File: torchxla.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (47 lines) | stat: -rw-r--r-- 1,255 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# mypy: ignore-errors

import logging

from functorch.compile import make_boxed_func

from ..backends.common import aot_autograd
from .registry import register_backend, register_experimental_backend


log = logging.getLogger(__name__)


@register_experimental_backend
def openxla_eval(model, fake_tensor_inputs):
    return xla_backend_helper(model, fake_tensor_inputs, boxed=False)


def openxla_eval_boxed(model, fake_tensor_inputs):
    return xla_backend_helper(model, fake_tensor_inputs, boxed=True)


def xla_backend_helper(model, fake_tensor_inputs, boxed=False):
    try:
        import torch_xla.core.dynamo_bridge as bridge
    except ImportError as e:
        raise ImportError(
            "Please follow the instruction in https://github.com/pytorch/xla#pytorchxla to install torch_xla"
        ) from e

    compiled_graph = None

    def fwd(*args):
        nonlocal model
        nonlocal compiled_graph
        if compiled_graph is None:
            compiled_graph = bridge.extract_compiled_graph(model, args)
            del model
        return compiled_graph(*args)

    return make_boxed_func(fwd) if boxed else fwd


openxla = aot_autograd(
    fw_compiler=openxla_eval_boxed,
)
register_backend(name="openxla", compiler_fn=openxla)