File: bytecode_transformation.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1547 lines) | stat: -rw-r--r-- 56,601 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
# mypy: allow-untyped-defs
import copy
import dataclasses
import dis
import itertools
import sys
import types
from typing import Any, Callable, cast, Dict, Iterator, List, Optional, Tuple, Union

from .bytecode_analysis import (
    get_indexof,
    propagate_line_nums,
    remove_extra_line_nums,
    stacksize_analysis,
)
from .utils import is_safe_constant


@dataclasses.dataclass
class InstructionExnTabEntry:
    start: "Instruction"
    end: "Instruction"
    target: "Instruction"
    depth: int
    lasti: bool

    def __repr__(self) -> str:
        return (
            f"InstructionExnTabEntry(start={self.start.short_inst_repr()}, "
            f"end={self.end.short_inst_repr()}, "
            f"target={self.target.short_inst_repr()}, "
            f"depth={self.depth}, lasti={self.lasti})"
        )

    def __eq__(self, o) -> bool:
        return (
            self.start is o.start
            and self.end is o.end
            and self.target is o.target
            and self.depth == o.depth
            and self.lasti == o.lasti
        )


@dataclasses.dataclass
class Instruction:
    """A mutable version of dis.Instruction"""

    opcode: int
    opname: str
    arg: Optional[int]
    argval: Any
    offset: Optional[int] = None
    starts_line: Optional[int] = None
    is_jump_target: bool = False
    positions: Optional["dis.Positions"] = None
    # extra fields to make modification easier:
    target: Optional["Instruction"] = None
    exn_tab_entry: Optional[InstructionExnTabEntry] = None

    def __hash__(self) -> int:
        return id(self)

    def __eq__(self, other) -> bool:
        return id(self) == id(other)

    def short_inst_repr(self) -> str:
        return f"Instruction(opname={self.opname}, offset={self.offset})"


def convert_instruction(i: dis.Instruction) -> Instruction:
    if sys.version_info >= (3, 13):
        starts_line = i.line_number
    else:
        starts_line = i.starts_line
    return Instruction(
        i.opcode,
        i.opname,
        i.arg,
        i.argval,
        i.offset,
        starts_line,
        i.is_jump_target,
        getattr(i, "positions", None),
    )


class _NotProvided:
    def __repr__(self) -> str:
        return "_NotProvided"


def inst_has_op_bits(name):
    return (sys.version_info >= (3, 11) and name == "LOAD_GLOBAL") or (
        sys.version_info >= (3, 12) and name in ("LOAD_ATTR", "LOAD_SUPER_ATTR")
    )


def create_instruction(
    name, *, arg=None, argval=_NotProvided, target=None
) -> Instruction:
    """
    At most one of `arg`, `argval`, and `target` can be not None/_NotProvided.
    This is to prevent ambiguity, e.g. does
        create_instruction("LOAD_CONST", 5)
    mean load the constant at co_consts[5], or load the constant 5?

    If `arg` is not provided, it will be computed during assembly from
    `argval` or `target`.

    Bits in the args of instructions LOAD_GLOBAL, LOAD_ATTR (3.12+), and LOAD_SUPER_ATTR
    modify the behavior of the instruction. In this case, we allow both `arg`
    and `argval` to be set. The value of `arg` here is expected to be the value of
    the op bits and the true value of `arg` will be computed during assembly.
    If `arg` is not set, the bits are assumed to be 0.
    """

    # allow for instructions with op bits to have both arg and argval specified
    if inst_has_op_bits(name):
        if target is not None:
            raise RuntimeError("target cannot be specified for instruction")
        if arg is None:
            arg = 0
    else:
        cnt = (arg is not None) + (argval is not _NotProvided) + (target is not None)
        if cnt > 1:
            raise RuntimeError(
                "only one of arg, argval, and target can be not None/_NotProvided"
            )
    if arg is not None and not isinstance(arg, int):
        raise RuntimeError("instruction arg must be int or None")
    return Instruction(
        opcode=dis.opmap[name], opname=name, arg=arg, argval=argval, target=target
    )


# Python 3.11 remaps
def create_jump_absolute(target) -> Instruction:
    inst = "JUMP_FORWARD" if sys.version_info >= (3, 11) else "JUMP_ABSOLUTE"
    return create_instruction(inst, target=target)


def create_load_const(val, checked=True) -> Instruction:
    """
    In general we should only create `LOAD_CONST` for immutable objects, but
    sometimes it's convenient _and safe_ for Dynamo create `LOAD_CONST` for
    mutable objects. In such cases, use `checked=False`.
    """
    if checked:
        assert is_safe_constant(val), f"unsafe constant {val}"
    return create_instruction("LOAD_CONST", argval=val)


def create_dup_top() -> Instruction:
    if sys.version_info >= (3, 11):
        return create_instruction("COPY", arg=1)
    return create_instruction("DUP_TOP")


def create_rot_n(n) -> List[Instruction]:
    """
    Returns a "simple" sequence of instructions that rotates TOS to the n-th
    position in the stack. For Python < 3.11, returns a single ROT_*
    instruction. If no such instruction exists, an error is raised and the
    caller is expected to generate an equivalent sequence of instructions.
    For Python >= 3.11, any rotation can be expressed as a simple sequence of
    swaps.
    """
    if n <= 1:
        # don't rotate
        return []

    if sys.version_info >= (3, 11):
        # rotate can be expressed as a sequence of swap operations
        # e.g. rotate 3 is equivalent to swap 3, swap 2
        return [create_instruction("SWAP", arg=i) for i in range(n, 1, -1)]

    # ensure desired rotate function exists
    if sys.version_info < (3, 8) and n >= 4:
        raise AttributeError(f"rotate {n} not supported for Python < 3.8")
    if sys.version_info < (3, 10) and n >= 5:
        raise AttributeError(f"rotate {n} not supported for Python < 3.10")

    if n <= 4:
        return [create_instruction("ROT_" + ["TWO", "THREE", "FOUR"][n - 2])]
    return [create_instruction("ROT_N", arg=n)]


def add_push_null(
    inst_or_insts: Union[Instruction, List[Instruction]],
) -> List[Instruction]:
    """
    Appends or prepends a PUSH_NULL instruction to `inst_or_insts`,
    depending on Python version. Used when you know that
    `inst_or_insts` generates a callable that will be called.

    NOTE: Assumes `inst_or_insts` is a single instruction or sequence of
    instructions that pushes exactly 1 object to the stack that is to
    be called. It is important that you include ALL instructions that
    construct the callable - not just the first instruction/a prefix.

    Will attempt to use the NULL push bit for instructions
    with such bits (LOAD_GLOBAL 3.11+, LOAD_ATTR 3.12+, LOAD_SUPER_ATTR).
    In this case, instructions WILL be modified.
    """
    if isinstance(inst_or_insts, Instruction):
        insts = [inst_or_insts]
    else:
        insts = inst_or_insts

    def inst_has_bit_set(idx):
        assert insts[idx].arg is not None
        return insts[idx].arg & 1 == 1

    def set_inst_bit(idx):
        assert insts[idx].arg is not None
        insts[idx].arg |= 1

    if sys.version_info >= (3, 13):
        # In 3.13, NULL follows the callable
        if inst_has_op_bits(insts[-1].opname) and not inst_has_bit_set(-1):
            # All insts with op bits have the push_null bit as the last one.
            # Only set the bit if it hasn't been set - otherwise, we need
            # to add another PUSH_NULL.
            set_inst_bit(-1)
        else:
            insts = insts + [create_instruction("PUSH_NULL")]
    elif sys.version_info >= (3, 12):
        # LOAD_ATTR/LOAD_SUPER_ATTR at the end
        # We assume that `insts` will only load 1 object, so
        # LOAD_GLOBAL at the end doesn't need to be checked
        if inst_has_op_bits(insts[-1].opname) and not inst_has_bit_set(-1):
            set_inst_bit(-1)
        elif insts[0].opname == "LOAD_GLOBAL" and not inst_has_bit_set(0):
            set_inst_bit(0)
        else:
            insts = [create_instruction("PUSH_NULL")] + insts
    elif sys.version_info >= (3, 11):
        # 3.11 introduced NULL preceding callable
        if inst_has_op_bits(insts[0].opname) and not inst_has_bit_set(0):
            set_inst_bit(0)
        else:
            insts = [create_instruction("PUSH_NULL")] + insts
    return insts


def add_push_null_call_function_ex(
    inst_or_insts: Union[Instruction, List[Instruction]],
) -> List[Instruction]:
    """Like add_push_null, but the low bit of LOAD_ATTR/LOAD_SUPER_ATTR
    is not set, due to an expected CALL_FUNCTION_EX instruction.
    """
    if isinstance(inst_or_insts, Instruction):
        insts = [inst_or_insts]
    else:
        insts = inst_or_insts

    if sys.version_info < (3, 11):
        return insts

    idx = -1 if sys.version_info >= (3, 13) else 0
    if insts[idx].opname == "LOAD_GLOBAL":
        assert insts[idx].arg is not None
        if insts[idx].arg & 1 == 0:  # type: ignore[operator]
            insts[idx].arg |= 1  # type: ignore[operator]
            return insts

    if sys.version_info >= (3, 13):
        insts = insts + [create_instruction("PUSH_NULL")]
    else:
        insts = [create_instruction("PUSH_NULL")] + insts

    return insts


def create_call_function(nargs, push_null) -> List[Instruction]:
    """
    Creates a sequence of instructions that makes a function call.

    `push_null` is used in Python 3.11+ only. It is used in codegen when
    a function call is intended to be made with the NULL + fn convention,
    and we know that the NULL has not been pushed yet. We will push a
    NULL and rotate it to the correct position immediately before making
    the function call.

    `push_null` should be True if no NULL is pushed for the callable.
    Conversely, `push_null` should be False if a NULL was pushed for the callable.
    Prefer using `push_null=False` when possible since we will not need to rotate
    NULL to the right place, which is less efficient.

    Generally, you should codegen a function by using `add_push_null` then
    `create_call_function` with `push_null=False`.

    Example of when to set push_null False:

    insts = [
        create_instruction("LOAD_GLOBAL", argval="torch"),
        create_instruction("LOAD_ATTR", argval="nn"),
        create_instruction("LOAD_ATTR", argval="functional"),
        create_instruction("LOAD_ATTR", argval="relu"),
    ]
    insts = add_push_null(insts)
    insts.append(create_instruction("LOAD_FAST", argval="x"))
    insts.extend(create_call_function(1, False))

    Example of when to set push_null True:

    insts = [create_instruction("LOAD_FAST", x)]
    for should_wrap, wrapper_name in wrappers:
        if should_wrap:
            insts.extend([
                create_instruction("LOAD_GLOBAL", argval="wrapper1"),
                create_instruction("SWAP", arg=2),
                *create_call_function(1, True),
            )
    """
    if sys.version_info >= (3, 11):
        output = []
        if push_null:
            output.append(create_instruction("PUSH_NULL"))
            # 3.13 swapped NULL and callable
            rots = nargs + 1 if sys.version_info >= (3, 13) else nargs + 2
            output.extend(create_rot_n(rots))
        if sys.version_info < (3, 12):
            output.append(create_instruction("PRECALL", arg=nargs))
        output.append(create_instruction("CALL", arg=nargs))
        return output
    return [create_instruction("CALL_FUNCTION", arg=nargs)]


def create_call_method(nargs) -> List[Instruction]:
    if sys.version_info >= (3, 12):
        return [create_instruction("CALL", arg=nargs)]
    if sys.version_info >= (3, 11):
        return [
            create_instruction("PRECALL", arg=nargs),
            create_instruction("CALL", arg=nargs),
        ]
    return [create_instruction("CALL_METHOD", arg=nargs)]


def create_load_method(name) -> Instruction:
    if sys.version_info >= (3, 12):
        # in 3.12, create a LOAD_ATTR instruction with the low bit set
        return create_instruction("LOAD_ATTR", arg=1, argval=name)
    return create_instruction("LOAD_METHOD", argval=name)


def create_setup_with(target) -> Instruction:
    opname = "BEFORE_WITH" if sys.version_info >= (3, 11) else "SETUP_WITH"
    return create_instruction(opname, target=target)


def create_swap(n) -> List[Instruction]:
    if sys.version_info >= (3, 11):
        return [create_instruction("SWAP", arg=n)]
    # in Python < 3.11, SWAP is a macro that expands to multiple instructions
    if n == 1:
        return []
    """
    e.g. swap "a" and "b" in this stack:
    0 a 1 2 3 b
    0 a [1 2 3 b]
    0 a [1 2 3 b] [1 2 3 b]
    0 a [1 2 3 b] [1 2 3 b] -1
    0 a [1 2 3 b] b
    0 b a [1 2 3 b]
    0 b a [1 2 3 b] [1 2 3 b]
    0 b [1 2 3 b] a [1 2 3 b]
    0 b [1 2 3 b] a [1 2 3 b] -1
    0 b [1 2 3 a]
    0 b [1 2 3 a] [1 2 3 a]
    0 b [1 2 3 a] [1 2 3 a] reverse
    0 b [a 3 2 1] None
    0 b [a 3 2 1]
    0 b 1 2 3 a
    """
    return [
        create_instruction("BUILD_LIST", arg=n - 1),
        create_instruction("DUP_TOP"),
        create_instruction("LOAD_CONST", argval=-1),
        create_instruction("BINARY_SUBSCR"),
        create_instruction("ROT_THREE"),
        create_instruction("DUP_TOP"),
        create_instruction("ROT_THREE"),
        create_instruction("LOAD_CONST", argval=-1),
        create_instruction("STORE_SUBSCR"),
        create_instruction("DUP_TOP"),
        create_load_method("reverse"),
        *create_call_method(0),
        create_instruction("POP_TOP"),
        create_instruction("UNPACK_SEQUENCE", arg=n - 1),
    ]


def lnotab_writer(
    lineno: int, byteno: int = 0
) -> Tuple[List[int], Callable[[int, int], None]]:
    """
    Used to create typing.CodeType.co_lnotab
    See https://github.com/python/cpython/blob/main/Objects/lnotab_notes.txt
    This is the internal format of the line number table if Python < 3.10
    """
    assert sys.version_info < (3, 10)
    lnotab: List[int] = []

    def update(lineno_new, byteno_new):
        nonlocal byteno, lineno
        while byteno_new != byteno or lineno_new != lineno:
            byte_offset = max(0, min(byteno_new - byteno, 255))
            line_offset = max(-128, min(lineno_new - lineno, 127))
            assert byte_offset != 0 or line_offset != 0
            byteno += byte_offset
            lineno += line_offset
            lnotab.extend((byte_offset, line_offset & 0xFF))

    return lnotab, update


def linetable_310_writer(first_lineno):
    """
    Used to create typing.CodeType.co_linetable
    See https://github.com/python/cpython/blob/main/Objects/lnotab_notes.txt
    This is the internal format of the line number table for Python 3.10
    """
    assert sys.version_info >= (3, 10) and sys.version_info < (3, 11)
    linetable: List[int] = []
    lineno = first_lineno
    lineno_delta = 0
    byteno = 0

    def _update(byteno_delta, lineno_delta):
        while byteno_delta != 0 or lineno_delta != 0:
            byte_offset = max(0, min(byteno_delta, 254))
            line_offset = max(-127, min(lineno_delta, 127))
            assert byte_offset != 0 or line_offset != 0
            byteno_delta -= byte_offset
            lineno_delta -= line_offset
            linetable.extend((byte_offset, line_offset & 0xFF))

    def update(lineno_new, byteno_new):
        nonlocal lineno, lineno_delta, byteno
        byteno_delta = byteno_new - byteno
        byteno = byteno_new
        _update(byteno_delta, lineno_delta)
        lineno_delta = lineno_new - lineno
        lineno = lineno_new

    def end(total_bytes):
        _update(total_bytes - byteno, lineno_delta)

    return linetable, update, end


def encode_varint(n: int) -> List[int]:
    """
    6-bit chunk encoding of an unsigned integer
    See https://github.com/python/cpython/blob/3.11/Objects/locations.md
    """
    assert n >= 0
    b = [n & 63]
    n >>= 6
    while n > 0:
        b[-1] |= 64
        b.append(n & 63)
        n >>= 6
    return b


def linetable_311_writer(first_lineno: int):
    """
    Used to create typing.CodeType.co_linetable
    See https://github.com/python/cpython/blob/3.11/Objects/locations.md
    This is the internal format of the line number table for Python 3.11
    """
    assert sys.version_info >= (3, 11)
    linetable = []
    lineno = first_lineno

    def update(positions: "dis.Positions", inst_size):
        nonlocal lineno
        lineno_new = positions.lineno if positions else None

        def _update(delta, size):
            assert 0 < size <= 8
            # first byte - use 13 (no column info) is positions is
            # malformed, otherwise use 14 (long form)
            other_varints: Tuple[int, ...] = ()
            if (
                positions
                and positions.lineno is not None
                and positions.end_lineno is not None
                and positions.col_offset is not None
                and positions.end_col_offset is not None
            ):
                linetable.append(0b1_1110_000 + size - 1)
                # for whatever reason, column offset needs `+ 1`
                # https://github.com/python/cpython/blob/1931c2a438c50e6250725c84dff94fc760b9b951/Python/compile.c#L7603
                other_varints = (
                    positions.end_lineno - positions.lineno,
                    positions.col_offset + 1,
                    positions.end_col_offset + 1,
                )
            else:
                linetable.append(0b1_1101_000 + size - 1)
            # encode signed int
            if delta < 0:
                delta = ((-delta) << 1) | 1
            else:
                delta <<= 1
            # encode unsigned int
            linetable.extend(encode_varint(delta))
            for n in other_varints:
                linetable.extend(encode_varint(n))

        if lineno_new is None:
            lineno_delta = 0
        else:
            lineno_delta = lineno_new - lineno
            lineno = lineno_new
        while inst_size > 8:
            _update(lineno_delta, 8)
            inst_size -= 8
        _update(lineno_delta, inst_size)

    return linetable, update


@dataclasses.dataclass
class ExceptionTableEntry:
    start: int
    end: int
    target: int
    depth: int
    lasti: bool


def encode_exception_table_varint(n: int) -> List[int]:
    """
    Similar to `encode_varint`, but the 6-bit chunks are ordered in reverse.
    """
    assert n >= 0
    b = [n & 63]
    n >>= 6
    while n > 0:
        b.append(n & 63)
        n >>= 6
    b.reverse()
    for i in range(len(b) - 1):
        b[i] |= 64
    return b


def decode_exception_table_varint(bytes_iter: Iterator[int]) -> int:
    """
    Inverse of `encode_exception_table_varint`.
    """
    b = next(bytes_iter)
    val = b & 63
    while b & 64:
        val <<= 6
        b = next(bytes_iter)
        val |= b & 63
    return val


def check_exception_table(tab: List[ExceptionTableEntry]) -> None:
    """
    Verifies that a list of ExceptionTableEntries will make a well-formed
    jump table: entries are non-empty, sorted, and do not overlap.
    """
    for i in range(len(tab) - 1):
        assert (
            tab[i].start <= tab[i].end
            and tab[i].end < tab[i + 1].start
            and tab[i + 1].start <= tab[i + 1].end
        )


def parse_exception_table(exntab: bytes) -> List[ExceptionTableEntry]:
    """
    Parse the exception table according to
    https://github.com/python/cpython/blob/3.11/Objects/exception_handling_notes.txt
    """
    exntab_iter = iter(exntab)
    tab = []
    try:
        while True:
            start = decode_exception_table_varint(exntab_iter) * 2
            length = decode_exception_table_varint(exntab_iter) * 2
            end = start + length - 2
            target = decode_exception_table_varint(exntab_iter) * 2
            dl = decode_exception_table_varint(exntab_iter)
            depth = dl >> 1
            lasti = bool(dl & 1)
            tab.append(ExceptionTableEntry(start, end, target, depth, lasti))
    except StopIteration:
        check_exception_table(tab)
        return tab


def assemble_exception_table(tab: List[ExceptionTableEntry]) -> bytes:
    """
    Inverse of parse_exception_table - encodes list of exception
    table entries into bytes.
    """
    b = []
    for entry in tab:
        first_entry = encode_exception_table_varint(entry.start // 2)
        first_entry[0] |= 1 << 7
        b.extend(first_entry)
        length = entry.end - entry.start + 2
        b.extend(encode_exception_table_varint(length // 2))
        b.extend(encode_exception_table_varint(entry.target // 2))
        dl = (entry.depth << 1) + entry.lasti
        b.extend(encode_exception_table_varint(dl))
    return bytes(b)


def assemble(instructions: List[Instruction], firstlineno: int) -> Tuple[bytes, bytes]:
    """Do the opposite of dis.get_instructions()"""
    code: List[int] = []
    if sys.version_info >= (3, 11):
        lnotab, update_lineno = linetable_311_writer(firstlineno)
        num_ext = 0
        for i, inst in enumerate(instructions):
            if inst.opname == "EXTENDED_ARG":
                inst_size = 1
                num_ext += 1
                # copy positions from the actual instruction
                for j in (1, 2, 3):
                    if instructions[i + j].opname != "EXTENDED_ARG":
                        inst.positions = instructions[i + j].positions
                        break
            else:
                inst_size = instruction_size(inst) // 2 + num_ext
                num_ext = 0
            update_lineno(inst.positions, inst_size)
            num_ext = 0
            arg = inst.arg or 0
            code.extend((inst.opcode, arg & 0xFF))
            for _ in range(instruction_size(inst) // 2 - 1):
                code.extend((0, 0))
    else:
        if sys.version_info < (3, 10):
            lnotab, update_lineno = lnotab_writer(firstlineno)
        else:
            lnotab, update_lineno, end = linetable_310_writer(firstlineno)

        for inst in instructions:
            if inst.starts_line is not None:
                update_lineno(inst.starts_line, len(code))
            arg = inst.arg or 0
            code.extend((inst.opcode, arg & 0xFF))

        if sys.version_info >= (3, 10):
            end(len(code))

    return bytes(code), bytes(lnotab)


def _get_instruction_by_offset(offset_to_inst: Dict[int, Instruction], offset: int):
    """
    Get the instruction located at a given offset, accounting for EXTENDED_ARGs
    """
    for n in (0, 2, 4, 6):
        if offset_to_inst[offset + n].opcode != dis.EXTENDED_ARG:
            return offset_to_inst[offset + n]
    return None


def virtualize_jumps(instructions) -> None:
    """Replace jump targets with pointers to make editing easier"""
    jump_targets = {inst.offset: inst for inst in instructions}

    for inst in instructions:
        if inst.opcode in dis.hasjabs or inst.opcode in dis.hasjrel:
            inst.target = _get_instruction_by_offset(jump_targets, inst.argval)


_REL_JUMPS = set(dis.hasjrel)


def flip_jump_direction(instruction: Instruction) -> None:
    if sys.version_info < (3, 11):
        raise RuntimeError("Cannot flip jump direction in Python < 3.11")
    if "FORWARD" in instruction.opname:
        instruction.opname = instruction.opname.replace("FORWARD", "BACKWARD")
    elif "BACKWARD" in instruction.opname:
        instruction.opname = instruction.opname.replace("BACKWARD", "FORWARD")
    else:
        raise AttributeError("Instruction is not a forward or backward jump")
    instruction.opcode = dis.opmap[instruction.opname]
    assert instruction.opcode in _REL_JUMPS


def _get_instruction_front(instructions: List[Instruction], idx: int):
    """
    i.e. get the first EXTENDED_ARG instruction (if any) when targeting
    instructions[idx] with a jump.
    """
    target = instructions[idx]
    for offset in (1, 2, 3):
        if idx >= offset and instructions[idx - offset].opcode == dis.EXTENDED_ARG:
            target = instructions[idx - offset]
        else:
            break
    return target


def devirtualize_jumps(instructions):
    """Fill in args for virtualized jump target after instructions may have moved"""
    jumps = set(dis.hasjabs).union(set(dis.hasjrel))

    # check for negative jump args and fix them
    for inst in instructions:
        if inst.opcode in jumps:
            if inst.opcode not in dis.hasjabs:
                if inst.target.offset < inst.offset:
                    if sys.version_info < (3, 11):
                        raise RuntimeError("Got negative jump offset for Python < 3.11")
                    # forward jumps become backward
                    if "FORWARD" in inst.opname:
                        flip_jump_direction(inst)
                else:
                    # backward jumps become forward
                    if sys.version_info >= (3, 11) and "BACKWARD" in inst.opname:
                        flip_jump_direction(inst)

    # jump instruction size may have changed due to flips
    update_offsets(instructions)
    indexof = get_indexof(instructions)

    # compute jump instruction arg
    for inst in instructions:
        if inst.opcode in jumps:
            target = _get_instruction_front(instructions, indexof[inst.target])
            if inst.opcode in dis.hasjabs:
                if sys.version_info < (3, 10):
                    inst.arg = target.offset
                elif sys.version_info < (3, 11):
                    # `arg` is expected to be bytecode offset, whereas `offset` is byte offset.
                    # Divide since bytecode is 2 bytes large.
                    inst.arg = int(target.offset / 2)
                else:
                    raise RuntimeError("Python 3.11+ should not have absolute jumps")
            else:  # relative jump
                # byte offset between target and next instruction
                inst.arg = abs(
                    int(target.offset - inst.offset - instruction_size(inst))
                )
                if sys.version_info >= (3, 10):
                    # see bytecode size comment in the absolute jump case above
                    inst.arg //= 2
            inst.argval = target.offset
            inst.argrepr = f"to {target.offset}"


def virtualize_exception_table(exn_tab_bytes: bytes, instructions: List[Instruction]):
    """Replace exception table entries with pointers to make editing easier"""
    exn_tab = parse_exception_table(exn_tab_bytes)
    offset_to_inst = {cast(int, inst.offset): inst for inst in instructions}
    offsets = sorted(offset_to_inst.keys())
    end_offset_idx = 0
    exn_tab_iter = iter(exn_tab)
    try:

        def step():
            nonlocal end_offset_idx
            entry = next(exn_tab_iter)
            # find rightmost offset <= entry.end, since entry.end may not be
            # an actual instruction, e.g. if the end instruction is LOAD_GLOBAL,
            # which takes more than 2 bytes, then entry.end points to the end
            # of the LOAD_GLOBAL instruction, not the beginning.
            while (
                end_offset_idx < len(offsets) and offsets[end_offset_idx] <= entry.end
            ):
                end_offset_idx += 1
            assert end_offset_idx > 0
            end_offset = offsets[end_offset_idx - 1]
            inst_entry = InstructionExnTabEntry(
                _get_instruction_by_offset(offset_to_inst, entry.start),
                _get_instruction_by_offset(offset_to_inst, end_offset),
                _get_instruction_by_offset(offset_to_inst, entry.target),
                entry.depth,
                entry.lasti,
            )
            return entry, inst_entry

        entry, inst_entry = step()
        for inst in instructions:
            while inst.offset > entry.end:
                entry, inst_entry = step()
            if inst.offset >= entry.start:
                inst.exn_tab_entry = copy.copy(inst_entry)
    except StopIteration:
        pass


def compute_exception_table(
    instructions: List[Instruction],
) -> List[ExceptionTableEntry]:
    """Compute exception table in list format from instructions with exn_tab_entries"""
    exn_dict: Dict[Tuple[int, int], Tuple[int, int, bool]] = {}
    indexof = get_indexof(instructions)

    for inst in instructions:
        if inst.exn_tab_entry:
            # account for prefixed EXTENDED_ARGS
            start = _get_instruction_front(
                instructions, indexof[inst.exn_tab_entry.start]
            ).offset
            # point to the last 2 bytes of the end instruction
            end = (
                cast(int, inst.exn_tab_entry.end.offset)
                + instruction_size(inst.exn_tab_entry.end)
                - 2
            )
            target = _get_instruction_front(
                instructions, indexof[inst.exn_tab_entry.target]
            ).offset
            key = (start, end)
            val = (target, inst.exn_tab_entry.depth, inst.exn_tab_entry.lasti)
            if key in exn_dict:
                assert exn_dict[key] == val
            exn_dict[key] = val

    # Dynamo may construct nested exception table entries for convenience,
    # but Python expects exception table entries to not overlap.
    # NOTE: below, "keys" refer to old instruction entries' starts and ends,
    # and "entries" refer to the generated exception table entries.

    # Sort keys by increasing start, then decreasing end
    keys_sorted = sorted(exn_dict.keys(), key=lambda t: (t[0], -t[1]))
    # smallest byte that the next exception table entry can start at
    nexti = 0
    # stack of current nested keys
    key_stack: List[Tuple[int, int]] = []
    exn_tab: List[ExceptionTableEntry] = []

    def pop():
        """
        Pop the key_stack and append an exception table entry if possible.
        """
        nonlocal nexti
        if key_stack:
            key = key_stack.pop()
            if nexti <= key[1]:
                exn_tab.append(
                    ExceptionTableEntry(max(key[0], nexti), key[1], *exn_dict[key])
                )
                nexti = key[1] + 2

    for key in keys_sorted:
        # pop keys that are no longer nested over the current key
        while key_stack and key_stack[-1][1] < key[0]:
            pop()
        if key_stack:
            # create an entry covering to the current key, if possible
            assert key_stack[-1][0] <= key[0] <= key[1] <= key_stack[-1][1]
            left = max(nexti, key_stack[-1][0])
            if left < key[0]:
                exn_tab.append(
                    ExceptionTableEntry(left, key[0] - 2, *exn_dict[key_stack[-1]])
                )
            nexti = key[0]
        key_stack.append(key)
    while key_stack:
        pop()
    check_exception_table(exn_tab)
    return exn_tab


def check_inst_exn_tab_entries_nested(
    tab: List[InstructionExnTabEntry], indexof
) -> None:
    """
    Checks `tab` is a properly sorted list of nested InstructionExnTabEntry's,
    i.e. no entries partially overlap.
    "Properly sorted" means entries are sorted by increasing starts, then
    decreasing ends.
    """
    entry_stack: List[Tuple[int, int]] = []
    for entry in tab:
        key = (indexof[entry.start], indexof[entry.end])
        while entry_stack and entry_stack[-1][1] < key[0]:
            entry_stack.pop()
        if entry_stack:
            assert entry_stack[-1][0] <= key[0] <= key[1] <= entry_stack[-1][1]
        entry_stack.append(key)


def propagate_inst_exn_table_entries(instructions: List[Instruction]) -> None:
    """
    Copies exception table entries to all instructions in an entry's range.
    Supports nested exception table entries.
    """
    indexof = get_indexof(instructions)
    entries: Dict[Tuple[int, int], InstructionExnTabEntry] = {}
    for inst in instructions:
        if inst.exn_tab_entry:
            key = (
                indexof[inst.exn_tab_entry.start],
                indexof[inst.exn_tab_entry.end],
            )
            if key in entries:
                assert inst.exn_tab_entry == entries[key]
            entries[key] = inst.exn_tab_entry
    sorted_entries = [
        entries[key] for key in sorted(entries.keys(), key=lambda t: (t[0], -t[1]))
    ]
    check_inst_exn_tab_entries_nested(sorted_entries, indexof)
    # Propagation of nested entries works since nested entries come later
    # in sorted order.
    for entry in sorted_entries:
        for i in range(indexof[entry.start], indexof[entry.end] + 1):
            instructions[i].exn_tab_entry = copy.copy(entry)


def check_inst_exn_tab_entries_valid(instructions: List[Instruction]):
    """
    Checks that exn_tab_entries of instructions are valid.
    An entry's start, end, and target must be in instructions.
    Instructions with an exn_tab_entry are located within
    the entry's start and end instructions.
    Instructions do not share exn_tab_entries.

    Implicitly checks for no duplicate instructions.
    """
    indexof = get_indexof(instructions)
    exn_tab_entry_set = set()
    for i, inst in enumerate(instructions):
        if inst.exn_tab_entry:
            assert sys.version_info >= (3, 11)
            assert id(inst.exn_tab_entry) not in exn_tab_entry_set
            exn_tab_entry_set.add(id(inst.exn_tab_entry))
            entry = inst.exn_tab_entry
            assert entry.start in indexof
            assert entry.end in indexof
            assert entry.target in indexof
            assert indexof[entry.start] <= i <= indexof[entry.end]


def strip_extended_args(instructions: List[Instruction]) -> None:
    instructions[:] = [i for i in instructions if i.opcode != dis.EXTENDED_ARG]


# Overwrites old_inst with a sequence of new instructions.
# This is necessary in order to preserve jump targets to the old
# instruction, exception table entries, and positions.
# Returns the modified sequence of instructions (including the modified
# old instruction!) that can be manipulated elsewhere.
def overwrite_instruction(old_inst, new_insts):
    # update old_inst.exnt_tab_entry.end if necessary
    if (
        old_inst.exn_tab_entry
        and old_inst.exn_tab_entry.end is old_inst
        and len(new_insts) > 1
    ):
        old_inst.exn_tab_entry.end = new_insts[-1]
    # preserve exception table entries and positions
    for inst in new_insts[1:]:
        inst.exn_tab_entry = copy.copy(old_inst.exn_tab_entry)
        inst.positions = old_inst.positions
    # modify old_inst in-place to preserve jump target
    old_inst.opcode = new_insts[0].opcode
    old_inst.opname = new_insts[0].opname
    old_inst.arg = new_insts[0].arg
    old_inst.argval = new_insts[0].argval
    old_inst.target = new_insts[0].target
    return [old_inst] + new_insts[1:]


def remove_load_call_method(instructions: List[Instruction]) -> List[Instruction]:
    """LOAD_METHOD puts a NULL on the stack which causes issues, so remove it"""
    assert sys.version_info < (3, 11)
    rewrites = {"LOAD_METHOD": "LOAD_ATTR", "CALL_METHOD": "CALL_FUNCTION"}
    for inst in instructions:
        if inst.opname in rewrites:
            inst.opname = rewrites[inst.opname]
            inst.opcode = dis.opmap[inst.opname]
    return instructions


def remove_jump_if_none(instructions: List[Instruction]) -> None:
    new_insts = []
    for inst in instructions:
        if "_NONE" in inst.opname:
            is_op = create_instruction("IS_OP", arg=int("NOT" in inst.opname))
            # need both argval and arg set correctly now (not later)
            is_op.argval = is_op.arg

            if sys.version_info < (3, 12):
                jump_op = create_instruction(
                    (
                        "POP_JUMP_FORWARD_IF_TRUE"
                        if "FORWARD" in inst.opname
                        else "POP_JUMP_BACKWARD_IF_TRUE"
                    ),
                    target=inst.target,
                )
            else:
                jump_op = create_instruction("POP_JUMP_IF_TRUE", target=inst.target)

            replace_insts = [
                create_instruction("LOAD_CONST", argval=None),
                is_op,
                jump_op,
            ]
            new_insts.extend(overwrite_instruction(inst, replace_insts))
        else:
            new_insts.append(inst)
    instructions[:] = new_insts


def remove_binary_store_slice(instructions: List[Instruction]) -> None:
    new_insts = []
    for inst in instructions:
        new_insts.append(inst)
        if inst.opname in ("BINARY_SLICE", "STORE_SLICE"):
            # new instruction
            subscr_inst = create_instruction(inst.opname.replace("SLICE", "SUBSCR"))
            if inst.exn_tab_entry and inst.exn_tab_entry.end is inst:
                inst.exn_tab_entry.end = subscr_inst
            subscr_inst.exn_tab_entry = copy.copy(inst.exn_tab_entry)
            subscr_inst.positions = inst.positions
            # modify inst in-place to preserve jump target
            inst.opcode = dis.opmap["BUILD_SLICE"]
            inst.opname = "BUILD_SLICE"
            inst.arg = 2
            inst.argval = 2
            new_insts.append(subscr_inst)
    instructions[:] = new_insts


FUSED_INSTS = {
    "LOAD_FAST_LOAD_FAST": ("LOAD_FAST", "LOAD_FAST"),
    "STORE_FAST_STORE_FAST": ("STORE_FAST", "STORE_FAST"),
    "STORE_FAST_LOAD_FAST": ("STORE_FAST", "LOAD_FAST"),
}


def remove_fused_load_store(instructions: List[Instruction]) -> None:
    new_insts = []
    for inst in instructions:
        if inst.opname in FUSED_INSTS:
            inst0, inst1 = FUSED_INSTS[inst.opname]
            argval0, argval1 = inst.argval

            replace_insts = [
                create_instruction(inst0, argval=argval0),
                create_instruction(inst1, argval=argval1),
            ]
            new_insts.extend(overwrite_instruction(inst, replace_insts))
        else:
            new_insts.append(inst)
    instructions[:] = new_insts


def explicit_super(code: types.CodeType, instructions: List[Instruction]) -> None:
    """convert super() with no args into explicit arg form"""
    cell_and_free = (code.co_cellvars or ()) + (code.co_freevars or ())
    if not len(code.co_varnames):
        # A function with no argument cannot contain a valid "super()" call
        return
    output = []
    for idx, inst in enumerate(instructions):
        output.append(inst)
        if inst.opname == "LOAD_GLOBAL" and inst.argval == "super":
            nexti = instructions[idx + 1]
            if nexti.arg == 0 and (
                (sys.version_info >= (3, 12) and nexti.opname == "CALL")
                or (
                    sys.version_info >= (3, 11)
                    and sys.version_info < (3, 12)
                    and nexti.opname == "PRECALL"
                )
                or (sys.version_info < (3, 11) and nexti.opname == "CALL_FUNCTION")
            ):
                assert "__class__" in cell_and_free
                output.append(create_instruction("LOAD_DEREF", argval="__class__"))
                first_var = code.co_varnames[0]
                if first_var in cell_and_free:
                    output.append(create_instruction("LOAD_DEREF", argval=first_var))
                else:
                    output.append(create_instruction("LOAD_FAST", argval=first_var))
                nexti.arg = 2
                nexti.argval = 2
                if nexti.opname == "PRECALL":
                    # also update the following CALL instruction
                    call_inst = instructions[idx + 2]
                    call_inst.arg = 2
                    call_inst.argval = 2

    instructions[:] = output


def fix_extended_args(instructions: List[Instruction]) -> int:
    """Fill in correct argvals for EXTENDED_ARG ops"""
    output: List[Instruction] = []

    def maybe_pop_n(n):
        for _ in range(n):
            if output and output[-1].opcode == dis.EXTENDED_ARG:
                output.pop()

    for inst in instructions:
        if inst.opcode == dis.EXTENDED_ARG:
            # Leave this instruction alone for now so we never shrink code
            inst.arg = 0
        elif inst.arg and inst.arg > 0xFFFFFF:
            maybe_pop_n(3)
            output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 24))
            output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 16))
            output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8))
        elif inst.arg and inst.arg > 0xFFFF:
            maybe_pop_n(2)
            output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 16))
            output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8))
        elif inst.arg and inst.arg > 0xFF:
            maybe_pop_n(1)
            output.append(create_instruction("EXTENDED_ARG", arg=inst.arg >> 8))
        output.append(inst)

    added = len(output) - len(instructions)
    assert added >= 0
    instructions[:] = output
    return added


def instruction_size(inst) -> int:
    import torch

    if sys.version_info >= (3, 11):
        return 2 * (torch._C._dynamo.eval_frame.py_opcode_caches[inst.opcode] + 1)
    return 2


def check_offsets(instructions) -> None:
    offset = 0
    for inst in instructions:
        assert inst.offset == offset
        offset += instruction_size(inst)


def update_offsets(instructions) -> None:
    offset = 0
    for inst in instructions:
        inst.offset = offset
        offset += instruction_size(inst)


def debug_bytes(*args) -> str:
    index = range(max(map(len, args)))
    result = [
        " ".join(f"{x:03}" for x in arg)
        for arg in [index]
        + list(args)
        + [[int(a != b) for a, b in zip(args[-1], args[-2])]]
    ]

    return "bytes mismatch\n" + "\n".join(result)


def debug_checks(code):
    """Make sure our assembler produces same bytes as we start with"""
    dode = transform_code_object(code, lambda x, y: None, safe=True)
    assert code.co_code == dode.co_code, debug_bytes(code.co_code, dode.co_code)
    assert code.co_lnotab == dode.co_lnotab, debug_bytes(code.co_lnotab, dode.co_lnotab)


HAS_LOCAL = set(dis.haslocal)
HAS_NAME = set(dis.hasname)
HAS_FREE = set(dis.hasfree)
HAS_CONST = set(dis.hasconst)


def get_const_index(code_options, val) -> int:
    for i, v in enumerate(code_options["co_consts"]):
        # NOTE: stronger comparison is required, since we have
        # examples where two values compare equal but have
        # different semantic meaning in some cases, e.g.
        # 0.0 == -0.0 but have different effects in torch.copysign.
        if val is v:
            return i
    code_options["co_consts"] += (val,)
    return len(code_options["co_consts"]) - 1


def fix_vars(instructions: List[Instruction], code_options, varname_from_oparg=None):
    # compute instruction arg from argval if arg is not provided
    names = {name: idx for idx, name in enumerate(code_options["co_names"])}

    def get_name_index(name) -> int:
        try:
            idx = names[name]
        except KeyError:
            # Add a missing item to co_names
            idx = names[name] = len(names)
            code_options["co_names"] = (*code_options["co_names"], name)
            assert len(code_options["co_names"]) == len(names)
        return idx

    if sys.version_info < (3, 11):
        assert varname_from_oparg is None
        varnames = {name: idx for idx, name in enumerate(code_options["co_varnames"])}
        freenames = {
            name: idx
            for idx, name in enumerate(
                code_options["co_cellvars"] + code_options["co_freevars"]
            )
        }
    else:
        assert callable(varname_from_oparg)
        allnames = {}
        for idx in itertools.count():
            try:
                name = varname_from_oparg(idx)
                allnames[name] = idx
            except IndexError:
                break
        varnames = {name: allnames[name] for name in code_options["co_varnames"]}
        freenames = {
            name: allnames[name]
            for name in code_options["co_cellvars"] + code_options["co_freevars"]
        }
    for i in range(len(instructions)):

        def should_compute_arg():
            # argval is prioritized over arg
            return instructions[i].argval is not _NotProvided

        if instructions[i].opname == "LOAD_GLOBAL":
            # 3.11 LOAD_GLOBAL requires both arg and argval - see create_instruction
            assert instructions[i].argval is not _NotProvided
            if sys.version_info >= (3, 11):
                assert instructions[i].arg is not None
                instructions[i].arg = (get_name_index(instructions[i].argval) << 1) + (
                    cast(int, instructions[i].arg) % 2
                )
            else:
                instructions[i].arg = get_name_index(instructions[i].argval)
        elif instructions[i].opname == "LOAD_ATTR":
            # 3.12 LOAD_ATTR requires both arg and argval, like LOAD_GLOBAL
            assert instructions[i].argval is not _NotProvided
            if sys.version_info >= (3, 12):
                assert instructions[i].arg is not None
                instructions[i].arg = (get_name_index(instructions[i].argval) << 1) + (
                    cast(int, instructions[i].arg) % 2
                )
            else:
                instructions[i].arg = get_name_index(instructions[i].argval)
        elif instructions[i].opname == "LOAD_SUPER_ATTR":
            assert instructions[i].arg is not None
            assert instructions[i].argval is not _NotProvided
            # Copy low bit, force second bit on for explicit super (the "+ 2")
            instructions[i].arg = (
                (get_name_index(instructions[i].argval) << 2)
                + (cast(int, instructions[i].arg) % 2)
                + 2
            )
        elif instructions[i].opname in FUSED_INSTS:
            assert sys.version_info >= (3, 13)
            assert isinstance(instructions[i].argval, tuple)
            assert len(instructions[i].argval) == 2
            arg_tuple = tuple(
                varnames[name] if name in varnames else freenames[name]
                for name in instructions[i].argval
            )
            instructions[i].arg = (arg_tuple[0] << 4) + (arg_tuple[1] & 15)
        elif instructions[i].opcode in HAS_LOCAL:
            if should_compute_arg():
                if (
                    sys.version_info >= (3, 13)
                    and instructions[i].argval not in varnames
                ):
                    # instructions like LOAD_FAST used for both local and free vars
                    instructions[i].arg = freenames[instructions[i].argval]
                else:
                    instructions[i].arg = varnames[instructions[i].argval]
        elif instructions[i].opcode in HAS_NAME:
            if should_compute_arg():
                instructions[i].arg = get_name_index(instructions[i].argval)
        elif instructions[i].opcode in HAS_FREE:
            if should_compute_arg():
                instructions[i].arg = freenames[instructions[i].argval]
        elif instructions[i].opcode in HAS_CONST:
            # NOTE: only update argval if arg is not provided. This assumes
            # that any additions to co_consts are appended.
            if instructions[i].arg is None:
                # cannot use a dictionary since consts may not be hashable
                idx = get_const_index(code_options, instructions[i].argval)
                assert idx >= 0
                instructions[i].arg = idx


def clear_instruction_args(instructions):
    # Clear the instruction arg for instructions that have argvals.
    # Useful for using dis'd bytecode within generated bytecode.
    for inst in instructions:
        if (
            inst.argval is not _NotProvided
            and (
                inst.opcode in HAS_LOCAL
                or inst.opcode in HAS_NAME
                or inst.opcode in HAS_FREE
                or inst.opcode in HAS_CONST
            )
            and inst.opname not in ("LOAD_GLOBAL", "LOAD_ATTR", "LOAD_SUPER_ATTR")
        ):
            inst.arg = None


def get_code_keys() -> List[str]:
    # Python 3.11 changes to code keys are not fully documented.
    # See https://github.com/python/cpython/blob/3.11/Objects/clinic/codeobject.c.h#L24
    # for new format.
    keys = ["co_argcount"]
    keys.append("co_posonlyargcount")
    keys.extend(
        [
            "co_kwonlyargcount",
            "co_nlocals",
            "co_stacksize",
            "co_flags",
            "co_code",
            "co_consts",
            "co_names",
            "co_varnames",
            "co_filename",
            "co_name",
        ]
    )
    if sys.version_info >= (3, 11):
        keys.append("co_qualname")
    keys.append("co_firstlineno")
    if sys.version_info >= (3, 10):
        keys.append("co_linetable")
    else:
        keys.append("co_lnotab")
    if sys.version_info >= (3, 11):
        # not documented, but introduced in https://github.com/python/cpython/issues/84403
        keys.append("co_exceptiontable")
    keys.extend(
        [
            "co_freevars",
            "co_cellvars",
        ]
    )
    return keys


def transform_code_object(code, transformations, safe=False) -> types.CodeType:
    keys = get_code_keys()
    code_options = {k: getattr(code, k) for k in keys}
    assert len(code_options["co_varnames"]) == code_options["co_nlocals"]

    instructions = cleaned_instructions(code, safe)
    propagate_line_nums(instructions)

    transformations(instructions, code_options)
    return clean_and_assemble_instructions(instructions, keys, code_options)[1]


def clean_and_assemble_instructions(
    instructions: List[Instruction], keys: List[str], code_options: Dict[str, Any]
) -> Tuple[List[Instruction], types.CodeType]:
    # also implicitly checks for no duplicate instructions
    check_inst_exn_tab_entries_valid(instructions)

    code_options["co_nlocals"] = len(code_options["co_varnames"])
    varname_from_oparg = None
    if sys.version_info >= (3, 11):
        # temporary code object with updated names
        tmp_code = types.CodeType(*[code_options[k] for k in keys])
        varname_from_oparg = tmp_code._varname_from_oparg  # type: ignore[attr-defined]
    fix_vars(instructions, code_options, varname_from_oparg=varname_from_oparg)

    dirty = True
    while dirty:
        update_offsets(instructions)
        devirtualize_jumps(instructions)
        # this pass might change offsets, if so we need to try again
        dirty = bool(fix_extended_args(instructions))

    remove_extra_line_nums(instructions)
    bytecode, lnotab = assemble(instructions, code_options["co_firstlineno"])
    if sys.version_info < (3, 10):
        code_options["co_lnotab"] = lnotab
    else:
        code_options["co_linetable"] = lnotab

    code_options["co_code"] = bytecode
    code_options["co_stacksize"] = stacksize_analysis(instructions)
    assert set(keys) - {"co_posonlyargcount"} == set(code_options.keys()) - {
        "co_posonlyargcount"
    }
    if sys.version_info >= (3, 11):
        code_options["co_exceptiontable"] = assemble_exception_table(
            compute_exception_table(instructions)
        )

    return instructions, types.CodeType(*[code_options[k] for k in keys])


def populate_kw_names_argval(instructions, consts):
    for inst in instructions:
        if inst.opname == "KW_NAMES":
            inst.argval = consts[inst.arg]


# If safe=True, we do not make any bytecode modifications.
# Mainly used for debugging bytecode_transformation (see debug_checks)
def cleaned_instructions(code, safe=False) -> List[Instruction]:
    instructions = list(map(convert_instruction, dis.get_instructions(code)))
    check_offsets(instructions)
    if sys.version_info >= (3, 11):
        populate_kw_names_argval(instructions, code.co_consts)
        virtualize_exception_table(code.co_exceptiontable, instructions)
    virtualize_jumps(instructions)
    strip_extended_args(instructions)
    if not safe:
        if sys.version_info < (3, 11):
            remove_load_call_method(instructions)
        if sys.version_info < (3, 12):
            explicit_super(code, instructions)
        if sys.version_info >= (3, 11):
            remove_jump_if_none(instructions)
            if sys.version_info >= (3, 12):
                remove_binary_store_slice(instructions)
            if sys.version_info >= (3, 13):
                remove_fused_load_store(instructions)
    if sys.version_info >= (3, 11):
        update_offsets(instructions)
        devirtualize_jumps(instructions)
    return instructions


_unique_id_counter = itertools.count()


def unique_id(name) -> str:
    return f"{name}_{next(_unique_id_counter)}"


def is_generator(code: types.CodeType) -> bool:
    co_generator = 0x20
    return (code.co_flags & co_generator) > 0


def bytecode_from_template(fn, varname_map=None, noreturn=True, noprefix=True):
    """Generates bytecode from a template function `fn` for use in
    dynamo bytecode generation.

    For example, we can generate Python-version-independent bytecode
    for looping through a dictionary and copying the values to a new dictionary.

    def template(d1, d2):
        for k, v in d1.items():
            d2[k] = v


    or a try block:

    def template():
        try:
            dummy1
        except:
            dummy2
            raise
        dummy3

    Args:
        fn: a function template to generate bytecode from
        varname_map: a mapping of `fn`'s varnames to new names. This
            map will be applied to the generated bytecode's varnames.
            For example, local variables in `fn` can be replaced with
            new names that are generated by `OutputGraph.new_var`.
        noreturn: remove all RETURN_* bytecodes and replace them with a jump
            to the end of the bytecode. NOTE: any items pushed to the stack
            for return WILL remain on the stack! Append a POP_TOP if you don't want
            that item to be present.
        noprefix: remove prefix bytecodes (all bytecode before the first RESUME, inclusive).
    """
    insts = cleaned_instructions(fn.__code__)
    clear_instruction_args(insts)

    if noprefix:
        for i, inst in enumerate(insts):
            if inst.opname == "RESUME":
                insts = insts[i + 1 :]
                break

    for inst in insts:
        # If we don't reset starts_line, then the generated
        # bytecode's line number will be based on fn's.
        inst.starts_line = None
        if varname_map and inst.argval in varname_map:
            inst.argval = varname_map[inst.argval]

    if noreturn:
        if sys.version_info >= (3, 12):
            # replace RETURN_CONST with LOAD_CONST RETURN_VALUE
            new_insts = []
            for inst in insts:
                if inst.opname == "RETURN_CONST":
                    inst.opcode = dis.opmap["LOAD_CONST"]
                    inst.opname = "LOAD_CONST"
                    new_insts.append(inst)
                    # no need to propagate target/exn table
                    new_insts.append(create_instruction("RETURN_VALUE"))
                else:
                    new_insts.append(inst)
            insts = new_insts

        returns = []
        for inst in insts:
            if inst.opname == "RETURN_VALUE":
                returns.append(inst)

        if len(returns) == 1 and returns[0] is insts[-1]:
            # only 1 return at the end - just pop it
            insts.pop(-1)
        elif len(returns) > 0:
            # create jump target - if the last inst is a return,
            # we can replace it with a NOP and make that the jump target.
            if insts[-1] is returns[-1]:
                insts[-1].opname = "NOP"
                insts[-1].opcode = dis.opmap["NOP"]
                insts[-1].arg = None
                insts[-1].argval = _NotProvided
                returns.pop(-1)
            else:
                insts.append(create_instruction("NOP"))

            # replace returns with jumps
            for inst in returns:
                # don't replace inst with new instruction
                # due to targetting/exn table/etc.
                jump_inst = create_jump_absolute(insts[-1])
                inst.opname = jump_inst.opname
                inst.opcode = jump_inst.opcode
                inst.arg = jump_inst.arg
                inst.argval = jump_inst.argval
                inst.target = jump_inst.target

    return insts