1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
#!/usr/bin/env python3
""" Generates PyTorch ONNX Export Diagnostic rules for C++, Python and documentations.
The rules are defined in torch/onnx/_internal/diagnostics/rules.yaml.
Usage:
python -m tools.onnx.gen_diagnostics \
torch/onnx/_internal/diagnostics/rules.yaml \
torch/onnx/_internal/diagnostics \
torch/csrc/onnx/diagnostics/generated \
torch/docs/source
"""
import argparse
import os
import string
import subprocess
import textwrap
from typing import Any, Mapping, Sequence
import yaml
from torchgen import utils as torchgen_utils
from torchgen.yaml_utils import YamlLoader
_RULES_GENERATED_COMMENT = """\
GENERATED CODE - DO NOT EDIT DIRECTLY
This file is generated by gen_diagnostics.py.
See tools/onnx/gen_diagnostics.py for more information.
Diagnostic rules for PyTorch ONNX export.
"""
_PY_RULE_CLASS_COMMENT = """\
GENERATED CODE - DO NOT EDIT DIRECTLY
The purpose of generating a class for each rule is to override the `format_message`
method to provide more details in the signature about the format arguments.
"""
_PY_RULE_CLASS_TEMPLATE = """\
class _{pascal_case_name}(infra.Rule):
\"\"\"{short_description}\"\"\"
def format_message( # type: ignore[override]
self,
{message_arguments}
) -> str:
\"\"\"Returns the formatted default message of this Rule.
Message template: {message_template}
\"\"\"
return self.message_default_template.format({message_arguments_assigned})
def format( # type: ignore[override]
self,
level: infra.Level,
{message_arguments}
) -> Tuple[infra.Rule, infra.Level, str]:
\"\"\"Returns a tuple of (Rule, Level, message) for this Rule.
Message template: {message_template}
\"\"\"
return self, level, self.format_message({message_arguments_assigned})
"""
_PY_RULE_COLLECTION_FIELD_TEMPLATE = """\
{snake_case_name}: _{pascal_case_name} = dataclasses.field(
default=_{pascal_case_name}.from_sarif(**{sarif_dict}),
init=False,
)
\"\"\"{short_description}\"\"\"
"""
_CPP_RULE_TEMPLATE = """\
/**
* @brief {short_description}
*/
{name},
"""
_RuleType = Mapping[str, Any]
def _kebab_case_to_snake_case(name: str) -> str:
return name.replace("-", "_")
def _kebab_case_to_pascal_case(name: str) -> str:
return "".join(word.capitalize() for word in name.split("-"))
def _format_rule_for_python_class(rule: _RuleType) -> str:
pascal_case_name = _kebab_case_to_pascal_case(rule["name"])
short_description = rule["short_description"]["text"]
message_template = rule["message_strings"]["default"]["text"]
field_names = [
field_name
for _, field_name, _, _ in string.Formatter().parse(message_template)
if field_name is not None
]
for field_name in field_names:
assert isinstance(
field_name, str
), f"Unexpected field type {type(field_name)} from {field_name}. "
"Field name must be string.\nFull message template: {message_template}"
assert (
not field_name.isnumeric()
), f"Unexpected numeric field name {field_name}. "
"Only keyword name formatting is supported.\nFull message template: {message_template}"
message_arguments = ", ".join(field_names)
message_arguments_assigned = ", ".join(
[f"{field_name}={field_name}" for field_name in field_names]
)
return _PY_RULE_CLASS_TEMPLATE.format(
pascal_case_name=pascal_case_name,
short_description=short_description,
message_template=repr(message_template),
message_arguments=message_arguments,
message_arguments_assigned=message_arguments_assigned,
)
def _format_rule_for_python_field(rule: _RuleType) -> str:
snake_case_name = _kebab_case_to_snake_case(rule["name"])
pascal_case_name = _kebab_case_to_pascal_case(rule["name"])
short_description = rule["short_description"]["text"]
return _PY_RULE_COLLECTION_FIELD_TEMPLATE.format(
snake_case_name=snake_case_name,
pascal_case_name=pascal_case_name,
sarif_dict=rule,
short_description=short_description,
)
def _format_rule_for_cpp(rule: _RuleType) -> str:
name = f"k{_kebab_case_to_pascal_case(rule['name'])}"
short_description = rule["short_description"]["text"]
return _CPP_RULE_TEMPLATE.format(name=name, short_description=short_description)
def gen_diagnostics_python(
rules: Sequence[_RuleType], out_py_dir: str, template_dir: str
) -> None:
rule_class_lines = [_format_rule_for_python_class(rule) for rule in rules]
rule_field_lines = [_format_rule_for_python_field(rule) for rule in rules]
fm = torchgen_utils.FileManager(
install_dir=out_py_dir, template_dir=template_dir, dry_run=False
)
fm.write_with_template(
"_rules.py",
"rules.py.in",
lambda: {
"generated_comment": _RULES_GENERATED_COMMENT,
"generated_rule_class_comment": _PY_RULE_CLASS_COMMENT,
"rule_classes": "\n".join(rule_class_lines),
"rules": textwrap.indent("\n".join(rule_field_lines), " " * 4),
},
)
_lint_file(os.path.join(out_py_dir, "_rules.py"))
def gen_diagnostics_cpp(
rules: Sequence[_RuleType], out_cpp_dir: str, template_dir: str
) -> None:
rule_lines = [_format_rule_for_cpp(rule) for rule in rules]
rule_names = [f'"{_kebab_case_to_snake_case(rule["name"])}",' for rule in rules]
fm = torchgen_utils.FileManager(
install_dir=out_cpp_dir, template_dir=template_dir, dry_run=False
)
fm.write_with_template(
"rules.h",
"rules.h.in",
lambda: {
"generated_comment": textwrap.indent(
_RULES_GENERATED_COMMENT,
" * ",
predicate=lambda x: True, # Don't ignore empty line
),
"rules": textwrap.indent("\n".join(rule_lines), " " * 2),
"py_rule_names": textwrap.indent("\n".join(rule_names), " " * 4),
},
)
_lint_file(os.path.join(out_cpp_dir, "rules.h"))
def gen_diagnostics_docs(
rules: Sequence[_RuleType], out_docs_dir: str, template_dir: str
) -> None:
# TODO: Add doc generation in a follow-up PR.
pass
def _lint_file(file_path: str) -> None:
p = subprocess.Popen(["lintrunner", "-a", file_path])
p.wait()
def gen_diagnostics(
rules_path: str,
out_py_dir: str,
out_cpp_dir: str,
out_docs_dir: str,
) -> None:
with open(rules_path) as f:
rules = yaml.load(f, Loader=YamlLoader)
template_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "templates")
gen_diagnostics_python(
rules,
out_py_dir,
template_dir,
)
gen_diagnostics_cpp(
rules,
out_cpp_dir,
template_dir,
)
gen_diagnostics_docs(rules, out_docs_dir, template_dir)
def main() -> None:
parser = argparse.ArgumentParser(description="Generate ONNX diagnostics files")
parser.add_argument("rules_path", metavar="RULES", help="path to rules.yaml")
parser.add_argument(
"out_py_dir",
metavar="OUT_PY",
help="path to output directory for Python",
)
parser.add_argument(
"out_cpp_dir",
metavar="OUT_CPP",
help="path to output directory for C++",
)
parser.add_argument(
"out_docs_dir",
metavar="OUT_DOCS",
help="path to output directory for docs",
)
args = parser.parse_args()
gen_diagnostics(
args.rules_path,
args.out_py_dir,
args.out_cpp_dir,
args.out_docs_dir,
)
if __name__ == "__main__":
main()
|