1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
from __future__ import annotations
import gzip
import io
import json
import math
import os
import time
import zipfile
from functools import lru_cache
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional
import boto3 # type: ignore[import]
import requests
PYTORCH_REPO = "https://api.github.com/repos/pytorch/pytorch"
@lru_cache
def get_s3_resource() -> Any:
return boto3.resource("s3")
# NB: In CI, a flaky test is usually retried 3 times, then the test file would be rerun
# 2 more times
MAX_RETRY_IN_NON_DISABLED_MODE = 3 * 3
def _get_request_headers() -> dict[str, str]:
return {
"Accept": "application/vnd.github.v3+json",
"Authorization": "token " + os.environ["GITHUB_TOKEN"],
}
def _get_artifact_urls(prefix: str, workflow_run_id: int) -> dict[Path, str]:
"""Get all workflow artifacts with 'test-report' in the name."""
response = requests.get(
f"{PYTORCH_REPO}/actions/runs/{workflow_run_id}/artifacts?per_page=100",
headers=_get_request_headers(),
)
artifacts = response.json()["artifacts"]
while "next" in response.links.keys():
response = requests.get(
response.links["next"]["url"], headers=_get_request_headers()
)
artifacts.extend(response.json()["artifacts"])
artifact_urls = {}
for artifact in artifacts:
if artifact["name"].startswith(prefix):
artifact_urls[Path(artifact["name"])] = artifact["archive_download_url"]
return artifact_urls
def _download_artifact(
artifact_name: Path, artifact_url: str, workflow_run_attempt: int
) -> Path:
# [Artifact run attempt]
# All artifacts on a workflow share a single namespace. However, we can
# re-run a workflow and produce a new set of artifacts. To avoid name
# collisions, we add `-runattempt1<run #>-` somewhere in the artifact name.
#
# This code parses out the run attempt number from the artifact name. If it
# doesn't match the one specified on the command line, skip it.
atoms = str(artifact_name).split("-")
for atom in atoms:
if atom.startswith("runattempt"):
found_run_attempt = int(atom[len("runattempt") :])
if workflow_run_attempt != found_run_attempt:
print(
f"Skipping {artifact_name} as it is an invalid run attempt. "
f"Expected {workflow_run_attempt}, found {found_run_attempt}."
)
print(f"Downloading {artifact_name}")
response = requests.get(artifact_url, headers=_get_request_headers())
with open(artifact_name, "wb") as f:
f.write(response.content)
return artifact_name
def download_s3_artifacts(
prefix: str, workflow_run_id: int, workflow_run_attempt: int
) -> list[Path]:
bucket = get_s3_resource().Bucket("gha-artifacts")
objs = bucket.objects.filter(
Prefix=f"pytorch/pytorch/{workflow_run_id}/{workflow_run_attempt}/artifact/{prefix}"
)
found_one = False
paths = []
for obj in objs:
found_one = True
p = Path(Path(obj.key).name)
print(f"Downloading {p}")
with open(p, "wb") as f:
f.write(obj.get()["Body"].read())
paths.append(p)
if not found_one:
print(
"::warning title=s3 artifacts not found::"
"Didn't find any test reports in s3, there might be a bug!"
)
return paths
def download_gha_artifacts(
prefix: str, workflow_run_id: int, workflow_run_attempt: int
) -> list[Path]:
artifact_urls = _get_artifact_urls(prefix, workflow_run_id)
paths = []
for name, url in artifact_urls.items():
paths.append(_download_artifact(Path(name), url, workflow_run_attempt))
return paths
def upload_to_dynamodb(
dynamodb_table: str,
repo: str,
docs: List[Any],
generate_partition_key: Optional[Callable[[str, Dict[str, Any]], str]],
) -> None:
print(f"Writing {len(docs)} documents to DynamoDB {dynamodb_table}")
# https://boto3.amazonaws.com/v1/documentation/api/latest/guide/dynamodb.html#batch-writing
with boto3.resource("dynamodb").Table(dynamodb_table).batch_writer() as batch:
for doc in docs:
if generate_partition_key:
doc["dynamoKey"] = generate_partition_key(repo, doc)
# This is to move away the _event_time field from Rockset, which we cannot use when
# reimport the data
doc["timestamp"] = int(round(time.time() * 1000))
batch.put_item(Item=doc)
def upload_to_s3(
bucket_name: str,
key: str,
docs: list[dict[str, Any]],
) -> None:
print(f"Writing {len(docs)} documents to S3")
body = io.StringIO()
for doc in docs:
json.dump(doc, body)
body.write("\n")
get_s3_resource().Object(
f"{bucket_name}",
f"{key}",
).put(
Body=gzip.compress(body.getvalue().encode()),
ContentEncoding="gzip",
ContentType="application/json",
)
print("Done!")
def read_from_s3(
bucket_name: str,
key: str,
) -> list[dict[str, Any]]:
print(f"Reading from s3://{bucket_name}/{key}")
body = (
get_s3_resource()
.Object(
f"{bucket_name}",
f"{key}",
)
.get()["Body"]
.read()
)
results = gzip.decompress(body).decode().split("\n")
return [json.loads(result) for result in results if result]
def remove_nan_inf(old: Any) -> Any:
# Casta NaN, inf, -inf to string from float since json.dumps outputs invalid
# json with them
def _helper(o: Any) -> Any:
if isinstance(o, float) and (math.isinf(o) or math.isnan(o)):
return str(o)
if isinstance(o, list):
return [_helper(v) for v in o]
if isinstance(o, dict):
return {_helper(k): _helper(v) for k, v in o.items()}
if isinstance(o, tuple):
return tuple(_helper(v) for v in o)
return o
return _helper(old)
def upload_workflow_stats_to_s3(
workflow_run_id: int,
workflow_run_attempt: int,
collection: str,
docs: list[dict[str, Any]],
) -> None:
bucket_name = "ossci-raw-job-status"
key = f"{collection}/{workflow_run_id}/{workflow_run_attempt}"
upload_to_s3(bucket_name, key, docs)
def upload_file_to_s3(
file_name: str,
bucket: str,
key: str,
) -> None:
"""
Upload a local file to S3
"""
print(f"Upload {file_name} to s3://{bucket}/{key}")
boto3.client("s3").upload_file(
file_name,
bucket,
key,
)
def unzip(p: Path) -> None:
"""Unzip the provided zipfile to a similarly-named directory.
Returns None if `p` is not a zipfile.
Looks like: /tmp/test-reports.zip -> /tmp/unzipped-test-reports/
"""
assert p.is_file()
unzipped_dir = p.with_name("unzipped-" + p.stem)
print(f"Extracting {p} to {unzipped_dir}")
with zipfile.ZipFile(p, "r") as zip:
zip.extractall(unzipped_dir)
def is_rerun_disabled_tests(tests: dict[str, dict[str, int]]) -> bool:
"""
Check if the test report is coming from rerun_disabled_tests workflow where
each test is run multiple times
"""
return all(
t.get("num_green", 0) + t.get("num_red", 0) > MAX_RETRY_IN_NON_DISABLED_MODE
for t in tests.values()
)
def get_job_id(report: Path) -> int | None:
# [Job id in artifacts]
# Retrieve the job id from the report path. In our GHA workflows, we append
# the job id to the end of the report name, so `report` looks like:
# unzipped-test-reports-foo_5596745227/test/test-reports/foo/TEST-foo.xml
# and we want to get `5596745227` out of it.
try:
return int(report.parts[0].rpartition("_")[2])
except ValueError:
return None
|