1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
from typing import Any
import lldb # type: ignore[import]
def get_target() -> Any:
target = lldb.debugger.GetSelectedTarget()
if not target:
print("[-] error: no target available. please add a target to lldb.")
return None
return target
class DisableBreakpoints:
"""
Context-manager to temporarily disable all lldb breakpoints, useful if
there is a risk to hit one during the evaluation of one of our custom
commands
"""
def __enter__(self) -> None:
target = get_target()
if target.DisableAllBreakpoints() is False:
print("[-] error: failed to disable all breakpoints.")
def __exit__(self, etype: Any, evalue: Any, tb: Any) -> None:
target = get_target()
if target.EnableAllBreakpoints() is False:
print("[-] error: failed to enable all breakpoints.")
def IntArrayRef_summary(valobj: Any, internal_dict: Any, options: Any) -> str:
"""Print human readable representation of c10::IntArrayRef"""
with DisableBreakpoints():
target = get_target()
tensor = valobj.GetName()
result = target.EvaluateExpression(
f"torch::gdb::int_array_ref_string({tensor})"
)
str_result = str(result)
str_result = str_result[str_result.find('"') + 1 : -1]
return str_result
def DispatchKeyset_summary(valobj: Any, internal_dict: Any, options: Any) -> str:
"""Print human readable representation of c10::DispatchKeyset"""
with DisableBreakpoints():
target = get_target()
keyset = valobj.GetName()
result = target.EvaluateExpression(
f"torch::gdb::dispatch_keyset_string({keyset})"
)
str_result = str(result)
str_result = str_result[str_result.find('"') + 1 : -1]
return str_result
def Tensor_summary(valobj: Any, internal_dict: Any, options: Any) -> str:
"""Print a human readable representation of the given at::Tensor.
at::Tensor instances do not have a C++ implementation of a repr method: in
pytorch, this is done by pure-Python code. As such, print <tensor>
internally creates a Python wrapper for the given tensor and call repr()
on it.
Usage:
print self
"""
with DisableBreakpoints():
target = get_target()
tensor = valobj.GetName()
result = target.EvaluateExpression(f"torch::gdb::tensor_repr({tensor})")
str_result = str(result)
target.EvaluateExpression(f"(void)free({result.GetValue()})")
str_result = "\n" + str_result[str_result.find("tensor") : -1]
return str_result
# And the initialization code to add your commands
def __lldb_init_module(debugger: Any, internal_dict: Any) -> Any:
debugger.HandleCommand(
"type summary add c10::IntArrayRef -F pytorch_lldb.IntArrayRef_summary -w torch"
)
debugger.HandleCommand(
"type summary add c10::DispatchKeySet -F pytorch_lldb.DispatchKeyset_summary -w torch"
)
debugger.HandleCommand(
"type summary add at::Tensor -F pytorch_lldb.Tensor_summary -w torch"
)
print(
"Pretty Printing lldb summary for PyTorch AT types has been installed and is ready for use. "
"This category is enabled by default. To disable run: `type category disable torch`"
)
print(
"Usage:\n\tprint <at::tensor>\n\tprint <c10::IntArrayRef>\n\tprint <c10::DispatchKeySet>"
)
|