File: Functions.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (51 lines) | stat: -rw-r--r-- 1,577 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#pragma once

// ${generated_comment}

#include <ATen/ATen.h>
#include <ATen/core/functional.h>
#include <ATen/TensorGeometry.h>

#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/autograd/saved_variable.h"
#include <torch/csrc/Export.h>

#include <c10/core/SymIntArrayRef.h>

namespace torch { namespace autograd { namespace generated {

using at::Scalar;
using at::Tensor;
using at::IntArrayRef;
using at::ArrayRef;
using at::Type;
using at::TensorGeometry;
using at::ScalarType;
using std::optional;
using c10::fmap;

inline std::vector<Tensor> unpack_list(at::ArrayRef<SavedVariable> xs, std::shared_ptr<Node> saved_for = nullptr) {
  // NB: we must explicitly do the conversion in the lambda, otherwise template
  // deduction will give a Tensor of Variable which is not convertible
  return fmap(xs, [&saved_for](const SavedVariable& x) {
    // TODO(crcrpar): Use `std::move(saved_for)` to avoid incrementing refcount, which would need refactoring.
    return static_cast<Tensor>(x.unpack(saved_for));
  });
}

inline c10::List<std::optional<Tensor>> unpack_opt_list(at::ArrayRef<SavedVariable> xs, std::shared_ptr<Node> saved_for = nullptr) {
  torch::List<std::optional<Tensor>> result;
  result.reserve(xs.size());
  for (const SavedVariable& v : xs) {
    auto var = v.unpack(saved_for);
    result.push_back(var.defined() ? std::optional<Tensor>(var) : ::std::nullopt);
  }
  return result;
}

using torch::autograd::TypeAndSize;

${autograd_function_declarations}

}}} // namespace torch::autograd::generated