File: upload_test_stats.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (297 lines) | stat: -rw-r--r-- 9,529 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from __future__ import annotations

import argparse
import os
import sys
import xml.etree.ElementTree as ET
from multiprocessing import cpu_count, Pool
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Any

from tools.stats.test_dashboard import upload_additional_info
from tools.stats.upload_stats_lib import (
    download_s3_artifacts,
    get_job_id,
    remove_nan_inf,
    unzip,
    upload_workflow_stats_to_s3,
)


def parse_xml_report(
    tag: str,
    report: Path,
    workflow_id: int,
    workflow_run_attempt: int,
) -> list[dict[str, Any]]:
    """Convert a test report xml file into a JSON-serializable list of test cases."""
    print(f"Parsing {tag}s for test report: {report}")

    job_id = get_job_id(report)
    print(f"Found job id: {job_id}")

    test_cases: list[dict[str, Any]] = []

    root = ET.parse(report)
    for test_case in root.iter(tag):
        case = process_xml_element(test_case)
        case["workflow_id"] = workflow_id
        case["workflow_run_attempt"] = workflow_run_attempt
        case["job_id"] = job_id

        # [invoking file]
        # The name of the file that the test is located in is not necessarily
        # the same as the name of the file that invoked the test.
        # For example, `test_jit.py` calls into multiple other test files (e.g.
        # jit/test_dce.py). For sharding/test selection purposes, we want to
        # record the file that invoked the test.
        #
        # To do this, we leverage an implementation detail of how we write out
        # tests (https://bit.ly/3ajEV1M), which is that reports are created
        # under a folder with the same name as the invoking file.
        case["invoking_file"] = report.parent.name
        test_cases.append(case)

    return test_cases


def process_xml_element(element: ET.Element) -> dict[str, Any]:
    """Convert a test suite element into a JSON-serializable dict."""
    ret: dict[str, Any] = {}

    # Convert attributes directly into dict elements.
    # e.g.
    #     <testcase name="test_foo" classname="test_bar"></testcase>
    # becomes:
    #     {"name": "test_foo", "classname": "test_bar"}
    ret.update(element.attrib)

    # The XML format encodes all values as strings. Convert to ints/floats if
    # possible to make aggregation possible in SQL.
    for k, v in ret.items():
        try:
            ret[k] = int(v)
        except ValueError:
            pass
        try:
            ret[k] = float(v)
        except ValueError:
            pass

    # Convert inner and outer text into special dict elements.
    # e.g.
    #     <testcase>my_inner_text</testcase> my_tail
    # becomes:
    #     {"text": "my_inner_text", "tail": " my_tail"}
    if element.text and element.text.strip():
        ret["text"] = element.text
    if element.tail and element.tail.strip():
        ret["tail"] = element.tail

    # Convert child elements recursively, placing them at a key:
    # e.g.
    #     <testcase>
    #       <foo>hello</foo>
    #       <foo>world</foo>
    #       <bar>another</bar>
    #     </testcase>
    # becomes
    #    {
    #       "foo": [{"text": "hello"}, {"text": "world"}],
    #       "bar": {"text": "another"}
    #    }
    for child in element:
        if child.tag not in ret:
            ret[child.tag] = process_xml_element(child)
        else:
            # If there are multiple tags with the same name, they should be
            # coalesced into a list.
            if not isinstance(ret[child.tag], list):
                ret[child.tag] = [ret[child.tag]]
            ret[child.tag].append(process_xml_element(child))
    return ret


def get_tests(workflow_run_id: int, workflow_run_attempt: int) -> list[dict[str, Any]]:
    with TemporaryDirectory() as temp_dir:
        print("Using temporary directory:", temp_dir)
        os.chdir(temp_dir)

        # Download and extract all the reports (both GHA and S3)
        s3_paths = download_s3_artifacts(
            "test-report", workflow_run_id, workflow_run_attempt
        )
        for path in s3_paths:
            unzip(path)

        # Parse the reports and transform them to JSON
        test_cases = []
        mp = Pool(cpu_count())
        for xml_report in Path(".").glob("**/*.xml"):
            test_cases.append(
                mp.apply_async(
                    parse_xml_report,
                    args=(
                        "testcase",
                        xml_report,
                        workflow_run_id,
                        workflow_run_attempt,
                    ),
                )
            )
        mp.close()
        mp.join()
        test_cases = [tc.get() for tc in test_cases]
        flattened = [item for sublist in test_cases for item in sublist]
        return flattened


def get_tests_for_circleci(
    workflow_run_id: int, workflow_run_attempt: int
) -> list[dict[str, Any]]:
    # Parse the reports and transform them to JSON
    test_cases = []
    for xml_report in Path(".").glob("**/test/test-reports/**/*.xml"):
        test_cases.extend(
            parse_xml_report(
                "testcase", xml_report, workflow_run_id, workflow_run_attempt
            )
        )

    return test_cases


def summarize_test_cases(test_cases: list[dict[str, Any]]) -> list[dict[str, Any]]:
    """Group test cases by classname, file, and job_id. We perform the aggregation
    manually instead of using the `test-suite` XML tag because xmlrunner does
    not produce reliable output for it.
    """

    def get_key(test_case: dict[str, Any]) -> Any:
        return (
            test_case.get("file"),
            test_case.get("classname"),
            test_case["job_id"],
            test_case["workflow_id"],
            test_case["workflow_run_attempt"],
            # [see: invoking file]
            test_case["invoking_file"],
        )

    def init_value(test_case: dict[str, Any]) -> dict[str, Any]:
        return {
            "file": test_case.get("file"),
            "classname": test_case.get("classname"),
            "job_id": test_case["job_id"],
            "workflow_id": test_case["workflow_id"],
            "workflow_run_attempt": test_case["workflow_run_attempt"],
            # [see: invoking file]
            "invoking_file": test_case["invoking_file"],
            "tests": 0,
            "failures": 0,
            "errors": 0,
            "skipped": 0,
            "successes": 0,
            "time": 0.0,
        }

    ret = {}
    for test_case in test_cases:
        key = get_key(test_case)
        if key not in ret:
            ret[key] = init_value(test_case)

        ret[key]["tests"] += 1

        if "failure" in test_case:
            ret[key]["failures"] += 1
        elif "error" in test_case:
            ret[key]["errors"] += 1
        elif "skipped" in test_case:
            ret[key]["skipped"] += 1
        else:
            ret[key]["successes"] += 1

        ret[key]["time"] += test_case["time"]
    return list(ret.values())


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Upload test stats to s3")
    parser.add_argument(
        "--workflow-run-id",
        required=True,
        help="id of the workflow to get artifacts from",
    )
    parser.add_argument(
        "--workflow-run-attempt",
        type=int,
        required=True,
        help="which retry of the workflow this is",
    )
    parser.add_argument(
        "--head-branch",
        required=True,
        help="Head branch of the workflow",
    )
    parser.add_argument(
        "--head-repository",
        required=True,
        help="Head repository of the workflow",
    )
    parser.add_argument(
        "--circleci",
        action="store_true",
        help="If this is being run through circleci",
    )
    args = parser.parse_args()

    print(f"Workflow id is: {args.workflow_run_id}")

    if args.circleci:
        test_cases = get_tests_for_circleci(
            args.workflow_run_id, args.workflow_run_attempt
        )
    else:
        test_cases = get_tests(args.workflow_run_id, args.workflow_run_attempt)

    # Flush stdout so that any errors in the upload show up last in the logs.
    sys.stdout.flush()

    # For PRs, only upload a summary of test_runs. This helps lower the
    # volume of writes we do to the HUD backend database.
    test_case_summary = summarize_test_cases(test_cases)

    upload_workflow_stats_to_s3(
        args.workflow_run_id,
        args.workflow_run_attempt,
        "test_run_summary",
        remove_nan_inf(test_case_summary),
    )

    # Separate out the failed test cases.
    # Uploading everything is too data intensive most of the time,
    # but these will be just a tiny fraction.
    failed_tests_cases = []
    for test_case in test_cases:
        if "rerun" in test_case or "failure" in test_case or "error" in test_case:
            failed_tests_cases.append(test_case)

    upload_workflow_stats_to_s3(
        args.workflow_run_id,
        args.workflow_run_attempt,
        "failed_test_runs",
        remove_nan_inf(failed_tests_cases),
    )

    if args.head_branch == "main" and args.head_repository == "pytorch/pytorch":
        # For jobs on main branch, upload everything.
        upload_workflow_stats_to_s3(
            args.workflow_run_id,
            args.workflow_run_attempt,
            "test_run",
            remove_nan_inf(test_cases),
        )

    upload_additional_info(args.workflow_run_id, args.workflow_run_attempt, test_cases)