1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
from __future__ import annotations
import math
import os
import subprocess
from pathlib import Path
from typing import Callable, Sequence
from tools.stats.import_test_stats import get_disabled_tests
from tools.testing.test_run import ShardedTest, TestRun
REPO_ROOT = Path(__file__).resolve().parent.parent.parent
IS_MEM_LEAK_CHECK = os.getenv("PYTORCH_TEST_CUDA_MEM_LEAK_CHECK", "0") == "1"
BUILD_ENVIRONMENT = os.getenv("BUILD_ENVIRONMENT", "")
USE_3_PROCS = "sm86" in BUILD_ENVIRONMENT or "cuda" not in BUILD_ENVIRONMENT
# NUM_PROCS_FOR_SHARDING_CALC must remain consistent across all shards of a job
# to ensure that sharding is consistent, NUM_PROCS is the actual number of procs
# used to run tests. If they are not equal, the only consequence should be
# unequal shards.
IS_ROCM = os.path.exists("/opt/rocm")
NUM_PROCS = 1 if IS_MEM_LEAK_CHECK else 3 if USE_3_PROCS else 2
NUM_PROCS_FOR_SHARDING_CALC = NUM_PROCS if not IS_ROCM or IS_MEM_LEAK_CHECK else 2
THRESHOLD = 60 * 10 # 10 minutes
# See Note [ROCm parallel CI testing]
# Special logic for ROCm GHA runners to query number of GPUs available.
# torch.version.hip was not available to check if this was a ROCm self-hosted runner.
# Must check for ROCm runner in another way. We look for /opt/rocm directory.
if IS_ROCM and not IS_MEM_LEAK_CHECK:
try:
# This is the same logic used in GHA health check, see .github/templates/common.yml.j2
lines = (
subprocess.check_output(["rocminfo"], encoding="ascii").strip().split("\n")
)
count = 0
for line in lines:
if " gfx" in line:
count += 1
assert count > 0 # there must be at least 1 GPU
# Limiting to 8 GPUs(PROCS)
NUM_PROCS = min(count, 8)
except subprocess.CalledProcessError:
# The safe default for ROCm GHA runners is to run tests serially.
NUM_PROCS = 1
class ShardJob:
def __init__(self) -> None:
self.serial: list[ShardedTest] = []
self.parallel: list[ShardedTest] = []
def get_total_time(self) -> float:
"""Default is the value for which to substitute if a test has no time"""
procs = [0.0 for _ in range(NUM_PROCS_FOR_SHARDING_CALC)]
for test in self.parallel:
min_index = procs.index(min(procs))
procs[min_index] += test.get_time()
time = max(procs) + sum(test.get_time() for test in self.serial)
return time
def convert_to_tuple(self) -> tuple[float, list[ShardedTest]]:
return (self.get_total_time(), self.serial + self.parallel)
def get_with_pytest_shard(
tests: Sequence[TestRun],
test_file_times: dict[str, float],
test_class_times: dict[str, dict[str, float]] | None,
) -> list[ShardedTest]:
sharded_tests: list[ShardedTest] = []
for test in tests:
duration = get_duration(test, test_file_times, test_class_times or {})
if duration and duration > THRESHOLD:
num_shards = math.ceil(duration / THRESHOLD)
for i in range(num_shards):
sharded_tests.append(
ShardedTest(test, i + 1, num_shards, duration / num_shards)
)
else:
sharded_tests.append(ShardedTest(test, 1, 1, duration))
return sharded_tests
def get_duration(
test: TestRun,
test_file_times: dict[str, float],
test_class_times: dict[str, dict[str, float]],
) -> float | None:
"""Calculate the time for a TestRun based on the given test_file_times and
test_class_times. Returns None if the time is unknown."""
file_duration = test_file_times.get(test.test_file, None)
if test.is_full_file():
return file_duration
def get_duration_for_classes(
test_file: str, test_classes: frozenset[str]
) -> float | None:
duration: float = 0
for test_class in test_classes:
class_duration = test_class_times.get(test_file, {}).get(test_class, None)
if class_duration is None:
return None
duration += class_duration
return duration
included = test.included()
excluded = test.excluded()
included_classes_duration = get_duration_for_classes(test.test_file, included)
excluded_classes_duration = get_duration_for_classes(test.test_file, excluded)
if included_classes_duration is None or excluded_classes_duration is None:
# Didn't get the time for all classes, so time is unknown
return None
if included:
return included_classes_duration
assert (
excluded
), f"TestRun {test} is not full file but doesn't have included or excluded classes"
if file_duration is None:
return None
return file_duration - excluded_classes_duration
def shard(
sharded_jobs: list[ShardJob],
pytest_sharded_tests: Sequence[ShardedTest],
estimated_time_limit: float | None = None,
serial: bool = False,
) -> None:
# Modifies sharded_jobs in place
if len(sharded_jobs) == 0:
assert (
len(pytest_sharded_tests) == 0
), "No shards provided but there are tests to shard"
return
round_robin_index = 0
def _get_min_sharded_job(
sharded_jobs: list[ShardJob], test: ShardedTest
) -> ShardJob:
if test.time is None:
nonlocal round_robin_index
job = sharded_jobs[round_robin_index % len(sharded_jobs)]
round_robin_index += 1
return job
return min(sharded_jobs, key=lambda j: j.get_total_time())
def _shard_serial(
tests: Sequence[ShardedTest], sharded_jobs: list[ShardJob]
) -> None:
assert estimated_time_limit is not None, "Estimated time limit must be provided"
new_sharded_jobs = sharded_jobs
for test in tests:
if (
len(sharded_jobs) > 1
and sharded_jobs[-1].get_total_time() > estimated_time_limit
):
new_sharded_jobs = sharded_jobs[:-1]
min_sharded_job = _get_min_sharded_job(new_sharded_jobs, test)
min_sharded_job.serial.append(test)
def _shard_parallel(
tests: Sequence[ShardedTest], sharded_jobs: list[ShardJob]
) -> None:
for test in tests:
min_sharded_job = _get_min_sharded_job(sharded_jobs, test)
min_sharded_job.parallel.append(test)
if serial:
_shard_serial(pytest_sharded_tests, sharded_jobs)
else:
_shard_parallel(pytest_sharded_tests, sharded_jobs)
return
def calculate_shards(
num_shards: int,
tests: Sequence[TestRun],
test_file_times: dict[str, float],
test_class_times: dict[str, dict[str, float]] | None,
must_serial: Callable[[str], bool] | None = None,
sort_by_time: bool = True,
) -> list[tuple[float, list[ShardedTest]]]:
must_serial = must_serial or (lambda x: True)
test_class_times = test_class_times or {}
# Divide tests into pytest shards
if sort_by_time:
known_tests = [
x
for x in tests
if get_duration(x, test_file_times, test_class_times) is not None
]
unknown_tests = [x for x in tests if x not in known_tests]
pytest_sharded_tests = sorted(
get_with_pytest_shard(known_tests, test_file_times, test_class_times),
key=lambda j: j.get_time(),
reverse=True,
) + get_with_pytest_shard(unknown_tests, test_file_times, test_class_times)
else:
pytest_sharded_tests = get_with_pytest_shard(
tests, test_file_times, test_class_times
)
del tests
serial_tests = [test for test in pytest_sharded_tests if must_serial(test.name)]
parallel_tests = [test for test in pytest_sharded_tests if test not in serial_tests]
serial_time = sum(test.get_time() for test in serial_tests)
parallel_time = sum(test.get_time() for test in parallel_tests)
total_time = serial_time + parallel_time / NUM_PROCS_FOR_SHARDING_CALC
estimated_time_per_shard = total_time / num_shards
# Separate serial tests from parallel tests as much as possible to maximize
# parallelism by putting all the serial tests on the first num_serial_shards
# shards. The estimated_time_limit is the estimated time it should take for
# the least filled serial shard. Ex if we have 8 min of serial tests, 20 min
# of parallel tests, 6 shards, and 2 procs per machine, we would expect each
# machine to take 3 min and should aim for 3 serial shards, with shards 1
# and 2 taking 3 min and shard 3 taking 2 min. The estimated time limit
# would be 2 min. This ensures that the first few shard contains as many
# serial tests as possible and as few parallel tests as possible. The least
# filled/last (in the example, the 3rd) shard may contain a lot of both
# serial and parallel tests.
estimated_time_limit = 0.0
if estimated_time_per_shard != 0:
estimated_time_limit = serial_time % estimated_time_per_shard
if estimated_time_limit <= 0.01:
estimated_time_limit = estimated_time_per_shard
if total_time == 0:
num_serial_shards = num_shards
else:
num_serial_shards = max(math.ceil(serial_time / total_time * num_shards), 1)
sharded_jobs = [ShardJob() for _ in range(num_shards)]
shard(
sharded_jobs=sharded_jobs[:num_serial_shards],
pytest_sharded_tests=serial_tests,
estimated_time_limit=estimated_time_limit,
serial=True,
)
shard(
sharded_jobs=sharded_jobs,
pytest_sharded_tests=parallel_tests,
serial=False,
)
return [job.convert_to_tuple() for job in sharded_jobs]
def get_test_case_configs(dirpath: str) -> None:
get_disabled_tests(dirpath=dirpath)
|