File: __init__.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (553 lines) | stat: -rw-r--r-- 19,186 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# mypy: allow-untyped-defs
import inspect
from collections import defaultdict
from functools import lru_cache, partial, wraps
from itertools import chain
from typing import (
    Callable,
    Dict,
    FrozenSet,
    List,
    Optional,
    Sequence,
    Set,
    TYPE_CHECKING,
    TypeVar,
    Union,
)
from typing_extensions import ParamSpec


if TYPE_CHECKING:
    from torch.export.decomp_utils import CustomDecompTable

import torch
import torch.library
from torch._ops import HigherOrderOperator, OperatorBase, OpOverload, OpOverloadPacket
from torch._prims_common import CustomOutParamAnnotation
from torch._subclasses.functional_tensor import FunctionalTensor
from torch.utils import _pytree as pytree


__all__ = [
    "decomposition_table",
    "pre_autograd_decomposition_table",
    "meta_table",
    "register_decomposition",
    "get_decompositions",
    "core_aten_decompositions",
    "_should_decompose_because_unsafe_op",
]

_T = TypeVar("_T")
_P = ParamSpec("_P")

# TODO: relax key type here; torch registrations should be possible to; but
# right now this type is accurate
global_decomposition_table: Dict[
    str, Dict[torch._ops.OperatorBase, Callable]
] = defaultdict(dict)

decomposition_table = global_decomposition_table["post_autograd"]
pre_autograd_decomposition_table = global_decomposition_table["pre_autograd"]
meta_table = global_decomposition_table["meta"]


def _should_decompose_because_unsafe_op(op: torch._ops.OperatorBase) -> bool:
    """
    Returns True if the op must always decompose in export/compile tracing system

    In export, we always decompose certain CIA ops that are tagged with
    maybe_aliasing_or_mutating because we statically need to know if the op is
    mutating or not. But these CIA ops could have different behaviour in runtime.

    native_batch_norm is a prim op which has a wrong schema and it needs to be replaced
    with correct schema. But until then, we will force decompose it via this tag.
    """
    if not isinstance(op, torch._ops.OpOverload):
        return False
    if torch.Tag.maybe_aliasing_or_mutating in op.tags:
        return True
    return op == torch.ops.aten.native_batch_norm.default


def _add_op_to_registry(registry, op, fn):
    """
    This is an internal API for adding an op to the decomposition table.

    If op is OpOverload, it will be added to the registry directly.
    If op is OpOverloadPacket, all the valid op_overloads in the packet will be added to the registry.
    """
    overloads: List[Union[torch._ops.OperatorBase]] = []
    if isinstance(op, HigherOrderOperator):
        # There's no concept of overloads for HigherOrderOperator
        registry[op] = fn
        return
    elif isinstance(op, OpOverload):
        overloads.append(op)
    else:
        assert isinstance(op, OpOverloadPacket)
        for ol in op.overloads():
            overloads.append(getattr(op, ol))

    for op_overload in overloads:
        if op_overload in registry:
            raise RuntimeError(f"duplicate registrations for {op_overload}")
        # TorchScript dumps a bunch of extra nonsense overloads
        # which don't have corresponding dispatcher entries, we need
        # to filter those out, e.g aten.add.float_int
        if torch._C._dispatch_has_kernel(op_overload.name()):
            registry[op_overload] = fn


def _convert_out_params(f):
    out_annotation = f.__annotations__.get("out")

    # If there are no out params, do not wrap the function.
    if not out_annotation:
        return f

    # Hack to detect when out is a Tuple. There seems to be no pretty way of doing this
    if getattr(out_annotation, "__origin__", None) is tuple:
        sig = inspect.signature(f)
        out_names = sig.return_annotation._fields
        # If out is a tuple, we need to register a function that unpacks all the out
        # elements as this is what native_functions.yaml expects

        @wraps(f)
        def _fn(*args, **kwargs):
            out_kwargs = tuple(kwargs.pop(o, None) for o in out_names)
            # Either all of the out kwargs are set or none of them
            is_none = out_kwargs[0] is None
            assert all((o is None) == is_none for o in out_kwargs)
            return f(*args, **kwargs, out=None if is_none else out_kwargs)

        out_params = [
            inspect.Parameter(
                o,
                kind=inspect.Parameter.KEYWORD_ONLY,
                default=None,
                annotation=t,
            )
            for o, t in zip(out_names, out_annotation.__args__)
        ]
        # Drop the out parameter and concatenate the new kwargs in the signature
        params = chain((v for k, v in sig.parameters.items() if k != "out"), out_params)
        _fn.__signature__ = inspect.Signature(  # type: ignore[attr-defined]
            parameters=params, return_annotation=sig.return_annotation  # type: ignore[arg-type]
        )
        # Drop the out parameter and concatenate the new kwargs in the annotations
        _fn.__annotations__ = {k: v for k, v in f.__annotations__.items() if k != "out"}
        for o in out_params:
            _fn.__annotations__[o.name] = o.annotation

        # Propagate that this function is wrapped by `out_wrapper`
        _fn._torch_decompositions_out_wrapper = f._torch_decompositions_out_wrapper  # type: ignore[attr-defined]

        return _fn

    # Alternatively, there may be a single tensor out parameter with a name
    # other than "out". This will need special treatment and is indicated by an
    # annotation, which we will remove here so it is not exposed after wrapping.
    custom_out_param_name = f.__annotations__.pop(CustomOutParamAnnotation, None)
    if custom_out_param_name:

        @wraps(f)
        def _fn(*args, **kwargs):
            out_kwarg = kwargs.pop(custom_out_param_name, None)
            return f(*args, **kwargs, out=out_kwarg)

        out_param = inspect.Parameter(
            custom_out_param_name,
            kind=inspect.Parameter.KEYWORD_ONLY,
            default=None,
            annotation=out_annotation,
        )

        # Drop the out parameter and concatenate the new kwarg in the signature
        sig = inspect.signature(f)
        params = chain(
            (v for k, v in sig.parameters.items() if k != "out"), (out_param,)
        )
        _fn.__signature__ = inspect.Signature(  # type: ignore[attr-defined]
            parameters=params, return_annotation=sig.return_annotation  # type: ignore[arg-type]
        )

        # Drop the out parameter and concatenate the new kwargs in the annotations
        _fn.__annotations__ = {k: v for k, v in f.__annotations__.items() if k != "out"}
        _fn.__annotations__[out_param.name] = out_param.annotation

        return _fn

    return f


def register_decomposition(
    aten_op, registry=None, *, type="post_autograd", unsafe=False
) -> Callable[[Callable[_P, _T]], Callable[_P, _T]]:
    """
    A decorator to register a function as a decomposition to the Python
    decomposition table.  Use it like this::

        @register_decomposition(torch.ops.aten.clamp_min)
        def clamp_min(x):
            return torch.clamp(self, min=min)

    If you are writing a new decomposition, consider contributing it
    directly to PyTorch in torch._decomp.decompositions.

    This API is experimental; we are almost certainly going to extend
    the API when we make decompositions eligible for use in transforms (e.g.,
    autograd) and not just backend tracing, where we then need to know if a
    decomposition can be used to simulate a transform.

    By default, we also will register it to the Meta key of dispatcher,
    and replace the c++ Meta implementation if there is already one.

    unsafe kwarg is for reuse of this function for registering non-function
    things
    """

    assert type in {"post_autograd", "pre_autograd", "meta"}

    def decomposition_decorator(fn: Callable[_P, _T]) -> Callable[_P, _T]:
        orig_fn = fn
        if not unsafe:
            fn = _convert_out_params(fn)

        nonlocal registry
        if registry is None:
            registry = global_decomposition_table[type]

        def register(op):
            _add_op_to_registry(registry, op, fn)

        # To handle allowing multiple aten_ops at once
        pytree.tree_map_(register, aten_op)
        return orig_fn

    return decomposition_decorator


def get_decompositions(
    aten_ops: Sequence[Union[torch._ops.OperatorBase, OpOverloadPacket]],
    type: str = "post_autograd",
) -> Dict[torch._ops.OperatorBase, Callable]:
    """
    Retrieve a dictionary of decompositions corresponding to the list of
    operator overloads and overload packets passed as input.  Overload
    packets will include all decomposed overloads in the packet.  If there is
    no decomposition for a requested operator, it is silently ignored.

    This API is experimental; we are almost certainly going to give an alternate,
    more recommended formulation, where a user provides the set of operators
    they know how to implement, and we provide decompositions for everything
    not in this set.
    """
    assert type in {"post_autograd", "pre_autograd", "meta"}

    registry = global_decomposition_table[type]
    packets_to_overloads = defaultdict(list)
    for opo in registry:
        if isinstance(opo, (OpOverload, OpOverloadPacket)):
            packets_to_overloads[opo.overloadpacket].append(opo)
    decompositions: Dict[torch._ops.OperatorBase, Callable] = {}
    for op in aten_ops:
        if isinstance(op, OpOverloadPacket) and op in packets_to_overloads:
            for op_overload in packets_to_overloads[op]:
                decompositions[op_overload] = registry[op_overload]
        elif isinstance(op, (torch._ops.OperatorBase)) and op in registry:
            decompositions[op] = registry[op]
    return decompositions


def remove_decompositions(
    decompositions: Dict[torch._ops.OperatorBase, Callable],
    aten_ops: Sequence[Union[OpOverload, OpOverloadPacket]],
) -> None:
    """
    Given a dictionary of decompositions obtained from get_decompositions(), removes
    operators associated with a list of operator overloads and overload packets passed
    as input. If the decomposition dictionary does not contain a decomposition that is
    specified to be removed, it is silently ignored.
    """
    for op in aten_ops:
        if isinstance(op, OpOverloadPacket):
            for overload_name in op.overloads():
                opo = getattr(op, overload_name)
                decompositions.pop(opo, None)
        elif isinstance(op, OpOverload):
            decompositions.pop(op, None)


# populate the table
import torch._decomp.decompositions
import torch._refs


def core_aten_decompositions() -> "CustomDecompTable":
    from torch.export.exported_program import default_decompositions

    return default_decompositions()


# See NOTE [Core ATen Ops]
#
# list was copied from torch/_inductor/decomposition.py
# excluding decompositions that results in prim ops
# Resulting opset of decomposition is core aten ops
def _core_aten_decompositions_post_autograd() -> (
    Dict[torch._ops.OperatorBase, Callable]
):
    aten = torch.ops.aten
    return get_decompositions(
        [
            aten.addcdiv,
            aten.addcdiv_,
            aten.addcmul,
            aten.addcmul_,
            aten.addr,
            aten.affine_grid_generator,
            aten.alias_copy,
            aten.all,
            aten.aminmax,
            aten.arange.default,
            aten.arange.start,
            aten.avg_pool2d_backward,
            aten.baddbmm,
            aten.binary_cross_entropy,
            aten.binary_cross_entropy_backward,
            aten.binary_cross_entropy_with_logits,
            aten.block_diag,
            aten.bernoulli.p,
            aten.bernoulli.default,
            aten.celu,
            aten.celu_,
            aten.channel_shuffle,
            aten.clamp_max,
            aten.clamp_min,
            aten.col2im,
            aten.count_nonzero,
            aten.linalg_cross,
            aten.cudnn_batch_norm,
            aten.cudnn_batch_norm_backward,
            aten.miopen_batch_norm_backward,
            aten.deg2rad,
            aten.deg2rad_,
            aten.detach,
            aten.diag_embed,
            aten.diagonal_backward,
            aten.diagonal_copy,
            aten.dot,
            aten.vdot,
            aten.elu,
            aten.elu_,
            aten.elu_backward,
            aten._embedding_bag,
            aten.embedding_dense_backward,
            aten.empty_like,
            aten._euclidean_dist.default,
            aten.expand_as,
            aten.expand_copy,
            aten.eye,
            aten.fill,
            aten.fill_,
            aten.floor_divide,
            aten.frac,
            aten.frac_,
            aten._fused_moving_avg_obs_fq_helper,
            aten.gelu_,
            aten.gelu_backward,
            aten.glu,
            aten.glu_backward,
            aten.hardshrink,
            aten.hardsigmoid,
            aten.hardsigmoid_,
            aten.hardsigmoid_backward,
            aten.hardswish,
            aten.hardswish_,
            aten.hardswish_backward,
            aten.hardtanh_,
            aten.hardtanh_backward,
            aten.heaviside,
            aten.heaviside_,
            aten.huber_loss,
            aten.huber_loss_backward,
            aten.im2col,
            aten.index_add.out,
            aten.index_add.default,
            aten.index_add_,
            aten.index_copy.out,
            aten.index_copy.default,
            aten.index_copy_,
            aten.index_fill.int_Scalar,
            aten.index_fill.int_Tensor,
            aten.index_fill.int_Scalar_out,
            aten.index_fill.int_Tensor_out,
            aten.index_fill_,
            aten.isin,
            aten.isneginf,
            aten.isposinf,
            aten.l1_loss,
            aten._lazy_clone,
            aten._test_parallel_materialize,
            aten.leaky_relu_,
            aten.leaky_relu_backward,
            aten.lerp,
            aten.lerp_,
            aten.linspace,
            aten.logaddexp,
            aten.logaddexp2,
            aten.logit,
            aten.logit_,
            aten.logit_backward,
            aten.log_sigmoid_backward,
            aten.log_sigmoid_forward,
            aten._log_softmax_backward_data,
            aten.logspace,
            aten.logsumexp.default,
            aten.masked_fill,
            aten.masked_fill_,
            aten.max_unpool2d,
            aten.max_unpool3d,
            aten.mish,
            aten.mish_,
            aten.mse_loss,
            aten.mse_loss_backward,
            aten.multi_margin_loss,
            aten.multilabel_margin_loss_forward,
            aten.mv,
            aten.mvlgamma,
            aten.mvlgamma_,
            aten.nansum,
            aten.nan_to_num,
            aten.nan_to_num_,
            aten.narrow,
            aten.native_batch_norm_backward,
            aten.native_dropout_backward,
            aten.native_group_norm_backward,
            aten.native_layer_norm_backward,
            aten.new_empty,
            aten.new_full,
            aten.new_ones,
            aten.new_zeros,
            aten.nll_loss2d_forward,
            aten.nll_loss2d_backward,
            aten.nll_loss_backward,
            aten.nll_loss_forward,
            aten.norm.ScalarOpt_dtype,
            aten.norm.Scalar,
            aten.norm.ScalarOpt_dim_dtype,
            aten.norm.ScalarOpt_dim,
            aten.norm.dtype_out,
            aten.norm.out,
            aten.norm.names_dtype_out,
            aten.norm.names_out,
            aten.norm.ScalarOpt_dtype_out,
            aten.norm.Scalar_out,
            aten.ones,
            aten.ones_like,
            aten.pixel_shuffle,
            aten.pixel_unshuffle,
            aten._prelu_kernel,
            aten._prelu_kernel_backward,
            aten._reshape_alias,
            aten.rad2deg,
            aten.rad2deg_,
            aten.reflection_pad1d,
            aten.reflection_pad1d_backward,
            aten.reflection_pad2d,
            aten.reflection_pad2d_backward,
            aten.reflection_pad3d,
            aten.reflection_pad3d_backward,
            aten.replication_pad1d,
            aten.replication_pad2d,
            aten.replication_pad3d,
            aten.renorm,
            aten.renorm_,
            aten.replication_pad2d,
            aten.resize_as,
            aten.roll,
            aten.rot90,
            aten.rrelu_with_noise,
            aten.rrelu_with_noise_,
            aten.rsub,
            aten._safe_softmax,
            aten._scaled_dot_product_flash_attention_for_cpu.default,
            aten.select_backward,
            aten.select_scatter,
            aten.sgn,
            aten.sgn_,
            aten.sigmoid_backward,
            aten.silu,
            aten.silu_,
            aten.silu_backward.grad_input,
            aten.sinc,
            aten.sinc_,
            aten.slice_backward,
            aten.smooth_l1_loss,
            aten.smooth_l1_loss_backward,
            aten.soft_margin_loss,
            aten.soft_margin_loss_backward,
            aten._softmax_backward_data,
            aten.softplus,
            aten.softplus_backward,
            aten.softshrink,
            aten.special_entr,
            aten.special_log_ndtr,
            aten.special_xlog1py,
            aten.split.Tensor,
            aten.split_with_sizes_copy,
            aten.squeeze_copy,
            aten.squeeze.default,
            aten.squeeze.dim,
            aten.std.correction,
            aten.std.out,
            aten.std.correction_out,
            aten.std.names_out,
            aten.std.correction_names_out,
            aten.std_mean.correction,
            aten.std_mean.correction_out,
            aten.stack,
            aten.sum.default,
            aten.sum.out,
            aten.t,
            aten.t_copy,
            aten.take,
            aten.tanh_backward,
            aten.threshold,
            aten.threshold_,
            aten.threshold_backward,
            aten.trace,
            aten.transpose.int,
            aten.transpose_copy,
            aten.tril,
            aten.tril_,
            aten.triu,
            aten.triu_,
            aten.unbind,
            aten.unfold_backward,
            aten.unfold_copy,
            aten._unsafe_index,
            aten._unsafe_index_put,
            aten._unsafe_masked_index,
            aten._unsafe_masked_index_put_accumulate,
            aten.unsafe_split.Tensor,
            aten.unsafe_split_with_sizes,
            aten.unsqueeze_copy,
            aten._unsafe_view,
            aten.upsample_linear1d,
            aten.upsample_bilinear2d.out,
            aten.upsample_trilinear3d.out,
            aten.upsample_nearest2d_backward,
            aten.view_as_complex,
            aten.xlogy,
            aten.xlogy_,
            aten.zero,
            aten.zero_,
            aten.zeros,
            aten.zeros_like,
            aten._chunk_cat,
            aten._weight_norm_interface,
        ]
    )