File: _distributed_c10d.pyi

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (695 lines) | stat: -rw-r--r-- 19,915 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
# mypy: allow-untyped-defs
# mypy: disable-error-code="type-arg"
from datetime import timedelta
from enum import Enum
from typing import Any, overload

import torch
from torch import Tensor
from torch._C import ScriptObject
from torch.futures import Future

# This module is defined in torch/csrc/distributed/c10d/init.cpp

_DEFAULT_FIRST_BUCKET_BYTES: int
_DEFAULT_NO_TIMEOUT: timedelta
_DEFAULT_PG_TIMEOUT: timedelta
_DEFAULT_PG_NCCL_TIMEOUT: timedelta

class BuiltinCommHookType(Enum):
    ALLREDUCE = ...
    FP16_COMPRESS = ...

def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ...
def _register_builtin_comm_hook(
    reducer: Reducer,
    comm_hook_type: BuiltinCommHookType,
): ...
def _set_global_rank(rank: int) -> None: ...
def _hash_tensors(tensors: list[Tensor]) -> int: ...

class GradBucket:
    def index(self) -> int: ...
    def buffer(self) -> Tensor: ...
    def gradients(self) -> list[Tensor]: ...
    def is_last(self) -> bool: ...
    def set_buffer(self, tensor: Tensor) -> None: ...
    def parameters(self) -> list[Tensor]: ...

class Reducer:
    def __init__(
        self,
        params: list[Tensor],
        bucket_indices: list[list[int]],
        per_bucket_size_limits: list[int],
        process_group: ProcessGroup,
        expect_sparse_gradients: list[bool] = ...,
        bucket_bytes_cap: int = ...,  # kDefaultBucketBytesCap in reducer.hpp
        find_unused_parameters: bool = ...,
        gradient_as_bucket_view: bool = ...,
        param_to_name_mapping: dict[int, str] = ...,
        first_bucket_types_cap: int = ...,  # kDefaultFirstBucketBytes in reducer.hpp
    ) -> None: ...
    def prepare_for_forward(self) -> None: ...
    def prepare_for_backward(self, output: list[Tensor]) -> None: ...
    def get_backward_stats(self) -> list[int]: ...
    def _install_post_backward_futures(self, futures: list[Future]) -> None: ...
    def _rebuild_buckets(self) -> bool: ...
    def _get_zeros_like_grad_buckets(self) -> list[GradBucket]: ...
    def _push_all_rebuilt_params(self) -> None: ...
    def _set_forward_pass_work_handle(
        self,
        work: Work,
        use_static_world_size: bool,
    ): ...
    def _get_local_used_map(self) -> Tensor: ...
    def _set_ddp_runtime_logging_sample_rate(self, sample_rate: int) -> None: ...
    def _set_static_graph(self) -> None: ...
    def _run_comm_hook(self, bucket: GradBucket) -> Future: ...
    def set_logger(self, logger: Logger) -> None: ...
    def _remove_autograd_hooks(self) -> None: ...
    def _check_reducer_finalized(self) -> None: ...
    def _set_sparse_metadata(self, global_unique_ids: dict[str, Tensor]) -> None: ...
    def _reset_state(self) -> None: ...
    def _update_process_group(self, new_process_group: ProcessGroup) -> None: ...

class DDPLoggingData:
    strs_map: dict[str, str]
    ints_map: dict[str, int]

class Logger:
    def __init__(self, reducer: Reducer) -> None: ...
    def set_construction_data_and_log(
        self,
        module_name: str,
        device_ids: list[int],
        output_device: int,
        broadcast_buffers: bool,
        has_sync_bn: bool,
        static_graph: bool,
    ): ...
    def set_runtime_stats_and_log(self) -> None: ...
    def set_error_and_log(self, error: str) -> None: ...
    def _get_ddp_logging_data(self) -> DDPLoggingData: ...
    def _set_comm_hook_name(self, comm_hook: str) -> None: ...
    def _set_uneven_input_join(self) -> None: ...
    def _set_static_graph(self) -> None: ...

class _WorkerServer:
    def __init__(self, socket_path: str) -> None: ...
    def shutdown(self) -> None: ...

def get_debug_level(): ...
def set_debug_level(): ...
def set_debug_level_from_env(): ...

class DebugLevel(Enum):
    OFF = ...
    INFO = ...
    DETAIL = ...

class ReduceOp:
    def __init__(self, op: RedOpType) -> None: ...

    SUM: RedOpType = ...
    AVG: RedOpType = ...
    PRODUCT: RedOpType = ...
    MIN: RedOpType = ...
    MAX: RedOpType = ...
    BAND: RedOpType = ...
    BOR: RedOpType = ...
    BXOR: RedOpType = ...
    PREMUL_SUM: RedOpType = ...
    UNUSED: RedOpType = ...

    class RedOpType(Enum): ...

class BroadcastOptions:
    rootRank: int
    rootTensor: int
    timeout: timedelta
    asyncOp: bool

class AllreduceOptions:
    reduceOp: ReduceOp
    timeout: timedelta

class AllreduceCoalescedOptions(AllreduceOptions): ...

class ReduceOptions:
    reduceOp: ReduceOp
    rootRank: int
    rootTensor: int
    timeout: timedelta

class AllgatherOptions:
    timeout: timedelta
    asyncOp: bool

class GatherOptions:
    rootRank: int
    timeout: timedelta

class ScatterOptions:
    rootRank: int
    timeout: timedelta
    asyncOp: bool

class ReduceScatterOptions:
    reduceOp: ReduceOp
    timeout: timedelta
    asyncOp: bool

class BarrierOptions:
    device_ids: list[int]
    device: torch.device
    timeout: timedelta

class AllToAllOptions:
    timeout: timedelta

class Store:
    def set(self, key: str, value: str): ...
    def get(self, key: str) -> bytes: ...
    def add(self, key: str, value: int) -> int: ...
    def compare_set(
        self,
        key: str,
        expected_value: str,
        desired_value: str,
    ) -> bytes: ...
    def delete_key(self, key: str) -> bool: ...
    def num_keys(self) -> int: ...
    def set_timeout(self, timeout: timedelta): ...
    @overload
    def wait(self, keys: list[str]): ...
    @overload
    def wait(self, keys: list[str], timeout: timedelta): ...

class FileStore(Store):
    def __init__(self, path: str, numWorkers: int = ...) -> None: ...

class HashStore(Store):
    def __init__(self) -> None: ...

class TCPStore(Store):
    def __init__(
        self,
        host_name: str,
        port: int,
        world_size: int | None = ...,
        is_master: bool = ...,
        timeout: timedelta = ...,
        wait_for_workers: bool = ...,
        multi_tenant: bool = ...,
        master_listen_fd: int | None = ...,
        use_libuv: bool | None = ...,
    ) -> None: ...
    @property
    def host(self) -> str: ...
    @property
    def port(self) -> int: ...

class PrefixStore(Store):
    def __init__(self, prefix: str, store: Store) -> None: ...
    @property
    def underlying_store(self) -> Store: ...

class _ControlCollectives:
    def barrier(self, key: str, timeout: timedelta, blocking: bool) -> None: ...
    def broadcast_send(self, key: str, data: str, timeout: timedelta) -> None: ...
    def broadcast_recv(self, key: str, timeout: timedelta) -> str: ...
    def gather_send(self, key: str, data: str, timeout: timedelta) -> None: ...
    def gather_recv(self, key: str, timeout: timedelta) -> str: ...
    def scatter_send(self, key: str, data: str, timeout: timedelta) -> None: ...
    def scatter_recv(self, key: str, timeout: timedelta) -> str: ...
    def all_gather(self, key: str, data: str, timeout: timedelta) -> str: ...
    def all_sum(self, key: str, data: int, timeout: timedelta) -> int: ...

class _StoreCollectives(_ControlCollectives):
    def __init__(self, store: Store, rank: int, world_size: int) -> None: ...

class _DistributedBackendOptions:
    def __init__(self) -> None: ...
    @property
    def store(self) -> Store: ...
    @store.setter
    def store(self, store: Store) -> None: ...
    @property
    def group_rank(self) -> int: ...
    @group_rank.setter
    def group_rank(self, rank: int) -> None: ...
    @property
    def group_size(self) -> int: ...
    @group_size.setter
    def group_size(self, size: int) -> None: ...
    @property
    def timeout(self) -> timedelta: ...
    @timeout.setter
    def timeout(self, timeout: timedelta) -> None: ...
    @property
    def group_id(self) -> str: ...
    @group_id.setter
    def group_id(self, group_id: str) -> None: ...
    @property
    def global_ranks_in_group(self) -> list[int]: ...
    @global_ranks_in_group.setter
    def global_ranks_in_group(self, ranks: list[int]) -> None: ...

class Work:
    def is_completed(self) -> bool: ...
    def is_success(self) -> bool: ...
    def exception(self) -> Any: ...
    def wait(self, timeout: timedelta = ...) -> bool: ...
    def get_future(self) -> Future: ...
    def source_rank(self) -> int: ...
    def _source_rank(self) -> int: ...
    def result(self) -> list[Tensor]: ...
    def synchronize(self): ...
    def boxed(self) -> ScriptObject: ...
    @staticmethod
    def unbox(obj: ScriptObject) -> Work: ...

class Backend:
    class Options:
        def __init__(self, backend: str, timeout: timedelta = ...) -> None: ...
        @property
        def backend(self) -> str: ...
        @property
        def _timeout(self) -> timedelta: ...
        @_timeout.setter
        def _timeout(self, val: timedelta) -> None: ...

    def __init__(
        self,
        rank: int,
        size: int,
    ) -> None: ...
    @property
    def supports_splitting(self) -> bool: ...
    @property
    def options(self) -> Options: ...
    def rank(self) -> int: ...
    def size(self) -> int: ...
    def eager_connect_single_device(self, device: torch.device | None) -> None: ...
    def _set_sequence_number_for_group(self) -> None: ...
    def _set_default_timeout(self, timeout: timedelta) -> None: ...

class ProcessGroup:
    class BackendType(Enum):
        UNDEFINED = ...
        GLOO = ...
        NCCL = ...
        UCC = ...
        MPI = ...
        XCCL = ...
        CUSTOM = ...

    def __init__(
        self,
        store: Store,
        rank: int,
        size: int,
    ) -> None: ...
    def rank(self) -> int: ...
    def size(self) -> int: ...
    @overload
    def broadcast(
        self,
        tensors: list[Tensor],
        opts=...,
    ) -> Work: ...
    @overload
    def broadcast(
        self,
        tensor: Tensor,
        root: int,
    ) -> Work: ...
    @overload
    def allreduce(
        self,
        tensors: list[Tensor],
        opts: AllreduceOptions = ...,
    ) -> Work: ...
    @overload
    def allreduce(
        self,
        tensors: list[Tensor],
        op=...,
    ) -> Work: ...
    @overload
    def allreduce(
        self,
        tensor: Tensor,
        op=...,
    ) -> Work: ...
    def allreduce_coalesced(
        self,
        tensors: list[Tensor],
        opts=...,
    ) -> Work: ...
    def reduce_scatter_tensor_coalesced(
        self,
        outputTensors: list[Tensor],
        inputTensors: list[Tensor],
        opts: ReduceScatterOptions | None = None,
    ) -> Work: ...
    @overload
    def reduce(
        self,
        tensors: list[Tensor],
        opts=...,
    ) -> Work: ...
    @overload
    def reduce(
        self,
        tensor: Tensor,
        root: int,
        op=...,
    ) -> Work: ...
    @overload
    def allgather(
        self,
        output_tensors: list[list[Tensor]],
        input_tensors: list[Tensor],
        opts=...,
    ) -> Work: ...
    @overload
    def allgather(
        self,
        output_tensors: list[Tensor],
        input_tensor: Tensor,
    ) -> Work: ...
    def _allgather_base(
        self,
        output: Tensor,
        input: Tensor,
        opts=...,
    ) -> Work: ...
    def allgather_coalesced(
        self,
        output_lists: list[list[Tensor]],
        input_list: list[Tensor],
        opts=...,
    ) -> Work: ...
    def allgather_into_tensor_coalesced(
        self,
        output_lists: list[Tensor],
        input_list: list[Tensor],
        opts=...,
    ) -> Work: ...
    @overload
    def gather(
        self,
        output_tensors: list[list[Tensor]],
        input_tensors: list[Tensor],
        opts=...,
    ) -> Work: ...
    @overload
    def gather(
        self,
        output_tensors: list[Tensor],
        input_tensor: Tensor,
        root: int,
    ) -> Work: ...
    @overload
    def scatter(
        self,
        output_tensors: list[Tensor],
        input_tensors: list[list[Tensor]],
        opts=...,
    ) -> Work: ...
    @overload
    def scatter(
        self,
        output_tensor: Tensor,
        input_tensors: list[Tensor],
        root: int,
    ) -> Work: ...
    @overload
    def reduce_scatter(
        self,
        output_tensors: list[Tensor],
        input_tensors: list[list[Tensor]],
        opts=...,
    ) -> Work: ...
    @overload
    def reduce_scatter(
        self,
        output_tensors: Tensor,
        input_tensor: list[Tensor],
    ) -> Work: ...
    def _reduce_scatter_base(
        self,
        outputTensor: Tensor,
        inputTensor: Tensor,
        opts: ReduceScatterOptions | None,
    ) -> Work: ...
    @overload
    def alltoall_base(
        self,
        output_tensor: Tensor,
        input_tensor: Tensor,
        output_split_sizes: list[int],
        input_split_sizes: list[int],
        opts=...,
    ) -> Work: ...
    @overload
    def alltoall_base(
        self,
        output: Tensor,
        input: Tensor,
        output_split_sizes: list[int],
        input_split_sizes: list[int],
    ) -> Work: ...
    @overload
    def alltoall(
        self,
        output_tensor: list[Tensor],
        input_tensor: list[Tensor],
        opts=...,
    ) -> Work: ...
    @overload
    def alltoall(
        self,
        output: list[Tensor],
        input: list[Tensor],
    ) -> Work: ...
    def send(
        self,
        tensors: list[Tensor],
        dstRank: int,
        tag: int,
    ) -> Work: ...
    def recv(
        self,
        tensors: list[Tensor],
        srcRank: int,
        tag: int,
    ) -> Work: ...
    def recv_anysource(self, tensors: list[Tensor], tag: int) -> Work: ...
    def barrier(self, opts=...) -> Work: ...
    def boxed(self) -> ScriptObject: ...
    @staticmethod
    def unbox(obj: ScriptObject) -> ProcessGroup: ...
    def _start_coalescing(self, device: torch.device) -> None: ...
    def _end_coalescing(self, device: torch.device) -> Work: ...
    def _get_backend_name(self) -> str: ...
    def _backend_id(self, backend_type: BackendType) -> int: ...
    @property
    def _device_types(self) -> list[torch.device]: ...
    def _get_backend(self, device: torch.device) -> Backend: ...
    def _set_default_backend(self, backend_type: BackendType) -> None: ...
    def _register_backend(
        self,
        device: torch.device,
        backend_type: BackendType,
        backend: Backend | None,
    ) -> None: ...
    def _set_group_name(self, name: str) -> None: ...
    def _set_group_desc(self, desc: str) -> None: ...
    def name(self) -> str: ...
    def _has_hooks(self) -> bool: ...
    def _wait_for_pending_works(self) -> None: ...
    def _set_sequence_number_for_group(self) -> None: ...
    @property
    def bound_device_id(self) -> torch.device | None: ...
    @bound_device_id.setter
    def bound_device_id(self, device: torch.device | None) -> None: ...
    @property
    def group_name(self) -> str: ...
    @property
    def group_desc(self) -> str: ...

class FakeProcessGroup(Backend):
    def __init__(self, rank: int, world_size: int) -> None: ...

class ProcessGroupGloo(Backend):
    class Device: ...

    class Options(Backend.Options):
        devices: list[ProcessGroupGloo.Device]
        threads: int

        def __init__(self): ...

    def __init__(
        self,
        store: Store,
        rank: int,
        size: int,
        timeout: timedelta,
    ) -> None: ...
    @staticmethod
    def create_device(hostname="", interface="") -> Device: ...
    @staticmethod
    def create_default_device() -> Device: ...
    def _set_default_timeout(self, timeout) -> None: ...

class _ProcessGroupWrapper(Backend):
    def __init__(self, pg: Backend, gloo_pg: ProcessGroupGloo) -> None: ...
    wrapped_pg: Backend

class ProcessGroupNCCL(Backend):
    class NCCLConfig:
        blocking: int
        cga_cluster_size: int
        min_ctas: int
        max_ctas: int

    class Options(Backend.Options):
        config: ProcessGroupNCCL.NCCLConfig
        is_high_priority_stream: bool
        split_from: ProcessGroupNCCL
        split_color: int
        global_ranks_in_group: list[int]
        group_name: str

        def __init__(self, is_high_priority_stream: bool = False): ...

    def __init__(
        self,
        store: Store,
        rank: int,
        size: int,
        options: Options,
    ) -> None: ...
    def _group_start(self) -> None: ...
    def _group_end(self) -> None: ...
    def _set_default_timeout(self, timeout) -> None: ...
    def _shutdown(self) -> None: ...
    def perform_nocolor_split(self, device: torch.device) -> None: ...
    def register_mem_pool(self, pool: torch.cuda.MemPool) -> None: ...
    def deregister_mem_pool(self, pool: torch.cuda.MemPool) -> None: ...
    def comm_split_count(self) -> int: ...
    def _add_ephemeral_timeout(self, timeout: timedelta) -> None: ...
    def abort(self) -> None: ...
    def _is_initialized(self) -> bool: ...
    @property
    def uid(self) -> int: ...
    @property
    def options(self) -> Options: ...  # type: ignore[override]

class ProcessGroupUCC(Backend):
    def __init__(
        self,
        store: Store,
        rank: int,
        size: int,
        timeout: timedelta,
    ) -> None: ...

class ProcessGroupMPI(Backend):
    def __init__(
        self,
        rank: int,
        size: int,
        pgComm: int,
    ) -> None: ...
    @staticmethod
    def create(ranks: list[int]) -> ProcessGroupMPI: ...

def _compute_bucket_assignment_by_size(
    tensors: list[Tensor],
    bucket_size_limits: list[int],
    expect_sparse_gradient: list[bool] = ...,
    tensor_indices: list[int] = ...,
) -> tuple[list[list[int]], list[int]]: ...
def _broadcast_coalesced(
    process_group: ProcessGroup,
    tensors: list[Tensor],
    buffer_size: int,
    src: int,
): ...
def _test_python_store(store: Store): ...
def _verify_params_across_processes(
    process_group: ProcessGroup,
    params: list[Tensor],
    logger: Logger | None,
): ...
def _make_nccl_premul_sum(factor: float | list[Tensor]) -> ReduceOp: ...
def _register_process_group(
    group_name: str,
    process_group: ProcessGroup,
) -> None: ...
def _resolve_process_group(group_name: str) -> ProcessGroup: ...
def _register_work(tensor: torch.Tensor, work: Work) -> ProcessGroup: ...
def _get_work_registry_size() -> int: ...
def _set_allow_inflight_collective_as_graph_input(
    value: bool,
) -> None: ...
def _allow_inflight_collective_as_graph_input() -> bool: ...
def _unregister_all_process_groups() -> None: ...
def _unregister_process_group(group_name: str) -> None: ...

class _SymmetricMemory:
    @staticmethod
    def set_group_info(
        group_name: str,
        rank: int,
        world_size: int,
        store: Store,
    ) -> None: ...
    @staticmethod
    def empty_strided_p2p(
        size: torch.types._size,
        stride: torch.types._size,
        dtype: torch.dtype,
        device: torch.device,
        group_name: str | None = None,
        alloc_id: int | None = None,
    ) -> torch.Tensor: ...
    @property
    def rank(self) -> int: ...
    @property
    def world_size(self) -> int: ...
    @staticmethod
    def rendezvous(
        tensor: torch.Tensor, group_name: str | None = None
    ) -> _SymmetricMemory: ...
    def get_buffer(
        self,
        rank: int,
        sizes: torch.types._size,
        dtype: torch.dtype,
        storage_offset: int | None = 0,
    ) -> torch.Tensor: ...
    def barrier(self, channel: int = 0) -> None: ...
    def put_signal(self, dst_rank: int, channel: int = 0) -> None: ...
    def wait_signal(self, src_rank: int, channel: int = 0) -> None: ...
    @staticmethod
    def memset32(
        tensor: torch.Tensor, offset: int, val: int, count: int
    ) -> torch.Tensor: ...
    @staticmethod
    def stream_write_value32(
        tensor: torch.Tensor, offset: int, val: int
    ) -> torch.Tensor: ...

class ProcessGroupXCCL(Backend):
    def __init__(
        self,
        store: Store,
        rank: int,
        size: int,
    ): ...