1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
|
# Generates C++ autograd functions for the derivatives of ATen operations
#
# This writes two files:
# Functions.h/cpp: subclasses of autograd::Node
# python_functions.h/cpp: Python bindings for the above classes
#
from __future__ import annotations
from typing import Sequence
from torchgen.api.autograd import (
Derivative,
DifferentiabilityInfo,
SavedAttribute,
uses_retain_variables,
uses_single_grad,
)
from torchgen.api.types import (
ArrayRefCType,
BaseCppType,
BaseCType,
Binding,
boolT,
doubleT,
intArrayRefT,
iTensorListRefT,
ListCType,
longT,
MutRefCType,
OptionalCType,
optionalIntArrayRefT,
optionalSymIntArrayRefT,
scalarT,
stringT,
symIntArrayRefT,
SymIntT,
TENSOR_LIST_LIKE_CTYPES,
tensorListT,
tensorT,
VectorCType,
)
from torchgen.code_template import CodeTemplate
from torchgen.model import Argument, FunctionSchema
from torchgen.utils import FileManager
from .gen_inplace_or_view_type import VIEW_FUNCTIONS
FUNCTION_DECLARATION = CodeTemplate(
"""\
#ifdef _WIN32
struct ${op} : public ${superclass} {
TORCH_API ${op}() = default;
#else
struct TORCH_API ${op} : public ${superclass} {
#endif
using ${superclass}::${superclass};
variable_list apply(variable_list&& grads) override;
std::string name() const override { return "${op}"; }
void release_variables() override {
${thread_lock}
${release_variables}
}
${will_release_variables}
void compiled_args(CompiledNodeArgs& args) override;
variable_list apply_with_saved(const variable_list& inputs, SwapSavedVariables& saved) override;
${saved_variables}
${saved_list_sizes}
};
"""
)
WILL_RELEASE_VARIABLES = CodeTemplate(
"""\
bool retain_variables = true;
void will_release_variables() override {
retain_variables = false;
}
"""
)
# We generate e.g. MulBackward0::apply and have that call into
# MulBackward0_apply_functional. The apply_functional is a pure function,
# that is, it does not rely on global state. MulBackward0::apply
# is responsible for querying the autograd engine for which outputs should
# be computed (needs_input_grad), applying locks,
# and unpacking saved variables to pass to MulBackward0_apply_functional.
#
# needs_input_grad is a mapping from input index to if that input needs
# gradients computed. For operators that take in List[Tensor], the List[Tensor]
# is one element in the needs_input_grad that specifies if *any* of the
# List[Tensor] needs input grad. In theory this could be optimized.
FUNCTION_DEFINITION = CodeTemplate(
"""\
static variable_list ${op}_apply_functional(
variable_list&& grads,
std::array<bool,${num_vars}> needs_input_grad${,unpacked_saved_vars_signature})
{
IndexRangeGenerator gen;
${compute_index_ranges}
variable_list grad_inputs(gen.size());
${body}
return grad_inputs;
}
variable_list ${op}::apply(variable_list&& grads) {
${thread_lock}
${asserts}
${unpacks}
${compute_needs_input_grad}
return ${op}_apply_functional(std::move(grads), needs_input_grad${,unpacked_saved_vars});
}
void ${op}::compiled_args(CompiledNodeArgs& args) {
${compiled_args}
}
variable_list ${op}::apply_with_saved(const variable_list& grads, SwapSavedVariables& saved) {
${apply_with_saved_before}
variable_list result = apply(variable_list(grads));
${apply_with_saved_after}
return result;
}
"""
)
GRAD_INPUT_MASK = CodeTemplate(
"""\
auto grad_input_mask = std::array<bool, ${n}>{
${masks}
};
"""
)
COMPUTE_NEEDS_INPUT_GRAD = CodeTemplate(
"""\
IndexRangeGenerator gen;
${compute_index_ranges}
auto needs_input_grad = std::array<bool, ${n}>{
${masks}
};\
"""
)
DERIVATIVE_SINGLE = CodeTemplate(
"""\
if (needs_input_grad[/*${name}*/${idx}]) {
auto grad_result = ${derivative};
copy_range(grad_inputs, ${name}_ix, grad_result);
}
"""
)
# note(crcrpar): `self` argument and other optional positional argument
# of foreach functions are basically a list of n `Tensor`s thus iterating over
# `grads` in order to utilize and apply the existing derivative definitions
# to each `Tensor`(s) of `self`, and the others.
DERIVATIVE_SINGLE_FOREACH = CodeTemplate(
"""\
if (needs_input_grad[/*${name}*/${idx}]) { // ${name}
std::vector<Tensor> grad_result;
grad_result.reserve(grads.size());
for (const auto & i : c10::irange(grads.size())) {
if (grads[i].defined()) {
grad_result.emplace_back(${derivative});
} else {
grad_result.emplace_back(Tensor());
}
}
copy_range(grad_inputs, ${name}_ix, grad_result);
}
"""
)
DERIVATIVE_MULTI_COPY_RANGE = CodeTemplate(
"""\
if (needs_input_grad[/*${name}*/${idx}]) {
copy_range(grad_inputs, ${name}_ix, std::get<${i}>(grad_result));
}
"""
)
DERIVATIVE_MULTI = CodeTemplate(
"""\
if (${needs_input_grad}) {
${grad_input_mask}
auto grad_result = ${derivative};
${copy_ranges}
}
"""
)
# Generates python bindings
#
# This generates the definitions for:
# (1) The PyTypeObject for each backward grad_fn subclassing Node
# (2) The entry for PyTypeObject's tp_getset slot (an array of PyGetSetDef structs)
# We generate one PyGetSetDef struct for each of grad_fn's saved inputs and outputs
# Each PyGetSetDef has a function ptr to a getter, also defined here (3).
# (3) Getters for each of grad_fn's saved inputs and outputs.
#
PY_FUNCTION_DEFINITION = CodeTemplate(
"""\
static PyTypeObject ${op}Class;
addClass<${op}>(module, ${op}Class, "${op}", ${op}_properties);
"""
)
PY_FUNCTION_PROPS_AND_GETTERS = CodeTemplate(
"""\
${all_getter_definitions}
static struct PyGetSetDef ${op}_properties[] = {
THP_FUNCTION_DEFAULT_PROPERTIES,
${all_getsetdef_structs}
{nullptr} /* sentinel */
};
"""
)
PY_GETSETDEF_STRUCT = CodeTemplate(
"""\
{(char*)"_saved_${name}", (getter)THP${op}_${name}_getter, nullptr, nullptr, nullptr}"""
)
PY_RAW_GETSETDEF_STRUCT = CodeTemplate(
"""\
{(char*)"_raw_saved_${name}", (getter)THP${op}_${name}_raw_getter, nullptr, nullptr, nullptr}"""
)
# Getter templates
GETTER_DEFINITION = CodeTemplate(
"""\
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
HANDLE_TH_ERRORS
auto prop = static_cast<${op}*>(self->cdata.get())->${name};
${body}
END_HANDLE_TH_ERRORS
}
"""
)
GETTER_DEFINITION_SAVEDVAR = CodeTemplate(
"""\
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
HANDLE_TH_ERRORS
const auto& prop = static_cast<${op}*>(self->cdata.get())->${name}_;
${body}
END_HANDLE_TH_ERRORS
}
"""
)
GETTER_DEFINITION_RAW_SAVEDVAR = CodeTemplate(
"""\
PyObject* THP${op}_${name}_raw_getter(THPCppFunction *self, void *_unused) {
HANDLE_TH_ERRORS
const auto& prop = static_cast<${op}*>(self->cdata.get())->${name}_;
${body}
END_HANDLE_TH_ERRORS
}
"""
)
GETTER_DEFINITION_VEC_SAVEDVAR = CodeTemplate(
"""\
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
HANDLE_TH_ERRORS
const auto *node = static_cast<${op}*>(self->cdata.get());
const auto& prop = node->${name}_;
if (node->${name}_released_) {
PyErr_SetString(PyExc_RuntimeError, ERR_BACKWARD_TWICE);
return nullptr;
}
${body}
END_HANDLE_TH_ERRORS
}
"""
)
GETTER_DEFINITION_RAW_VEC_SAVEDVAR = CodeTemplate(
"""\
PyObject* THP${op}_${name}_raw_getter(THPCppFunction *self, void *_unused) {
HANDLE_TH_ERRORS
const auto *node = static_cast<${op}*>(self->cdata.get());
const auto& prop = node->${name}_;
if (node->${name}_released_) {
PyErr_SetString(PyExc_RuntimeError, ERR_BACKWARD_TWICE);
return nullptr;
}
${body}
END_HANDLE_TH_ERRORS
}
"""
)
GETTER_DEFINITION_OPT = CodeTemplate(
"""\
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
HANDLE_TH_ERRORS
auto opt_prop = static_cast<${op}*>(self->cdata.get())->${name};
if (!opt_prop.has_value()) {
Py_RETURN_NONE;
}
auto prop = opt_prop.value();
${body}
END_HANDLE_TH_ERRORS
}
"""
)
GETTER_DEFINITION_OPT_ARRAYREF = CodeTemplate(
"""\
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
HANDLE_TH_ERRORS
auto opt_prop = static_cast<${op}*>(self->cdata.get())->${name};
if (!opt_prop.list.has_value()) {
Py_RETURN_NONE;
}
auto prop = opt_prop.list.value();
${body}
END_HANDLE_TH_ERRORS
}
"""
)
# Getter body
GETTER_BODY_SAVEDVAR = """\
return THPVariable_Wrap(prop.unpack(self->cdata));
"""
GETTER_BODY_RAW_SAVEDVAR = """\
pybind11::object obj = pybind11::cast(prop, pybind11::return_value_policy::reference);
return obj.release().ptr();
"""
GETTER_BODY_VEC_SAVEDVAR = """\
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
for (auto i: c10::irange(prop.size())) {
PyTuple_SetItem(tup, (Py_ssize_t) i, THPVariable_Wrap(prop[i].unpack(self->cdata)));
}
return tup;
"""
GETTER_BODY_RAW_VEC_SAVEDVAR = """\
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
for (auto i : c10::irange(prop.size())) {
pybind11::object obj = pybind11::cast(prop[i], pybind11::return_value_policy::reference);
PyTuple_SetItem(tup, (Py_ssize_t) i, obj.release().ptr());
}
return tup;
"""
GETTER_BODY_ARRAYREF_LONG = """\
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
for (auto i : c10::irange(prop.size())) {
PyTuple_SetItem(tup, (Py_ssize_t) i, PyLong_FromUnsignedLong((uint64_t) prop[i]));
}
return tup;
"""
GETTER_BODY_ARRAYREF_SYMINT = """\
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
for (auto i : c10::irange(prop.size())) {
auto si = prop[i];
if (auto m = si.maybe_as_int()) {
PyTuple_SetItem(tup, (Py_ssize_t) i, PyLong_FromUnsignedLong(*m));
} else {
auto py_symint = py::cast(si).release().ptr();
PyTuple_SetItem(tup, (Py_ssize_t) i, py_symint);
}
}
return tup;
"""
GETTER_BODY_ARRAYREF_DOUBLE = """\
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
for (auto i : c10::irange(prop.size())) {
PyTuple_SetItem(tup, (Py_ssize_t) i, PyFloat_FromDouble((double) prop[i]));
}
return tup;
"""
GETTER_BODY_INT64_T = """\
return PyLong_FromUnsignedLong((int64_t) prop);
"""
GETTER_BODY_SYMINT = """\
if (auto m = prop.maybe_as_int()) {
return PyLong_FromUnsignedLong(*m);
} else {
return py::cast(prop).release().ptr();
}
"""
GETTER_BODY_DOUBLE = """\
return PyFloat_FromDouble((double) prop);
"""
GETTER_BODY_BOOL = """\
if (prop) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
"""
GETTER_BODY_STRING = """\
return PyUnicode_FromStringAndSize(prop.data(), prop.size());
"""
GETTER_BODY_SCALAR = """\
if (prop.isComplex()) {
auto cprop = prop.to<c10::complex<double>>();
return PyComplex_FromDoubles(cprop.real(), cprop.imag());
} else if (prop.isFloatingPoint()) {
return PyFloat_FromDouble(prop.to<double>());
} else if (prop.isIntegral(/*includeBool=*/false)) {
return PyLong_FromLong(prop.to<int64_t>());
} else if (prop.isBoolean()) {
if (prop.to<bool>()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
} else {
PyErr_SetString(PyExc_RuntimeError, "Unknown scalar type");
return nullptr;
}
"""
GETTER_BODY_VEC_SCALAR = """\
PyObject* tup = PyTuple_New((Py_ssize_t) prop.size());
for (auto i: c10::irange(prop.size())) {
if (prop[i].isComplex()) {
auto cprop = prop[i].to<c10::complex<double>>();
PyTuple_SetItem(tup, (Py_ssize_t) i, PyComplex_FromDoubles(cprop.real(), cprop.imag()));
} else if (prop[i].isFloatingPoint()) {
auto double_prop = prop[i].to<double>();
PyTuple_SetItem(tup, (Py_ssize_t) i, PyFloat_FromDouble(double_prop));
} else if (prop[i].isIntegral(/*includeBool=*/false)) {
auto long_prop = prop[i].to<int64_t>();
PyTuple_SetItem(tup, (Py_ssize_t) i, PyLong_FromLong(long_prop));
} else if (prop[i].isBoolean()) {
if (prop[i].to<bool>()) {
PyTuple_SetItem(tup, (Py_ssize_t) i, Py_True);
} else {
PyTuple_SetItem(tup, (Py_ssize_t) i, Py_False);
}
} else {
PyErr_SetString(PyExc_RuntimeError, "Unknown scalar type");
return nullptr;
}
}
return tup;
"""
MISC_GETTER_DEFS = {
OptionalCType(BaseCType(longT)): (GETTER_DEFINITION_OPT, GETTER_BODY_INT64_T),
OptionalCType(BaseCType(SymIntT)): (GETTER_DEFINITION_OPT, GETTER_BODY_SYMINT),
BaseCType(doubleT): (GETTER_DEFINITION, GETTER_BODY_DOUBLE),
OptionalCType(BaseCType(doubleT)): (GETTER_DEFINITION_OPT, GETTER_BODY_DOUBLE),
BaseCType(boolT): (GETTER_DEFINITION, GETTER_BODY_BOOL),
BaseCType(scalarT): (GETTER_DEFINITION, GETTER_BODY_SCALAR),
OptionalCType(BaseCType(scalarT)): (GETTER_DEFINITION_OPT, GETTER_BODY_SCALAR),
}
# These functions have backwards which cannot be traced, and so must have
# their backward functions traced opaquely.
# VIEW_FUNCTIONS are not traceable because they use as_strided, which
# has an untraceable backwards, see
# https://github.com/pytorch/pytorch/issues/4250
# TODO: This is probably not exhaustive, but it's a start
UNTRACEABLE_FUNCTIONS = VIEW_FUNCTIONS
def get_infos_with_derivatives_list(
differentiability_infos: dict[FunctionSchema, dict[str, DifferentiabilityInfo]],
) -> list[DifferentiabilityInfo]:
diff_info_list = [
info
for diffinfo_dict in differentiability_infos.values()
for info in diffinfo_dict.values()
]
return list(filter(lambda info: info.args_with_derivatives, diff_info_list))
def gen_autograd_functions_lib(
out: str,
differentiability_infos: dict[FunctionSchema, dict[str, DifferentiabilityInfo]],
template_path: str,
) -> None:
"""Functions.h and Functions.cpp body
These contain the auto-generated subclasses of torch::autograd::Node
for each every differentiable torch function.
"""
# get a 1D list of diffinfos, we do not need them to be per FunctionSchema/DispatchKey here
# infos with the diff dispatchkeys but the same name will still be in the same shard.
infos = get_infos_with_derivatives_list(differentiability_infos)
declarations = [process_function(f, FUNCTION_DECLARATION) for f in infos]
definitions = [process_function(f, FUNCTION_DEFINITION) for f in infos]
file_basename = "Functions"
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
for suffix in [".h", ".cpp"]:
fname = file_basename + suffix
fm.write_with_template(
fname,
fname,
lambda: {
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/"
+ fname,
"autograd_function_declarations": declarations,
"autograd_function_definitions": definitions,
},
)
def gen_autograd_functions_python(
out: str,
differentiability_infos: dict[FunctionSchema, dict[str, DifferentiabilityInfo]],
template_path: str,
) -> None:
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
num_shards = 5
fm.write(
"python_functions.h",
lambda: {
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/python_functions.h",
"shard_forward_declare": [
f"void initialize_autogenerated_functions_{i}(PyObject* module);"
for i in range(num_shards)
],
"shard_call": [
f"initialize_autogenerated_functions_{i}(module);"
for i in range(num_shards)
],
},
)
# get a 1D list of diffinfos, we do not need them to be per FunctionSchema/DispatchKey here
# infos with the diff dispatchkeys but the same name will still be in the same shard.
infos = get_infos_with_derivatives_list(differentiability_infos)
fm.write_sharded(
"python_functions.cpp",
infos,
key_fn=lambda info: info.name,
base_env={
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/python_functions.cpp",
},
env_callable=lambda info: {
"py_function_initializers": [
process_function(info, PY_FUNCTION_DEFINITION)
],
"py_function_props_and_getters": [
process_function(info, PY_FUNCTION_PROPS_AND_GETTERS)
],
},
num_shards=num_shards,
sharded_keys={"py_function_initializers", "py_function_props_and_getters"},
)
def process_function(info: DifferentiabilityInfo, template: CodeTemplate) -> str:
saved_variables: list[str] = []
release_variables: list[str] = []
saved_list_sizes: list[str] = []
unpack: list[str] = []
asserts: list[str] = []
compute_index_ranges: list[str] = []
getter_definitions: list[str] = []
py_getsetdef_structs: list[str] = []
compiled_args: list[str] = []
apply_with_saved_before: list[str] = []
apply_with_saved_after: list[str] = []
unpacked_saved_vars: list[str] = []
unpacked_saved_vars_ref_type: list[str] = []
# Maps var_name to a unique index. The var_name is the
# name of an input to the operator that needs a gradient (like "self", "other").
# The index is the order in which they appear. We use this mapping
# to populate needs_input_grad in some order and then grab values from it.
var_name_map: dict[str, int] = {}
for idx, arg in enumerate(info.args_with_derivatives):
if arg.type in TENSOR_LIST_LIKE_CTYPES:
size = f"{arg.name}_size_"
saved_list_sizes.append(f"size_t {arg.name}_size_;")
unpacked_saved_vars.append(f"{arg.name}_size_")
unpacked_saved_vars_ref_type.append("size_t")
else:
size = "1"
compute_index_ranges.append(f"auto {arg.name}_ix = gen.range({size});")
var_name_map[arg.name] = idx
def save_var(var: SavedAttribute, is_output: bool) -> None:
name = var.nctype.name
type = var.nctype.type
should_append_getsetdef = True
should_append_raw_getsetdef = False
visit_name = name
uses_cpp_saved_variable_cls = False
unpacked_ref_type = None
if (
type == BaseCType(tensorT)
or type == OptionalCType(BaseCType(tensorT))
or type == MutRefCType(OptionalCType(BaseCType(tensorT)))
or (type == BaseCType(scalarT) and is_output)
):
uses_cpp_saved_variable_cls = True
saved_variables.append(f"SavedVariable {name}_;")
release_variables.append(f"{name}_.reset_data();")
ptr = "shared_from_this()" if is_output else ""
unpack.append(f"auto {name} = {name}_.unpack({ptr});")
getter_definitions.append(
GETTER_DEFINITION_SAVEDVAR.substitute(
op=info.op, name=name, body=GETTER_BODY_SAVEDVAR
)
)
getter_definitions.append(
GETTER_DEFINITION_RAW_SAVEDVAR.substitute(
op=info.op, name=name, body=GETTER_BODY_RAW_SAVEDVAR
)
)
should_append_raw_getsetdef = True
visit_name = f"{name}_"
unpacked_ref_type = "Tensor&"
elif (
type == BaseCType(tensorListT)
or type == BaseCType(iTensorListRefT)
or type == VectorCType(BaseCType(tensorT))
):
# note(crcrpar): [nuanced return type of out-of-place foreach functions]
# When an out-of-place foreach function whose return signature is `Tensor[]`
# spells out its backward definitions in `derivatives.yaml`, and some of them depend on
# `result`, `result`'s type is interpreted and treated as `std::vector<Tensor>`.
# An out-of-place foreach whose backwards rely on their output doesn't suffer from this
# difference if the definitions are codegen'ed.
# This special case is needed for `_foreach_pow.List` and `_foreach_pow.ScalarAndTensor`
# as of https://github.com/pytorch/pytorch/pull/105504.
if type == VectorCType(BaseCType(tensorT)):
assert (
info.func.func.name.name.base.startswith("_foreach") and is_output
)
uses_cpp_saved_variable_cls = True
saved_variables.append(f"std::vector<SavedVariable> {name}_;")
saved_variables.append(f"bool {name}_released_ = false;")
# Just clear() is sufficient, we don't need to loop and clear each variable.
# Because the SavedVariable owns a tensor and a grad_fn, removing the SavedVariable makes them go away as well.
release_variables.append(f"{name}_.clear();")
release_variables.append(f"{name}_released_ = true;")
ptr = "shared_from_this()" if is_output else "nullptr"
unpack.append(f"auto {name} = unpack_list({name}_, {ptr});")
asserts.append(f"TORCH_CHECK(!{name}_released_, ERR_BACKWARD_TWICE);")
getter_definitions.append(
GETTER_DEFINITION_VEC_SAVEDVAR.substitute(
op=info.op, name=name, body=GETTER_BODY_VEC_SAVEDVAR
)
)
getter_definitions.append(
GETTER_DEFINITION_RAW_VEC_SAVEDVAR.substitute(
op=info.op, name=name, body=GETTER_BODY_RAW_VEC_SAVEDVAR
)
)
should_append_raw_getsetdef = True
visit_name = f"{name}_"
unpacked_ref_type = "std::vector<Tensor>&"
elif type == ListCType(OptionalCType(BaseCType(tensorT))):
uses_cpp_saved_variable_cls = True
saved_variables.append(f"std::vector<SavedVariable> {name}_;")
saved_variables.append(f"bool {name}_released_ = false;")
# Just clear() is sufficient, we don't need to loop and clear each variable.
# Because the SavedVariable owns a tensor and a grad_fn, removing the SavedVariable makes them go away as well.
release_variables.append(f"{name}_.clear();")
release_variables.append(f"{name}_released_ = true;")
unpack.append(f"auto {name} = unpack_opt_list({name}_);")
asserts.append(f"TORCH_CHECK(!{name}_released_, ERR_BACKWARD_TWICE);")
getter_definitions.append(
GETTER_DEFINITION_VEC_SAVEDVAR.substitute(
op=info.op, name=name, body=GETTER_BODY_VEC_SAVEDVAR
)
)
getter_definitions.append(
GETTER_DEFINITION_RAW_VEC_SAVEDVAR.substitute(
op=info.op, name=name, body=GETTER_BODY_RAW_VEC_SAVEDVAR
)
)
should_append_raw_getsetdef = True
visit_name = f"{name}_"
unpacked_ref_type = "torch::List<std::optional<Tensor>>&"
elif type == BaseCType(intArrayRefT):
saved_variables.append(f"std::vector<int64_t> {name};")
getter_definitions.append(
GETTER_DEFINITION.substitute(
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_LONG
)
)
elif type == BaseCType(symIntArrayRefT):
saved_variables.append(f"std::vector<c10::SymInt> {name};")
getter_definitions.append(
GETTER_DEFINITION.substitute(
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_SYMINT
)
)
elif type == BaseCType(optionalIntArrayRefT):
saved_variables.append(f"c10::OptionalArray<int64_t> {name};")
getter_definitions.append(
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_LONG
)
)
elif type == BaseCType(optionalSymIntArrayRefT):
saved_variables.append(f"c10::OptionalArray<c10::SymInt> {name};")
getter_definitions.append(
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_SYMINT
)
)
elif type == OptionalCType(BaseCType(intArrayRefT)):
saved_variables.append(f"c10::OptionalArray<int64_t> {name};")
getter_definitions.append(
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_LONG
)
)
elif type == OptionalCType(BaseCType(symIntArrayRefT)):
saved_variables.append(f"c10::OptionalArray<c10::SymInt> {name};")
getter_definitions.append(
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_SYMINT
)
)
elif type == OptionalCType(ArrayRefCType(BaseCType(doubleT))):
saved_variables.append(f"c10::OptionalArray<double> {name};")
getter_definitions.append(
GETTER_DEFINITION_OPT_ARRAYREF.substitute(
op=info.op, name=name, body=GETTER_BODY_ARRAYREF_DOUBLE
)
)
elif type == BaseCType(longT):
saved_variables.append(f"{type.cpp_type()} {name} = 0;")
getter_definitions.append(
GETTER_DEFINITION.substitute(
op=info.op, name=name, body=GETTER_BODY_INT64_T
)
)
elif type == BaseCType(SymIntT):
saved_variables.append(f"c10::SymInt {name};")
getter_definitions.append(
GETTER_DEFINITION.substitute(
op=info.op, name=name, body=GETTER_BODY_SYMINT
)
)
elif type == BaseCType(stringT):
saved_variables.append(f"std::string {name};")
getter_definitions.append(
GETTER_DEFINITION.substitute(
op=info.op, name=name, body=GETTER_BODY_STRING
)
)
elif type == OptionalCType(BaseCType(stringT)):
saved_variables.append(f"std::optional<std::string> {name};")
getter_definitions.append(
GETTER_DEFINITION_OPT.substitute(
op=info.op, name=name, body=GETTER_BODY_STRING
)
)
elif type == ArrayRefCType(
elem=BaseCType(type=BaseCppType(ns="at", name="Scalar"))
):
saved_variables.append(f"std::vector<at::Scalar> {name};")
unpacked_ref_type = "std::vector<at::Scalar>&"
saved_variables.append(f"bool {name}_released_ = false;")
# Just clear() is sufficient, we don't need to loop and clear each variable.
# Because the SavedVariable owns a tensor and a grad_fn, removing the SavedVariable makes them go away as well.
release_variables.append(f"{name}.clear();")
# release_variables.append(f"{name}_released_ = true;")
# unpack.append(f"auto {name} = unpack_list({name}_);")
# asserts.append(f"TORCH_CHECK(!{name}_released_, ERR_BACKWARD_TWICE);")
getter_definitions.append(
CodeTemplate(
"""\
PyObject* THP${op}_${name}_getter(THPCppFunction *self, void *_unused) {
HANDLE_TH_ERRORS
const auto *node = static_cast<${op}*>(self->cdata.get());
const auto& prop = node->${name};
if (node->${name}_released_) {
PyErr_SetString(PyExc_RuntimeError, ERR_BACKWARD_TWICE);
return nullptr;
}
${body}
END_HANDLE_TH_ERRORS
}
"""
).substitute(
op=info.op,
name=name,
body=GETTER_BODY_VEC_SCALAR,
)
)
else:
# Check for indicators that you're putting a non-owning reference
# into the saved variable field. If this is spuriously firing,
# edit this field. Otherwise, you probably need to add a case
# above.
assert (
"ref" not in type.cpp_type().lower()
and "view" not in type.cpp_type().lower()
and "*" not in type.cpp_type()
and "&" not in type.cpp_type()
), f"{type.cpp_type()} looks like it contains a non-owning reference"
saved_variables.append(f"{type.cpp_type()} {name};")
if type in MISC_GETTER_DEFS:
getter_def, body = MISC_GETTER_DEFS[type]
getter_definitions.append(
getter_def.substitute(op=info.op, name=name, body=body)
)
else:
# Types we don't expose python bindings to yet:
# TypeAndSize, at::ScalarType, TensorOptions, TensorGeometry,
# std::vector<std::vector<int64_t>>, std::vector<at::ScalarType>
should_append_getsetdef = False
if should_append_getsetdef:
py_getsetdef_structs.append(
PY_GETSETDEF_STRUCT.substitute(op=info.op, name=name)
)
if should_append_raw_getsetdef:
py_getsetdef_structs.append(
PY_RAW_GETSETDEF_STRUCT.substitute(op=info.op, name=name)
)
if uses_cpp_saved_variable_cls:
compiled_args.append(
f"args.collect({visit_name}, {'true' if is_output else 'false'});"
)
else:
compiled_args.append(f"args.collect({visit_name});")
apply_with_saved_before.append(f"saved.before({visit_name});")
apply_with_saved_after.append(f"saved.after({visit_name});")
if unpacked_ref_type is None:
unpacked_ref_type = f"{saved_variables[-1].split(' ')[0]}&"
unpacked_saved_vars.append(str(name))
unpacked_saved_vars_ref_type.append(unpacked_ref_type)
for var in sorted(info.all_saved_inputs, key=lambda sa: str(sa.nctype.name)):
save_var(var, is_output=False)
for var in sorted(info.all_saved_outputs, key=lambda sa: str(sa.nctype.name)):
save_var(var, is_output=True)
# lock the mutex when we release variables and in Node::apply to protect thread safety
# see Note [Thread Safety on Autograd Node]
if len(release_variables) > 0:
thread_lock = "std::lock_guard<std::mutex> lock(mutex_);"
else:
thread_lock = ""
if uses_retain_variables(info):
unpacked_saved_vars.append("retain_variables")
unpacked_saved_vars_ref_type.append("bool")
will_release_variables = WILL_RELEASE_VARIABLES.substitute()
else:
will_release_variables = ""
body: list[str] = []
if uses_single_grad(info):
body.append("const auto& grad = grads[0];")
else:
# Generate aliases for gradients named for returned values.
body.extend(
f"const auto& {name} = grads[{info.available_named_gradients.index(name)}];"
for name in sorted(info.used_named_gradients)
)
def emit_derivative(
derivative: Derivative,
args_with_derivatives: Sequence[Binding],
) -> tuple[bool, str]:
formula = derivative.formula
var_names = derivative.var_names
if len(var_names) == 1:
checks_any_grad_defined = False
if "not_implemented" not in formula:
matching_args = [
arg for arg in args_with_derivatives if arg.name == var_names[0]
]
if len(matching_args) == 1:
# We can add undefined grad support if the input variable is a Tensor
arg = matching_args[0]
if isinstance(arg.argument, Argument) and str(
arg.argument.type
) in ("Tensor", "Tensor?"):
formula = "any_grad_defined ? (" + formula + ") : Tensor()"
checks_any_grad_defined = True
if info.name.startswith("_foreach_"):
derivative_template = DERIVATIVE_SINGLE_FOREACH
else:
derivative_template = DERIVATIVE_SINGLE
return (
checks_any_grad_defined,
derivative_template.substitute(
name=var_names[0],
derivative=formula,
idx=var_name_map[var_names[0]],
),
)
else:
if "grad_input_mask" in formula:
masks = [
f"needs_input_grad[{var_name_map[name]}]," for name in var_names
]
grad_input_mask = GRAD_INPUT_MASK.substitute(
n=len(var_names), masks=masks
)
else:
grad_input_mask = ""
needs_input_grad = [
f"needs_input_grad[{var_name_map[name]}]" for name in var_names
]
needs_input_grad = " || ".join(needs_input_grad)
copy_ranges: list[str] = []
for i, n in enumerate(var_names):
copy_ranges.append(
DERIVATIVE_MULTI_COPY_RANGE.substitute(
name=n, i=i, idx=var_name_map[n]
)
)
return False, DERIVATIVE_MULTI.substitute(
needs_input_grad=needs_input_grad,
copy_ranges=copy_ranges,
derivative=formula,
grad_input_mask=grad_input_mask,
)
masks = []
need_any_grad_defined_var = False
for derivative in info.derivatives:
checks_any_grad_defined, derivative_text = emit_derivative(
derivative, info.args_with_derivatives
)
body.append(derivative_text)
need_any_grad_defined_var |= checks_any_grad_defined
for name in var_name_map:
masks.append(f"task_should_compute_output({{ {name}_ix }}),")
# Since single-output derivative formulas need to check if grads are
# defined, only perform the check once, before all the formulas
if need_any_grad_defined_var:
body.insert(
-len(info.derivatives),
"bool any_grad_defined = any_variable_defined(grads);",
)
if info.name in UNTRACEABLE_FUNCTIONS:
superclass = "Node"
else:
superclass = "TraceableFunction"
all_getsetdef_structs = (
",\n".join(py_getsetdef_structs) + "," if len(py_getsetdef_structs) != 0 else ""
)
all_getter_definitions = "\n".join(getter_definitions)
compute_needs_input_grad = COMPUTE_NEEDS_INPUT_GRAD.substitute(
n=len(masks), compute_index_ranges=compute_index_ranges, masks=masks
)
unpacked_saved_vars_signature = [
f"{T} {x}" for T, x in zip(unpacked_saved_vars_ref_type, unpacked_saved_vars)
]
return template.substitute(
unpacks="\n".join(unpack),
op=info.op,
unpacked_saved_vars=unpacked_saved_vars,
unpacked_saved_vars_signature=unpacked_saved_vars_signature,
compute_needs_input_grad=compute_needs_input_grad,
num_vars=len(var_name_map),
compute_index_ranges=compute_index_ranges,
saved_variables=saved_variables,
release_variables=release_variables,
saved_list_sizes=saved_list_sizes,
asserts=asserts,
thread_lock=thread_lock,
will_release_variables=will_release_variables,
body=body,
superclass=superclass,
all_getter_definitions=all_getter_definitions,
all_getsetdef_structs=all_getsetdef_structs,
compiled_args=compiled_args,
apply_with_saved_before=apply_with_saved_before,
apply_with_saved_after=apply_with_saved_after,
)
|