File: context.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (31 lines) | stat: -rw-r--r-- 945 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import functools
from typing import Callable

from torchgen.api.autograd import NativeFunctionWithDifferentiabilityInfo as NFWDI
from torchgen.context import native_function_manager
from torchgen.utils import T


# Like tools.api.context.with_native_function, but for
# NativeFunctionWithDifferentiabilityInfo.
def with_native_function_with_differentiability_info(
    func: Callable[[NFWDI], T],
) -> Callable[[NFWDI], T]:
    @functools.wraps(func)
    def wrapper(f: NFWDI) -> T:
        with native_function_manager(f.func):
            return func(f)

    return wrapper


# Like the above but with an additional dispatch key string argument
def with_native_function_with_differentiability_info_and_key(
    func: Callable[[NFWDI, str], T],
) -> Callable[[NFWDI, str], T]:
    @functools.wraps(func)
    def wrapper(f: NFWDI, key: str) -> T:
        with native_function_manager(f.func):
            return func(f, key)

    return wrapper