E: {Tensor}

# torch.quantize_per_channel
x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]])
quant = torch.quantize_per_channel(
    x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8
)
reveal_type(x)  # E: {Tensor}

# torch.dequantize
reveal_type(torch.dequantize(x))  # E: {Tensor}

# torch.complex
real = torch.tensor([1, 2], dtype=torch.float32)
imag = torch.tensor([3, 4], dtype=torch.float32)
reveal_type(torch.complex(real, imag))  # E: {Tensor}

# torch.polar
abs = torch.tensor([1, 2], dtype=torch.float64)
pi = torch.acos(torch.zeros(1)).item() * 2
angle = torch.tensor([pi / 2, 5 * pi / 4], dtype=torch.float64)
reveal_type(torch.polar(abs, angle))  # E: {Tensor}

# torch.heaviside
inp = torch.tensor([-1.5, 0, 2.0])
values = torch.tensor([0.5])
reveal_type(torch.heaviside(inp, values))  # E: {Tensor}

# contains
inp = torch.tensor([1, 2, 3])
reveal_type(inp.__contains__(2))  # E: bool