1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
#!/usr/bin/env python3
from __future__ import annotations
import argparse
import json
import sys
from typing import Any
import yaml
from gen_op_registration_allowlist import (
canonical_name,
gen_transitive_closure,
load_op_dep_graph,
)
from torchgen.selective_build.operator import (
merge_operator_dicts,
SelectiveBuildOperator,
)
from torchgen.selective_build.selector import merge_kernel_metadata
# Generate YAML file containing the operators used for a specific PyTorch model.
# ------------------------------------------------------------------------------
#
# This binary is responsible for generating the model_operators.yaml file for
# each model from a pt_operator_library() BUCK macro invocation.
#
# Output YAML file format:
# ------------------------
#
# <BEGIN FILE CONTENTS>
# include_all_non_op_selectives: False
# include_all_operators: False
# debug_info:
# - model1@v100
# - model2@v50
# operators:
# aten::add:
# is_root_operator: Yes
# is_used_for_training: Yes
# include_all_overloads: No
# debug_info:
# - model1@v100
# - model2@v50
# aten::add.int:
# is_root_operator: No
# is_used_for_training: No
# include_all_overloads: Yes
# kernel_metadata:
# add_kernel:
# - Int8
# - UInt32
# sub_kernel:
# - Int16
# - Float
# <END FILE CONTENTS>
#
# There are a few main inputs to this application
# -----------------------------------------------
#
# 1. Inference Root Operators (--root-ops): Root operators (called directly
# from TorchScript) used by inference use-cases.
#
# 2. Training Root Operators (--training-root-ops): Root operators used
# by training use-cases. Currently, this list is the list of all operators
# used by training, and not just the root operators. All Training ops are
# also considered for inference, so these are merged into inference ops.
#
# 3. Operator Depencency Graph (--dep-graph-yaml-path): A path to the
# operator dependency graph used to determine which operators depend on
# which other operators for correct functioning. This is used for
# generating the transitive closure of all the operators used by the
# model based on the root operators when static selective build is used.
# For tracing based selective build, we don't need to perform this
# transitive cloure.
#
# 4. Model Metadata (--model-name, --model-versions, --model-assets,
# --model-backends): Self-descriptive. These are used to tell this
# script which model operator lists to fetch from the Model
# Build Metadata YAML files.
#
# 5. Model YAML files (--models-yaml-path): These yaml files contains
# (for each model/version/asset/backend) the set of used root and traced
# operators. This is used to extract the actual set of operators
# needed to be included in the build.
#
def canonical_opnames(opnames: list[str]) -> list[str]:
return [canonical_name(opname) for opname in opnames]
def make_filter_from_options(
model_name: str,
model_versions: list[str],
model_assets: list[str] | None,
model_backends: list[str] | None,
):
def is_model_included(model_info) -> bool:
model = model_info["model"]
if model["name"] != model_name:
return False
if str(model["version"]) not in model_versions:
return False
if model_assets is not None and model["asset"] not in model_assets:
return False
# TODO: Handle backend later
return True
return is_model_included
# Returns if a the specified rule is a new or old style pt_operator_library
def is_new_style_rule(model_name: str, model_versions: list[str] | None):
return model_name is not None and model_versions is not None
# Verifies that specified model_name, and all specified versions and assets
# appear in at least one model yaml. Throws if verification is failed,
# returns None on success
def verify_all_specified_present(
model_assets: list[str] | None,
model_versions: list[str],
selected_models_yaml: list[dict[str, Any]],
rule_name: str,
model_name: str,
new_style_rule: bool,
) -> None:
def find_missing_items(model_items, key, selected_models_yaml):
missing_items = []
if not new_style_rule or not model_items:
return missing_items
for item in model_items:
found = False
for model in selected_models_yaml:
if str(model["model"][key]) == item:
found = True
if not found:
missing_items.append(item)
return missing_items
missing_assets = find_missing_items(model_assets, "asset", selected_models_yaml)
missing_versions = find_missing_items(
model_versions, "version", selected_models_yaml
)
if len(missing_versions) > 0 or len(missing_assets) > 0: # at least one is missing
name_warning = ""
if len(selected_models_yaml) == 0:
name_warning = (
"WARNING: 0 yaml's were found for target rule. This could be because the "
+ "provided model name: {name} is incorrect. Please check that field as well as "
+ "the assets and versions."
).format(name=model_name)
raise RuntimeError(
(
"Error: From the pt_operator_library rule for Rule: {name}, at least one entry for the "
+ "following fields was expected -- Model: {model_name} Expected Assets: {expected_assets}, Expected Versions: "
+ "{expected_versions}. {name_warning} In all_mobile_models.yaml either no assets were on one of the "
+ "specified versions, one of the specified assets was not present on any of the specified "
+ "versions, or both. Assets not found: {missing_assets}, Versions not found: {missing_versions} "
+ "For questions please ask in https://fb.workplace.com/groups/2148543255442743/"
).format(
name=rule_name,
model_name=model_name,
expected_versions=model_versions,
expected_assets=model_assets
if model_assets
else "<All model assets present on specified versions>",
name_warning=name_warning,
missing_versions=missing_versions
if len(missing_versions) > 0
else "<All specified versions had at least one asset>",
missing_assets=missing_assets
if len(missing_assets) > 0
else "<All specified assets are present on at least 1 version>",
)
)
# Uses the selected models configs and then combines them into one dictionary,
# formats them as a string, and places the string into output as a top level debug_info
def create_debug_info_from_selected_models(
output: dict[str, object],
selected_models: list[dict],
new_style_rule: bool,
) -> None:
model_dict = {
"asset_info": {}, # maps asset name -> dict of asset metadata like hashes
"is_new_style_rule": new_style_rule,
}
for model in selected_models:
model_info = model["model"]
asset = model_info["asset"]
hash = model_info["md5_hash"]
asset_info = model_dict["asset_info"].setdefault(asset, {})
asset_info.setdefault("md5_hash", []).append(hash)
# Will later be used in gen_oplist to generate the model/version/asset checking
output["debug_info"] = [json.dumps(model_dict)]
def fill_output(output: dict[str, object], options: object) -> None:
"""Populate the output dict with the information required to serialize
the YAML file used for selective build.
"""
dept_graph = load_op_dep_graph(options.dep_graph_yaml_path)
model_versions = (
options.model_versions.split(",") if options.model_versions is not None else []
)
model_assets = (
options.model_assets.split(",") if options.model_assets is not None else None
)
all_models_yaml = []
if options.models_yaml_path:
for yaml_path in options.models_yaml_path:
with open(yaml_path, "rb") as f:
all_models_yaml.append(yaml.safe_load(f))
model_filter_func = make_filter_from_options(
options.model_name, model_versions, model_assets, options.model_backends
)
selected_models_yaml = list(filter(model_filter_func, all_models_yaml))
verify_all_specified_present(
model_assets=model_assets,
model_versions=model_versions,
selected_models_yaml=selected_models_yaml,
rule_name=options.rule_name,
model_name=options.model_name,
new_style_rule=is_new_style_rule(options.model_name, options.model_versions),
)
create_debug_info_from_selected_models(
output,
selected_models_yaml,
is_new_style_rule(options.model_name, options.model_versions),
)
# initialize variables for static build from the pt_operator_library rule
if options.root_ops is not None:
static_root_ops = set(filter(lambda x: len(x) > 0, options.root_ops.split(",")))
else:
static_root_ops = set()
static_training_root_ops = set(
filter(
lambda x: len(x) > 0,
(options.training_root_ops or "").split(","),
)
)
if len(static_training_root_ops) > 0:
static_root_ops = static_root_ops | static_training_root_ops
# end if
root_ops_unexpand = set()
traced_ops = set()
training_root_ops_unexpand = set()
traced_training_ops = set()
all_kernel_metadata = []
all_custom_classes = set()
all_build_features = set()
# Go through each yaml file and retrieve operator information.
for model_info in selected_models_yaml:
if "traced_operators" not in model_info:
# If this YAML file doesn't specify any traced operators, then it is using
# the static analysis selective build approach of finding transitively
# used operators, and we should update root_ops with the set of root
# operators, all of whose overloads must be included. In addition, these
# root_ops will be further expanded using the transitive closure of
# operator dependencies.
static_root_ops = static_root_ops | set(model_info["root_operators"])
else:
# If this YAML file specifies traced operators, then it is using
# the tracing based selective build approach of finding used
# operators, and we should update root_ops_unexpand with the set of root
# operators whose overloads don't need to be included. In addition, these
# root_ops_unexpand will NOT be further expanded. If the train flag is
# set then the ops will be used for training, so we put them in a separate
# set
if model_info["train"]:
training_root_ops_unexpand = training_root_ops_unexpand | set(
model_info["root_operators"]
)
traced_training_ops = traced_training_ops | set(
model_info["traced_operators"]
)
else:
root_ops_unexpand = root_ops_unexpand | set(
model_info["root_operators"]
)
traced_ops = traced_ops | set(model_info["traced_operators"])
if "kernel_metadata" in model_info:
all_kernel_metadata.append(model_info["kernel_metadata"])
if "custom_classes" in model_info:
all_custom_classes = all_custom_classes | set(model_info["custom_classes"])
if "build_features" in model_info:
all_build_features = all_build_features | set(model_info["build_features"])
# This following section on transitive closure is relevant to static build only
canonical_root_ops = canonical_opnames(static_root_ops)
# If no canonical_root_ops exist, don't compute the transitive closure
# otherwise, we will include __BASE__ and __ROOT__ ops and mark them as required
# for inference.
if len(canonical_root_ops) > 0:
closure_op_list = gen_transitive_closure(dept_graph, canonical_root_ops)
else:
closure_op_list = set()
canonical_training_root_ops = canonical_opnames(static_training_root_ops)
# If no canonical_training_root_ops exist, don't compute the transitive closure
# otherwise, we will include __BASE__ and __ROOT__ ops and mark them as required
# for training.
if len(canonical_training_root_ops) > 0:
closure_training_op_list = gen_transitive_closure(
dept_graph, canonical_training_root_ops, train=True
)
else:
closure_training_op_list = set()
# bucketed_ops holds sets of operators that correspond to specific semantic buckets. For
# example:
#
# 1. Root Operators not used for training w/o full overload inclusion
# 2. Root Operators not used for training w/ full overload inclusion
# 3. Root Operators used for training w/o full overload inclusion
# 4. Root Operators used for training w/ full overload inclusion
# 5. Non-root Operators not used for training w/o full overload inclusion
# etc...
#
# Basically for each of the 3 boolean conditional, there are 2
# options (True/False).
#
bucketed_ops = []
# START STATIC BUILD OPS
static_root_ops_bucket = {}
for op_name in static_root_ops:
op = SelectiveBuildOperator.from_yaml_dict(
op_name,
{
"is_root_operator": True,
"is_used_for_training": False,
"include_all_overloads": not options.not_include_all_overloads_static_root_ops,
"debug_info": [options.model_name],
},
)
static_root_ops_bucket[op_name] = op
bucketed_ops.append(static_root_ops_bucket)
closure_ops_bucket = {}
for op_name in closure_op_list:
op = SelectiveBuildOperator.from_yaml_dict(
op_name,
{
"is_root_operator": False,
"is_used_for_training": False,
"include_all_overloads": not options.not_include_all_overloads_closure_ops,
"debug_info": [options.model_name],
},
)
closure_ops_bucket[op_name] = op
bucketed_ops.append(closure_ops_bucket)
static_training_root_ops_bucket = {}
for op_name in static_training_root_ops:
op = SelectiveBuildOperator.from_yaml_dict(
op_name,
{
"is_root_operator": True,
"is_used_for_training": True,
"include_all_overloads": True,
"debug_info": [options.model_name],
},
)
static_training_root_ops_bucket[op_name] = op
bucketed_ops.append(static_training_root_ops_bucket)
closure_training_ops_bucket = {}
for op_name in closure_training_op_list:
op = SelectiveBuildOperator.from_yaml_dict(
op_name,
{
"is_root_operator": False,
"is_used_for_training": True,
"include_all_overloads": True,
"debug_info": [options.model_name],
},
)
closure_training_ops_bucket[op_name] = op
bucketed_ops.append(closure_training_ops_bucket)
# END STATIC BUILD OPS
# START TRACING BASED BUILD OPS
root_ops_unexpand_bucket = {}
for op_name in root_ops_unexpand:
op = SelectiveBuildOperator.from_yaml_dict(
op_name,
{
"is_root_operator": True,
"is_used_for_training": False,
"include_all_overloads": False,
"debug_info": [options.model_name],
},
)
root_ops_unexpand_bucket[op_name] = op
bucketed_ops.append(root_ops_unexpand_bucket)
traced_ops_bucket = {}
for op_name in traced_ops:
op = SelectiveBuildOperator.from_yaml_dict(
op_name,
{
"is_root_operator": False,
"is_used_for_training": False,
"include_all_overloads": False,
"debug_info": [options.model_name],
},
)
traced_ops_bucket[op_name] = op
bucketed_ops.append(traced_ops_bucket)
training_root_ops_unexpand_bucket = {}
for op_name in training_root_ops_unexpand:
op = SelectiveBuildOperator.from_yaml_dict(
op_name,
{
"is_root_operator": True,
"is_used_for_training": True,
"include_all_overloads": False,
"debug_info": [options.model_name],
},
)
training_root_ops_unexpand_bucket[op_name] = op
bucketed_ops.append(training_root_ops_unexpand_bucket)
traced_training_ops_bucket = {}
for op_name in traced_training_ops:
op = SelectiveBuildOperator.from_yaml_dict(
op_name,
{
"is_root_operator": False,
"is_used_for_training": True,
"include_all_overloads": False,
"debug_info": [options.model_name],
},
)
traced_training_ops_bucket[op_name] = op
bucketed_ops.append(traced_training_ops_bucket)
# END TRACING BASED BUILD OPS
# Merge dictionaries together to remove op duplication
operators: dict[str, SelectiveBuildOperator] = {}
for ops_dict in bucketed_ops:
operators = merge_operator_dicts(operators, ops_dict)
# Loop over all operators, and if any of the them specifies that
# all overloads need to be included, then set include_all_non_op_selectives
# to True, since it indicates that this operator list came from something
# other than a traced operator list.
include_all_non_op_selectives = False
for op_name, op_info in operators.items():
include_all_non_op_selectives = (
include_all_non_op_selectives or op_info.include_all_overloads
)
operators_as_dict = {}
for k, v in operators.items():
operators_as_dict[k] = v.to_dict()
output["operators"] = operators_as_dict
output["custom_classes"] = all_custom_classes
output["build_features"] = all_build_features
output["include_all_non_op_selectives"] = include_all_non_op_selectives
if len(all_kernel_metadata) > 0:
kernel_metadata = {}
for kt in all_kernel_metadata:
kernel_metadata = merge_kernel_metadata(kernel_metadata, kt)
output["kernel_metadata"] = kernel_metadata
def add_arguments_parser(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser.add_argument(
"--root-ops",
"--root_ops",
help="A comma separated list of root operators used by the model",
required=False,
)
parser.add_argument(
"--training-root-ops",
"--training_root_ops",
help="A comma separated list of root operators used for training",
required=False,
)
parser.add_argument(
"--output-path",
"--output_path",
help="The location of the output yaml file.",
required=True,
)
parser.add_argument(
"--dep-graph-yaml-path",
"--dep_graph_yaml_path",
type=str,
help="A path to the Operator Dependency Graph YAML file.",
required=True,
)
parser.add_argument(
"--model-name",
"--model_name",
type=str,
help="The name of the model that uses the specified root operators.",
required=True,
)
parser.add_argument(
"--model-versions",
"--model_versions",
type=str,
help="A comma separated list of model versions.",
required=False,
)
parser.add_argument(
"--model-assets",
"--model_assets",
type=str,
help="A comma separate list of model asset names (if absent, defaults to all assets for this model).",
required=False,
)
parser.add_argument(
"--model-backends",
"--model_backends",
type=str,
default="CPU",
help="A comma separated list of model backends.",
required=False,
)
parser.add_argument(
"--models-yaml-path",
"--models_yaml_path",
type=str,
help="The paths to the mobile model config YAML files.",
required=False,
nargs="+",
)
parser.add_argument(
"--include-all-operators",
"--include_all_operators",
action="store_true",
default=False,
help="Set this flag to request inclusion of all operators (i.e. build is not selective).",
required=False,
)
parser.add_argument(
"--rule-name",
"--rule_name",
type=str,
help="The name of pt_operator_library rule resulting in this generation",
required=True,
)
parser.add_argument(
"--not-include-all-overloads-static-root-ops",
"--not_include_all_overloads_static_root_ops",
action="store_true",
default=False,
help="Set this flag to not include all overloaded operators for static root ops bucket in fill_output() subroutine",
required=False,
)
parser.add_argument(
"--not-include-all-overloads-closure-ops",
"--not_include_all_overloads_closure_ops",
action="store_true",
default=False,
help="Set this flag to not include all overloaded operators for closure ops bucket in fill_output() subroutine",
required=False,
)
return parser
def parse_options(parser: argparse.ArgumentParser) -> argparse.Namespace:
return parser.parse_args()
def get_parser_options(parser: argparse.ArgumentParser) -> argparse.Namespace:
parser = add_arguments_parser(parser)
return parse_options(parser)
def main(argv) -> None:
parser = argparse.ArgumentParser(description="Generate used operators YAML")
options = get_parser_options(parser)
model_dict = {
"model_name": options.model_name,
"asset_info": {},
"is_new_style_rule": False,
}
output = {
"debug_info": [json.dumps(model_dict)],
}
if options.include_all_operators:
output["include_all_operators"] = True
output["operators"] = {}
output["kernel_metadata"] = {}
else:
fill_output(output, options)
with open(options.output_path, "wb") as out_file:
out_file.write(
yaml.safe_dump(
output,
default_flow_style=False,
).encode("utf-8")
)
if __name__ == "__main__":
sys.exit(main(sys.argv))
|