File: test_dashboard.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (205 lines) | stat: -rw-r--r-- 7,316 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from __future__ import annotations

import json
import os
import re
import time
from collections import defaultdict
from functools import lru_cache
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Any, cast

import requests

from tools.stats.upload_stats_lib import (
    _get_request_headers,
    download_s3_artifacts,
    get_job_id,
    get_s3_resource,
    unzip,
    upload_workflow_stats_to_s3,
)


REGEX_JOB_INFO = r"(.*) \/ .*test \(([^,]*), .*\)"


@lru_cache(maxsize=1000)
def get_job_name(job_id: int) -> str:
    try:
        return cast(
            str,
            requests.get(
                f"https://api.github.com/repos/pytorch/pytorch/actions/jobs/{job_id}",
                headers=_get_request_headers(),
            ).json()["name"],
        )
    except Exception as e:
        print(f"Failed to get job name for job id {job_id}: {e}")
        return "NoJobName"


@lru_cache(maxsize=1000)
def get_build_name(job_name: str) -> str:
    try:
        return re.match(REGEX_JOB_INFO, job_name).group(1)  # type: ignore[union-attr]
    except AttributeError:
        print(f"Failed to match job name: {job_name}")
        return "NoBuildEnv"


@lru_cache(maxsize=1000)
def get_test_config(job_name: str) -> str:
    try:
        return re.match(REGEX_JOB_INFO, job_name).group(2)  # type: ignore[union-attr]
    except AttributeError:
        print(f"Failed to match job name: {job_name}")
        return "NoTestConfig"


def get_td_exclusions(
    workflow_run_id: int, workflow_run_attempt: int
) -> dict[str, Any]:
    with TemporaryDirectory() as temp_dir:
        print("Using temporary directory:", temp_dir)
        os.chdir(temp_dir)

        # Download and extract all the reports (both GHA and S3)
        s3_paths = download_s3_artifacts(
            "test-jsons", workflow_run_id, workflow_run_attempt
        )
        for path in s3_paths:
            unzip(path)

        grouped_tests: dict[str, Any] = defaultdict(lambda: defaultdict(set))
        for td_exclusions in Path(".").glob("**/td_exclusions*.json"):
            with open(td_exclusions) as f:
                exclusions = json.load(f)
                for exclusion in exclusions["excluded"]:
                    job_id = get_job_id(td_exclusions)
                    job_name = get_job_name(job_id)
                    build_name = get_build_name(job_name)
                    test_config = get_test_config(job_name)
                    grouped_tests[build_name][test_config].add(exclusion["test_file"])

        for build_name, build in grouped_tests.items():
            for test_config, test_files in build.items():
                grouped_tests[build_name][test_config] = sorted(test_files)
        return grouped_tests


def group_test_cases(test_cases: list[dict[str, Any]]) -> dict[str, Any]:
    start = time.time()
    grouped_tests: dict[str, Any] = defaultdict(
        lambda: defaultdict(
            lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
        )
    )
    for test_case in test_cases:
        job_name = get_job_name(test_case["job_id"])
        build_name = get_build_name(job_name)
        if "bazel" in build_name:
            continue
        test_config = get_test_config(job_name)
        class_name = test_case.pop("classname", "NoClass")
        name = test_case.pop("name", "NoName")
        invoking_file = test_case.pop("invoking_file", "NoFile")
        invoking_file = invoking_file.replace(".", "/")
        test_case.pop("workflow_id")
        test_case.pop("workflow_run_attempt")
        grouped_tests[build_name][test_config][invoking_file][class_name][name].append(
            test_case
        )

    print(f"Time taken to group tests: {time.time() - start}")
    return grouped_tests


def get_reruns(grouped_tests: dict[str, Any]) -> dict[str, Any]:
    reruns: dict[str, Any] = defaultdict(
        lambda: defaultdict(
            lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
        )
    )
    for build_name, build in grouped_tests.items():
        for test_config, test_config_data in build.items():
            for invoking_file, invoking_file_data in test_config_data.items():
                for class_name, class_data in invoking_file_data.items():
                    for test_name, test_data in class_data.items():
                        if len(test_data) > 1:
                            if invoking_file in (
                                "distributed/test_distributed_spawn",
                                "onnx/test_fx_to_onnx_with_onnxruntime",
                                "distributed/algorithms/quantization/test_quantization",
                            ):
                                continue
                            reruns[build_name][test_config][invoking_file][class_name][
                                test_name
                            ] = test_data
    return reruns


def get_invoking_file_summary(grouped_tests: dict[str, Any]) -> dict[str, Any]:
    invoking_file_summary: dict[str, Any] = defaultdict(
        lambda: defaultdict(lambda: defaultdict(lambda: {"count": 0, "time": 0.0}))
    )
    for build_name, build in grouped_tests.items():
        for test_config, test_config_data in build.items():
            for invoking_file, invoking_file_data in test_config_data.items():
                for class_data in invoking_file_data.values():
                    for test_data in class_data.values():
                        invoking_file_summary[build_name][test_config][invoking_file][
                            "count"
                        ] += 1
                        for i in test_data:
                            invoking_file_summary[build_name][test_config][
                                invoking_file
                            ]["time"] += i["time"]

    return invoking_file_summary


def get_all_run_attempts(workflow_run_id: int) -> list[int]:
    # Returns all run attempts for a given workflow run id that have test
    # artifacts
    bucket = get_s3_resource().Bucket("gha-artifacts")
    prefix = f"pytorch/pytorch/{workflow_run_id}/"
    objs = bucket.objects.filter(Prefix=prefix)
    run_attempts = set()
    for obj in objs:
        no_prefix = obj.key[len(prefix) :]
        try:
            run_attempt = int(no_prefix.split("/")[0])
            run_attempts.add(run_attempt)
        except ValueError:
            continue
    return sorted(run_attempts)


def upload_additional_info(
    workflow_run_id: int, workflow_run_attempt: int, test_cases: list[dict[str, Any]]
) -> None:
    grouped_tests = group_test_cases(test_cases)
    reruns = get_reruns(grouped_tests)
    exclusions = get_td_exclusions(workflow_run_id, workflow_run_attempt)
    invoking_file_summary = get_invoking_file_summary(grouped_tests)

    upload_workflow_stats_to_s3(
        workflow_run_id,
        workflow_run_attempt,
        "additional_info/reruns",
        [reruns],
    )
    upload_workflow_stats_to_s3(
        workflow_run_id,
        workflow_run_attempt,
        "additional_info/td_exclusions",
        [exclusions],
    )
    upload_workflow_stats_to_s3(
        workflow_run_id,
        workflow_run_attempt,
        "additional_info/invoking_file_summary",
        [invoking_file_summary],
    )