File: upload_dynamo_perf_stats.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (155 lines) | stat: -rw-r--r-- 4,673 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from __future__ import annotations

import argparse
import csv
import hashlib
import json
import os
import re
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Any, Dict

from tools.stats.upload_stats_lib import (
    download_s3_artifacts,
    unzip,
    upload_to_dynamodb,
)


ARTIFACTS = [
    "test-reports",
]
ARTIFACT_REGEX = re.compile(
    r"test-reports-test-(?P<name>[\w\-]+)-\d+-\d+-(?P<runner>[\w\.-]+)_(?P<job>\d+).zip"
)


def get_perf_stats(
    repo: str,
    workflow_run_id: int,
    workflow_run_attempt: int,
    head_branch: str,
    match_filename: str,
) -> list[dict[str, Any]]:
    match_filename_regex = re.compile(match_filename)
    perf_stats = []
    with TemporaryDirectory() as temp_dir:
        print("Using temporary directory:", temp_dir)
        os.chdir(temp_dir)

        for artifact in ARTIFACTS:
            artifact_paths = download_s3_artifacts(
                artifact, workflow_run_id, workflow_run_attempt
            )

            # Unzip to get perf stats csv files
            for path in artifact_paths:
                m = ARTIFACT_REGEX.match(str(path))
                if not m:
                    print(f"Test report {path} has an invalid name. Skipping")
                    continue

                test_name = m.group("name")
                runner = m.group("runner")
                job_id = m.group("job")

                # Extract all files
                unzip(path)

                for csv_file in Path(".").glob("**/*.csv"):
                    filename = os.path.splitext(os.path.basename(csv_file))[0]
                    if not re.match(match_filename_regex, filename):
                        continue
                    print(f"Processing {filename} from {path}")

                    with open(csv_file) as csvfile:
                        reader = csv.DictReader(csvfile, delimiter=",")

                        for row in reader:
                            row.update(
                                {
                                    "workflow_id": workflow_run_id,  # type: ignore[dict-item]
                                    "run_attempt": workflow_run_attempt,  # type: ignore[dict-item]
                                    "test_name": test_name,
                                    "runner": runner,
                                    "job_id": job_id,
                                    "filename": filename,
                                    "head_branch": head_branch,
                                }
                            )
                            perf_stats.append(row)

                    # Done processing the file, removing it
                    os.remove(csv_file)

    return perf_stats


def generate_partition_key(repo: str, doc: Dict[str, Any]) -> str:
    """
    Generate an unique partition key for the document on DynamoDB
    """
    workflow_id = doc["workflow_id"]
    job_id = doc["job_id"]
    test_name = doc["test_name"]
    filename = doc["filename"]

    hash_content = hashlib.md5(json.dumps(doc).encode("utf-8")).hexdigest()
    return f"{repo}/{workflow_id}/{job_id}/{test_name}/{filename}/{hash_content}"


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Upload dynamo perf stats from S3 to DynamoDB"
    )
    parser.add_argument(
        "--workflow-run-id",
        type=int,
        required=True,
        help="id of the workflow to get perf stats from",
    )
    parser.add_argument(
        "--workflow-run-attempt",
        type=int,
        required=True,
        help="which retry of the workflow this is",
    )
    parser.add_argument(
        "--repo",
        type=str,
        required=True,
        help="which GitHub repo this workflow run belongs to",
    )
    parser.add_argument(
        "--head-branch",
        type=str,
        required=True,
        help="head branch of the workflow",
    )
    parser.add_argument(
        "--dynamodb-table",
        type=str,
        required=True,
        help="the name of the DynamoDB table to store the stats",
    )
    parser.add_argument(
        "--match-filename",
        type=str,
        default="",
        help="the regex to filter the list of CSV files containing the records to upload",
    )
    args = parser.parse_args()
    perf_stats = get_perf_stats(
        args.repo,
        args.workflow_run_id,
        args.workflow_run_attempt,
        args.head_branch,
        args.match_filename,
    )
    upload_to_dynamodb(
        dynamodb_table=args.dynamodb_table,
        repo=args.repo,
        docs=perf_stats,
        generate_partition_key=generate_partition_key,
    )