1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
# mypy: allow-untyped-defs
from enum import Enum
from torch import Tensor
# Defined in torch/csrc/functorch/init.cpp
def _set_dynamic_layer_keys_included(included: bool) -> None: ...
def get_unwrapped(tensor: Tensor) -> Tensor: ...
def is_batchedtensor(tensor: Tensor) -> bool: ...
def is_functionaltensor(tensor: Tensor) -> bool: ...
def is_functorch_wrapped_tensor(tensor: Tensor) -> bool: ...
def is_gradtrackingtensor(tensor: Tensor) -> bool: ...
def is_legacy_batchedtensor(tensor: Tensor) -> bool: ...
def maybe_get_bdim(tensor: Tensor) -> int: ...
def maybe_get_level(tensor: Tensor) -> int: ...
def maybe_current_level() -> int | None: ...
def unwrap_if_dead(tensor: Tensor) -> Tensor: ...
def _unwrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
def _wrap_for_grad(tensor: Tensor, level: int) -> Tensor: ...
def _unwrap_batched(tensor: Tensor, level: int) -> tuple[Tensor, int | None]: ...
def current_level() -> int: ...
def count_jvp_interpreters() -> int: ...
def _add_batch_dim(tensor: Tensor, bdim: int, level: int) -> Tensor: ...
def set_single_level_autograd_function_allowed(allowed: bool) -> None: ...
def get_single_level_autograd_function_allowed() -> bool: ...
def _unwrap_functional_tensor(tensor: Tensor, reapply_views: bool) -> Tensor: ...
def _wrap_functional_tensor(tensor: Tensor, level: int) -> Tensor: ...
def _vmap_increment_nesting(batch_size: int, randomness: str) -> int: ...
def _vmap_decrement_nesting() -> int: ...
def _grad_increment_nesting() -> int: ...
def _grad_decrement_nesting() -> int: ...
def _jvp_increment_nesting() -> int: ...
def _jvp_decrement_nesting() -> int: ...
# Defined in aten/src/ATen/functorch/Interpreter.h
class TransformType(Enum):
Torch: TransformType = ...
Vmap: TransformType = ...
Grad: TransformType = ...
Jvp: TransformType = ...
Functionalize: TransformType = ...
class RandomnessType(Enum):
Error: TransformType = ...
Same: TransformType = ...
Different: TransformType = ...
class CInterpreter:
def key(self) -> TransformType: ...
def level(self) -> int: ...
class CGradInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def lift(self, Tensor) -> Tensor: ...
def prevGradMode(self) -> bool: ...
class CJvpInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def lift(self, Tensor) -> Tensor: ...
def prevFwdGradMode(self) -> bool: ...
class CFunctionalizeInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def key(self) -> TransformType: ...
def level(self) -> int: ...
def functionalizeAddBackViews(self) -> bool: ...
class CVmapInterpreterPtr:
def __init__(self, interpreter: CInterpreter) -> None: ...
def key(self) -> TransformType: ...
def level(self) -> int: ...
def batchSize(self) -> int: ...
def randomness(self) -> RandomnessType: ...
class DynamicLayer: ...
def get_dynamic_layer_stack_depth() -> int: ...
def get_interpreter_stack() -> list[CInterpreter]: ...
def peek_interpreter_stack() -> CInterpreter: ...
def pop_dynamic_layer_stack() -> DynamicLayer: ...
def pop_dynamic_layer_stack_and_undo_to_depth(int) -> None: ...
def push_dynamic_layer_stack(dl: DynamicLayer) -> int: ...
|