1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
# mypy: allow-untyped-defs
# mypy: disable-error-code="type-arg"
from datetime import timedelta
from enum import Enum
from typing import Any, overload
import torch
from torch import Tensor
from torch._C import ScriptObject
from torch.futures import Future
# This module is defined in torch/csrc/distributed/c10d/init.cpp
_DEFAULT_FIRST_BUCKET_BYTES: int
_DEFAULT_NO_TIMEOUT: timedelta
_DEFAULT_PG_TIMEOUT: timedelta
_DEFAULT_PG_NCCL_TIMEOUT: timedelta
class BuiltinCommHookType(Enum):
ALLREDUCE = ...
FP16_COMPRESS = ...
def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ...
def _register_builtin_comm_hook(
reducer: Reducer,
comm_hook_type: BuiltinCommHookType,
): ...
def _set_global_rank(rank: int) -> None: ...
def _hash_tensors(tensors: list[Tensor]) -> int: ...
class GradBucket:
def index(self) -> int: ...
def buffer(self) -> Tensor: ...
def gradients(self) -> list[Tensor]: ...
def is_last(self) -> bool: ...
def set_buffer(self, tensor: Tensor) -> None: ...
def parameters(self) -> list[Tensor]: ...
class Reducer:
def __init__(
self,
params: list[Tensor],
bucket_indices: list[list[int]],
per_bucket_size_limits: list[int],
process_group: ProcessGroup,
expect_sparse_gradients: list[bool] = ...,
bucket_bytes_cap: int = ..., # kDefaultBucketBytesCap in reducer.hpp
find_unused_parameters: bool = ...,
gradient_as_bucket_view: bool = ...,
param_to_name_mapping: dict[int, str] = ...,
first_bucket_types_cap: int = ..., # kDefaultFirstBucketBytes in reducer.hpp
) -> None: ...
def prepare_for_forward(self) -> None: ...
def prepare_for_backward(self, output: list[Tensor]) -> None: ...
def get_backward_stats(self) -> list[int]: ...
def _install_post_backward_futures(self, futures: list[Future]) -> None: ...
def _rebuild_buckets(self) -> bool: ...
def _get_zeros_like_grad_buckets(self) -> list[GradBucket]: ...
def _push_all_rebuilt_params(self) -> None: ...
def _set_forward_pass_work_handle(
self,
work: Work,
use_static_world_size: bool,
): ...
def _get_local_used_map(self) -> Tensor: ...
def _set_ddp_runtime_logging_sample_rate(self, sample_rate: int) -> None: ...
def _set_static_graph(self) -> None: ...
def _run_comm_hook(self, bucket: GradBucket) -> Future: ...
def set_logger(self, logger: Logger) -> None: ...
def _remove_autograd_hooks(self) -> None: ...
def _check_reducer_finalized(self) -> None: ...
def _set_sparse_metadata(self, global_unique_ids: dict[str, Tensor]) -> None: ...
def _reset_state(self) -> None: ...
def _update_process_group(self, new_process_group: ProcessGroup) -> None: ...
class DDPLoggingData:
strs_map: dict[str, str]
ints_map: dict[str, int]
class Logger:
def __init__(self, reducer: Reducer) -> None: ...
def set_construction_data_and_log(
self,
module_name: str,
device_ids: list[int],
output_device: int,
broadcast_buffers: bool,
has_sync_bn: bool,
static_graph: bool,
): ...
def set_runtime_stats_and_log(self) -> None: ...
def set_error_and_log(self, error: str) -> None: ...
def _get_ddp_logging_data(self) -> DDPLoggingData: ...
def _set_comm_hook_name(self, comm_hook: str) -> None: ...
def _set_uneven_input_join(self) -> None: ...
def _set_static_graph(self) -> None: ...
class _WorkerServer:
def __init__(self, socket_path: str) -> None: ...
def shutdown(self) -> None: ...
def get_debug_level(): ...
def set_debug_level(): ...
def set_debug_level_from_env(): ...
class DebugLevel(Enum):
OFF = ...
INFO = ...
DETAIL = ...
class ReduceOp:
def __init__(self, op: RedOpType) -> None: ...
SUM: RedOpType = ...
AVG: RedOpType = ...
PRODUCT: RedOpType = ...
MIN: RedOpType = ...
MAX: RedOpType = ...
BAND: RedOpType = ...
BOR: RedOpType = ...
BXOR: RedOpType = ...
PREMUL_SUM: RedOpType = ...
UNUSED: RedOpType = ...
class RedOpType(Enum): ...
class BroadcastOptions:
rootRank: int
rootTensor: int
timeout: timedelta
asyncOp: bool
class AllreduceOptions:
reduceOp: ReduceOp
timeout: timedelta
class AllreduceCoalescedOptions(AllreduceOptions): ...
class ReduceOptions:
reduceOp: ReduceOp
rootRank: int
rootTensor: int
timeout: timedelta
class AllgatherOptions:
timeout: timedelta
asyncOp: bool
class GatherOptions:
rootRank: int
timeout: timedelta
class ScatterOptions:
rootRank: int
timeout: timedelta
asyncOp: bool
class ReduceScatterOptions:
reduceOp: ReduceOp
timeout: timedelta
asyncOp: bool
class BarrierOptions:
device_ids: list[int]
device: torch.device
timeout: timedelta
class AllToAllOptions:
timeout: timedelta
class Store:
def set(self, key: str, value: str): ...
def get(self, key: str) -> bytes: ...
def add(self, key: str, value: int) -> int: ...
def compare_set(
self,
key: str,
expected_value: str,
desired_value: str,
) -> bytes: ...
def delete_key(self, key: str) -> bool: ...
def num_keys(self) -> int: ...
def set_timeout(self, timeout: timedelta): ...
@overload
def wait(self, keys: list[str]): ...
@overload
def wait(self, keys: list[str], timeout: timedelta): ...
class FileStore(Store):
def __init__(self, path: str, numWorkers: int = ...) -> None: ...
class HashStore(Store):
def __init__(self) -> None: ...
class TCPStore(Store):
def __init__(
self,
host_name: str,
port: int,
world_size: int | None = ...,
is_master: bool = ...,
timeout: timedelta = ...,
wait_for_workers: bool = ...,
multi_tenant: bool = ...,
master_listen_fd: int | None = ...,
use_libuv: bool | None = ...,
) -> None: ...
@property
def host(self) -> str: ...
@property
def port(self) -> int: ...
class PrefixStore(Store):
def __init__(self, prefix: str, store: Store) -> None: ...
@property
def underlying_store(self) -> Store: ...
class _ControlCollectives:
def barrier(self, key: str, timeout: timedelta, blocking: bool) -> None: ...
def broadcast_send(self, key: str, data: str, timeout: timedelta) -> None: ...
def broadcast_recv(self, key: str, timeout: timedelta) -> str: ...
def gather_send(self, key: str, data: str, timeout: timedelta) -> None: ...
def gather_recv(self, key: str, timeout: timedelta) -> str: ...
def scatter_send(self, key: str, data: str, timeout: timedelta) -> None: ...
def scatter_recv(self, key: str, timeout: timedelta) -> str: ...
def all_gather(self, key: str, data: str, timeout: timedelta) -> str: ...
def all_sum(self, key: str, data: int, timeout: timedelta) -> int: ...
class _StoreCollectives(_ControlCollectives):
def __init__(self, store: Store, rank: int, world_size: int) -> None: ...
class _DistributedBackendOptions:
def __init__(self) -> None: ...
@property
def store(self) -> Store: ...
@store.setter
def store(self, store: Store) -> None: ...
@property
def group_rank(self) -> int: ...
@group_rank.setter
def group_rank(self, rank: int) -> None: ...
@property
def group_size(self) -> int: ...
@group_size.setter
def group_size(self, size: int) -> None: ...
@property
def timeout(self) -> timedelta: ...
@timeout.setter
def timeout(self, timeout: timedelta) -> None: ...
@property
def group_id(self) -> str: ...
@group_id.setter
def group_id(self, group_id: str) -> None: ...
@property
def global_ranks_in_group(self) -> list[int]: ...
@global_ranks_in_group.setter
def global_ranks_in_group(self, ranks: list[int]) -> None: ...
class Work:
def is_completed(self) -> bool: ...
def is_success(self) -> bool: ...
def exception(self) -> Any: ...
def wait(self, timeout: timedelta = ...) -> bool: ...
def get_future(self) -> Future: ...
def source_rank(self) -> int: ...
def _source_rank(self) -> int: ...
def result(self) -> list[Tensor]: ...
def synchronize(self): ...
def boxed(self) -> ScriptObject: ...
@staticmethod
def unbox(obj: ScriptObject) -> Work: ...
class Backend:
class Options:
def __init__(self, backend: str, timeout: timedelta = ...) -> None: ...
@property
def backend(self) -> str: ...
@property
def _timeout(self) -> timedelta: ...
@_timeout.setter
def _timeout(self, val: timedelta) -> None: ...
def __init__(
self,
rank: int,
size: int,
) -> None: ...
@property
def supports_splitting(self) -> bool: ...
@property
def options(self) -> Options: ...
def rank(self) -> int: ...
def size(self) -> int: ...
def eager_connect_single_device(self, device: torch.device | None) -> None: ...
def _set_sequence_number_for_group(self) -> None: ...
def _set_default_timeout(self, timeout: timedelta) -> None: ...
class ProcessGroup:
class BackendType(Enum):
UNDEFINED = ...
GLOO = ...
NCCL = ...
UCC = ...
MPI = ...
XCCL = ...
CUSTOM = ...
def __init__(
self,
store: Store,
rank: int,
size: int,
) -> None: ...
def rank(self) -> int: ...
def size(self) -> int: ...
@overload
def broadcast(
self,
tensors: list[Tensor],
opts=...,
) -> Work: ...
@overload
def broadcast(
self,
tensor: Tensor,
root: int,
) -> Work: ...
@overload
def allreduce(
self,
tensors: list[Tensor],
opts: AllreduceOptions = ...,
) -> Work: ...
@overload
def allreduce(
self,
tensors: list[Tensor],
op=...,
) -> Work: ...
@overload
def allreduce(
self,
tensor: Tensor,
op=...,
) -> Work: ...
def allreduce_coalesced(
self,
tensors: list[Tensor],
opts=...,
) -> Work: ...
def reduce_scatter_tensor_coalesced(
self,
outputTensors: list[Tensor],
inputTensors: list[Tensor],
opts: ReduceScatterOptions | None = None,
) -> Work: ...
@overload
def reduce(
self,
tensors: list[Tensor],
opts=...,
) -> Work: ...
@overload
def reduce(
self,
tensor: Tensor,
root: int,
op=...,
) -> Work: ...
@overload
def allgather(
self,
output_tensors: list[list[Tensor]],
input_tensors: list[Tensor],
opts=...,
) -> Work: ...
@overload
def allgather(
self,
output_tensors: list[Tensor],
input_tensor: Tensor,
) -> Work: ...
def _allgather_base(
self,
output: Tensor,
input: Tensor,
opts=...,
) -> Work: ...
def allgather_coalesced(
self,
output_lists: list[list[Tensor]],
input_list: list[Tensor],
opts=...,
) -> Work: ...
def allgather_into_tensor_coalesced(
self,
output_lists: list[Tensor],
input_list: list[Tensor],
opts=...,
) -> Work: ...
@overload
def gather(
self,
output_tensors: list[list[Tensor]],
input_tensors: list[Tensor],
opts=...,
) -> Work: ...
@overload
def gather(
self,
output_tensors: list[Tensor],
input_tensor: Tensor,
root: int,
) -> Work: ...
@overload
def scatter(
self,
output_tensors: list[Tensor],
input_tensors: list[list[Tensor]],
opts=...,
) -> Work: ...
@overload
def scatter(
self,
output_tensor: Tensor,
input_tensors: list[Tensor],
root: int,
) -> Work: ...
@overload
def reduce_scatter(
self,
output_tensors: list[Tensor],
input_tensors: list[list[Tensor]],
opts=...,
) -> Work: ...
@overload
def reduce_scatter(
self,
output_tensors: Tensor,
input_tensor: list[Tensor],
) -> Work: ...
def _reduce_scatter_base(
self,
outputTensor: Tensor,
inputTensor: Tensor,
opts: ReduceScatterOptions | None,
) -> Work: ...
@overload
def alltoall_base(
self,
output_tensor: Tensor,
input_tensor: Tensor,
output_split_sizes: list[int],
input_split_sizes: list[int],
opts=...,
) -> Work: ...
@overload
def alltoall_base(
self,
output: Tensor,
input: Tensor,
output_split_sizes: list[int],
input_split_sizes: list[int],
) -> Work: ...
@overload
def alltoall(
self,
output_tensor: list[Tensor],
input_tensor: list[Tensor],
opts=...,
) -> Work: ...
@overload
def alltoall(
self,
output: list[Tensor],
input: list[Tensor],
) -> Work: ...
def send(
self,
tensors: list[Tensor],
dstRank: int,
tag: int,
) -> Work: ...
def recv(
self,
tensors: list[Tensor],
srcRank: int,
tag: int,
) -> Work: ...
def recv_anysource(self, tensors: list[Tensor], tag: int) -> Work: ...
def barrier(self, opts=...) -> Work: ...
def boxed(self) -> ScriptObject: ...
@staticmethod
def unbox(obj: ScriptObject) -> ProcessGroup: ...
def _start_coalescing(self, device: torch.device) -> None: ...
def _end_coalescing(self, device: torch.device) -> Work: ...
def _get_backend_name(self) -> str: ...
def _backend_id(self, backend_type: BackendType) -> int: ...
@property
def _device_types(self) -> list[torch.device]: ...
def _get_backend(self, device: torch.device) -> Backend: ...
def _set_default_backend(self, backend_type: BackendType) -> None: ...
def _register_backend(
self,
device: torch.device,
backend_type: BackendType,
backend: Backend | None,
) -> None: ...
def _set_group_name(self, name: str) -> None: ...
def _set_group_desc(self, desc: str) -> None: ...
def name(self) -> str: ...
def _has_hooks(self) -> bool: ...
def _wait_for_pending_works(self) -> None: ...
def _set_sequence_number_for_group(self) -> None: ...
@property
def bound_device_id(self) -> torch.device | None: ...
@bound_device_id.setter
def bound_device_id(self, device: torch.device | None) -> None: ...
@property
def group_name(self) -> str: ...
@property
def group_desc(self) -> str: ...
class FakeProcessGroup(Backend):
def __init__(self, rank: int, world_size: int) -> None: ...
class ProcessGroupGloo(Backend):
class Device: ...
class Options(Backend.Options):
devices: list[ProcessGroupGloo.Device]
threads: int
def __init__(self): ...
def __init__(
self,
store: Store,
rank: int,
size: int,
timeout: timedelta,
) -> None: ...
@staticmethod
def create_device(hostname="", interface="") -> Device: ...
@staticmethod
def create_default_device() -> Device: ...
def _set_default_timeout(self, timeout) -> None: ...
class _ProcessGroupWrapper(Backend):
def __init__(self, pg: Backend, gloo_pg: ProcessGroupGloo) -> None: ...
wrapped_pg: Backend
class ProcessGroupNCCL(Backend):
class NCCLConfig:
blocking: int
cga_cluster_size: int
min_ctas: int
max_ctas: int
class Options(Backend.Options):
config: ProcessGroupNCCL.NCCLConfig
is_high_priority_stream: bool
split_from: ProcessGroupNCCL
split_color: int
global_ranks_in_group: list[int]
group_name: str
def __init__(self, is_high_priority_stream: bool = False): ...
def __init__(
self,
store: Store,
rank: int,
size: int,
options: Options,
) -> None: ...
def _group_start(self) -> None: ...
def _group_end(self) -> None: ...
def _set_default_timeout(self, timeout) -> None: ...
def _shutdown(self) -> None: ...
def perform_nocolor_split(self, device: torch.device) -> None: ...
def register_mem_pool(self, pool: torch.cuda.MemPool) -> None: ...
def deregister_mem_pool(self, pool: torch.cuda.MemPool) -> None: ...
def comm_split_count(self) -> int: ...
def _add_ephemeral_timeout(self, timeout: timedelta) -> None: ...
def abort(self) -> None: ...
def _is_initialized(self) -> bool: ...
@property
def uid(self) -> int: ...
@property
def options(self) -> Options: ... # type: ignore[override]
class ProcessGroupUCC(Backend):
def __init__(
self,
store: Store,
rank: int,
size: int,
timeout: timedelta,
) -> None: ...
class ProcessGroupMPI(Backend):
def __init__(
self,
rank: int,
size: int,
pgComm: int,
) -> None: ...
@staticmethod
def create(ranks: list[int]) -> ProcessGroupMPI: ...
def _compute_bucket_assignment_by_size(
tensors: list[Tensor],
bucket_size_limits: list[int],
expect_sparse_gradient: list[bool] = ...,
tensor_indices: list[int] = ...,
) -> tuple[list[list[int]], list[int]]: ...
def _broadcast_coalesced(
process_group: ProcessGroup,
tensors: list[Tensor],
buffer_size: int,
src: int,
): ...
def _test_python_store(store: Store): ...
def _verify_params_across_processes(
process_group: ProcessGroup,
params: list[Tensor],
logger: Logger | None,
): ...
def _make_nccl_premul_sum(factor: float | list[Tensor]) -> ReduceOp: ...
def _register_process_group(
group_name: str,
process_group: ProcessGroup,
) -> None: ...
def _resolve_process_group(group_name: str) -> ProcessGroup: ...
def _register_work(tensor: torch.Tensor, work: Work) -> ProcessGroup: ...
def _get_work_registry_size() -> int: ...
def _set_allow_inflight_collective_as_graph_input(
value: bool,
) -> None: ...
def _allow_inflight_collective_as_graph_input() -> bool: ...
def _unregister_all_process_groups() -> None: ...
def _unregister_process_group(group_name: str) -> None: ...
class _SymmetricMemory:
@staticmethod
def set_group_info(
group_name: str,
rank: int,
world_size: int,
store: Store,
) -> None: ...
@staticmethod
def empty_strided_p2p(
size: torch.types._size,
stride: torch.types._size,
dtype: torch.dtype,
device: torch.device,
group_name: str | None = None,
alloc_id: int | None = None,
) -> torch.Tensor: ...
@property
def rank(self) -> int: ...
@property
def world_size(self) -> int: ...
@staticmethod
def rendezvous(
tensor: torch.Tensor, group_name: str | None = None
) -> _SymmetricMemory: ...
def get_buffer(
self,
rank: int,
sizes: torch.types._size,
dtype: torch.dtype,
storage_offset: int | None = 0,
) -> torch.Tensor: ...
def barrier(self, channel: int = 0) -> None: ...
def put_signal(self, dst_rank: int, channel: int = 0) -> None: ...
def wait_signal(self, src_rank: int, channel: int = 0) -> None: ...
@staticmethod
def memset32(
tensor: torch.Tensor, offset: int, val: int, count: int
) -> torch.Tensor: ...
@staticmethod
def stream_write_value32(
tensor: torch.Tensor, offset: int, val: int
) -> torch.Tensor: ...
class ProcessGroupXCCL(Backend):
def __init__(
self,
store: Store,
rank: int,
size: int,
): ...
|