File: codegen.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (546 lines) | stat: -rw-r--r-- 21,460 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
# mypy: allow-untyped-defs
import collections
import dataclasses
import re
import sys
import types
from typing import Counter, Dict, List, Optional

import torch.nn

from . import utils
from .bytecode_transformation import (
    add_push_null,
    add_push_null_call_function_ex,
    create_call_function,
    create_call_method,
    create_dup_top,
    create_instruction,
    create_load_const,
    create_load_method,
    create_rot_n,
    Instruction,
)
from .exc import unimplemented
from .source import AttrSource, Source
from .utils import is_safe_constant, rot_n_helper
from .variables.base import ValueMutationExisting, VariableTracker
from .variables.nn_module import NNModuleVariable
from .variables.tensor import (
    NumpyNdarrayVariable,
    SymNodeVariable,
    TensorVariable,
    UnspecializedPythonVariable,
)
from .variables.torch_function import TensorWithTFOverrideVariable


@dataclasses.dataclass
class GraphOutputEntry:
    index: int
    variable: VariableTracker


class PyCodegen:
    """
    Helper class uses for constructing Python bytecode
    """

    def __init__(
        self,
        tx=None,
        root: Optional[torch.nn.Module] = None,
        graph_output_var: Optional[str] = None,
        tempvars=None,
        overridden_sources=None,
    ) -> None:
        self.root = root
        self.top_of_stack: Optional[VariableTracker] = None
        self.uses: Counter[VariableTracker] = collections.Counter()
        self.graph_outputs: Dict[int, GraphOutputEntry] = {}
        self._output: List[Instruction] = []
        # This determines which VariableTracker should be stored as locals, and
        # maps the VariableTracker to the local variable name. Note that it
        # could map to None initially, in which case we'll overwrite it to map
        # to real temporary names via `add_cache`.
        self.tempvars = tempvars or {}
        self.tx = tx
        self.graph_output_var = graph_output_var
        self.code_options = self.tx.output.code_options
        self.cell_and_freevars = self.tx.cell_and_freevars
        self.new_var = self.tx.output.new_var
        self.value_from_source: bool = True
        # This serves as a way for codegen to use a different source; we need
        # this because sometimes we can't easily modify the original source
        # without affecting other components, e.g., guards.
        self.overridden_sources: Dict[Source, Source] = overridden_sources or {}

    def restore_stack(self, stack_values, *, value_from_source=True):
        prev = self.value_from_source
        self.value_from_source &= value_from_source
        try:
            self.foreach(stack_values)
        finally:
            self.value_from_source = prev

    def graph_output_vars(self):
        return [x.variable for x in self.graph_outputs.values()]

    def call_reconstruct(self, value):
        res = value.reconstruct(self)
        assert res is None, f"reconstruct!=None {value}"

    def add_push_null(self, gen_fn, call_function_ex=False):
        """
        `gen_fn` generates instructions via PyCodegen methods
        that push a single callable to the stack.

        `add_push_null` pushes a NULL to the stack before or after the
        instructions generated by `gen_fn`, depending on Python version.

        Will attempt to use the NULL push bit for instructions
        with such bits (LOAD_GLOBAL 3.11+, LOAD_ATTR 3.12+, LOAD_SUPER_ATTR).
        """
        old_len = len(self._output)
        if sys.version_info < (3, 13):
            # gen_fn may DUP_TOP instead if TOS is not cleared.
            # Will cause problems since NULL will be pushed right
            # before the generated instructions in <= 3.12
            self.clear_tos()
        gen_fn()
        # inplace modify self._output
        added_insts = self._output[old_len:]
        del self._output[old_len:]
        if call_function_ex:
            self._output.extend(add_push_null_call_function_ex(added_insts))
        else:
            self._output.extend(add_push_null(added_insts))
        if sys.version_info >= (3, 13):
            # NULL will be at top of stack
            self.clear_tos()

    def __call__(self, value, allow_cache=True):
        """
        Generate code such that top-of-stack (TOS) is set to value.

        `allow_cache` is used to determine whether the following could happen,
        when `value` is a `VariableTracker`:
        1. if `value` was codegen-ed previously with `allow_cache=True` and
           without using source, reuse the generated code by loading from top
           of stack or tempvars.
        2. emit code based on `value.source` to handle aliasing.

        Notable effects:
        1. `self.top_of_stack` will be set to `value`, if we don't codegen
           `value` based on source.
        2. `self.uses[value]` will increment, if we don't codegen `value` based
           on source or cache/top-of-stack reuse; in other words, if we codegen
           as if `value` is modelling some brand new python value.
        """
        if isinstance(value, Source):
            # If the source needs to be overridden, use the new one.
            source = self.overridden_sources.get(value, value)
            self.call_reconstruct(source)
            # We don't support dup_top optimization for source yet.
            self.clear_tos()
            return

        assert isinstance(value, VariableTracker)
        output = self._output
        graph_outputs = self.graph_outputs

        if allow_cache:
            if self.top_of_stack is value:
                output.append(create_dup_top())
                return

            if self.tempvars.get(value) is not None:
                output.append(self.create_load(self.tempvars[value]))
                self.top_of_stack = value
                return

        # Dynamo normally prefers codegen from source to account for aliasing.
        if value.source is not None and allow_cache:
            # There's a corner case for export: for instance, if the computation
            # graph is just identity on an input tensor, Dynamo would just emit
            # a `LOAD_FAST` from the input source, rather than generating an
            # identity FX graph.
            #
            # However, export wants to maximize graph capture; in the case
            # above, export _wants to_ obtain an identity FX graph (despite it
            # appears unnecessarily expensive for `torch.compile`), so we have
            # the following option to override Dynamo's preference for codegen
            # from source. Morever, this option applies recursively, for cases
            # like input tensor being returned in a new dictionary.
            #
            # And why the `ValueMutationExisting` check? Not sure, so leaving it
            # to keep the old behavior, as when `value_from_source` was
            # introduced. TODO sort out the invariants among side effect,
            # codegen and export.
            if (
                isinstance(value.mutation_type, ValueMutationExisting)
                or self.value_from_source
            ):
                return self(value.source)

        if value.is_python_constant() and is_safe_constant(value.as_python_constant()):
            output.append(self.create_load_const(value.as_python_constant()))
        elif isinstance(value, TensorWithTFOverrideVariable):
            graph_outputs_key = self.add_graph_output(value)

            self.add_push_null(
                lambda: self.load_import_from(utils.__name__, "to_subclass")
            )
            self.load_graph_output(graph_outputs[graph_outputs_key].index)
            output.append(
                self.create_load_global(
                    value.global_mangled_class_name(self.tx), add=True
                )
            )
            output.extend(create_call_function(2, False))
        elif (
            isinstance(value, SymNodeVariable)
            and value.python_type() == float
            and not self.tx.export
        ):
            # This is a little unusual; force the output convention to be a
            # Tensor here.  Don't do this for export because this is
            # apparently load bearing for export tests (but I am a bit
            # doubtful it actually works in the real world)
            # NB: It works to add_graph_output on a computed expression
            # as_tensor here, because we memoize as_tensor calls on
            # SymNodeVariable!
            graph_outputs_key = self.add_graph_output(
                value.as_tensor(self.tx, torch.float64)
            )

            def gen_fn():
                self.load_graph_output(graph_outputs[graph_outputs_key].index)
                output.append(self.create_load_attr("item"))

            self.add_push_null(gen_fn)
            output.extend(create_call_function(0, False))
        elif isinstance(
            value,
            (
                TensorVariable,
                SymNodeVariable,
                UnspecializedPythonVariable,
                NumpyNdarrayVariable,
            ),
        ):
            graph_outputs_key = self.add_graph_output(value)

            if isinstance(value, NumpyNdarrayVariable):
                self.add_push_null(
                    lambda: self.load_import_from(utils.__name__, "to_numpy_helper")
                )
                self.load_graph_output(graph_outputs[graph_outputs_key].index)
                output.extend(create_call_function(1, False))
            elif isinstance(value, UnspecializedPythonVariable) and value.need_unwrap:

                def gen_fn():
                    self.load_graph_output(graph_outputs[graph_outputs_key].index)
                    output.append(self.create_load_attr("item"))

                self.add_push_null(gen_fn)
                output.extend(create_call_function(0, False))
            else:
                self.load_graph_output(graph_outputs[graph_outputs_key].index)
        elif isinstance(value, NNModuleVariable):
            parts = value.module_key.split(".")
            if parts[0] in self.code_options["co_varnames"]:
                output.append(self.create_load(parts[0]))
                parts = parts[1:]
            else:
                assert self.root is not None
                output.append(self.create_load_const_unchecked(self.root))
            for part in parts:
                output.append(self.create_load_attr(part))
        else:
            self.uses[value] += 1
            try:
                self.call_reconstruct(value)
            except NotImplementedError:
                unimplemented(f"reconstruct: {value}")
            if allow_cache and value in self.tempvars:
                self._output.append(create_dup_top())
                self.add_cache(value)

        self.top_of_stack = value

    def add_graph_output(self, value):
        graph_outputs_key = id(value.as_proxy())
        if graph_outputs_key not in self.graph_outputs:
            self.graph_outputs[graph_outputs_key] = GraphOutputEntry(
                len(self.graph_outputs), value
            )
        return graph_outputs_key

    def load_graph_output(self, index):
        output = self._output
        output.append(self.create_load(self.graph_output_var))
        output.append(self.create_load_const(index))
        output.append(create_instruction("BINARY_SUBSCR"))

    def add_cache(self, value):
        var = self.new_var()
        self.tempvars[value] = var
        self._output.append(self.create_store(var))

    def foreach(self, items):
        for i in items:
            self(i)

    def setup_globally_cached(self, name, value):
        """Store value in a new global"""
        name = re.sub(r"[^a-zA-Z0-9_]+", "_", name)
        f_globals = self.tx.f_globals
        if name in f_globals:
            assert id(f_globals[name]) == id(value)
        else:
            f_globals[name] = value
        return [self.create_load_global(name, add=True)]

    def clear_tos(self):
        self.top_of_stack = None

    def append_output(self, inst):
        assert isinstance(inst, Instruction)
        self._output.append(inst)
        self.clear_tos()

    def extend_output(self, insts):
        assert all(isinstance(x, Instruction) for x in insts)
        self._output.extend(insts)
        self.clear_tos()

    def get_instructions(self) -> List[Instruction]:
        return self._output

    def create_load(self, name) -> Instruction:
        assert name in self.code_options["co_varnames"], f"{name} missing"
        return create_instruction("LOAD_FAST", argval=name)

    def create_load_closure(self, name) -> Instruction:
        assert name in self.cell_and_freevars()
        inst_name = "LOAD_FAST" if sys.version_info >= (3, 13) else "LOAD_CLOSURE"
        return create_instruction(inst_name, argval=name)

    def create_load_deref(self, name) -> Instruction:
        assert name in self.cell_and_freevars()
        return create_instruction("LOAD_DEREF", argval=name)

    def create_store(self, name) -> Instruction:
        assert name in self.code_options["co_varnames"], f"{name} missing"
        return create_instruction("STORE_FAST", argval=name)

    def create_store_deref(self, name) -> Instruction:
        assert name in self.cell_and_freevars()
        return create_instruction("STORE_DEREF", argval=name)

    def create_load_global(self, name, add=False) -> Instruction:
        if add:
            self.tx.output.update_co_names(name)
        assert name in self.code_options["co_names"], f"{name} not in co_names"
        return create_instruction("LOAD_GLOBAL", argval=name)

    def create_load_const(self, value) -> Instruction:
        return create_load_const(value)

    def create_load_const_unchecked(self, value) -> Instruction:
        return create_load_const(value, checked=False)

    def load_method(self, name):
        self.tx.output.update_co_names(name)
        self.append_output(create_load_method(name))

    def call_method(self, nargs):
        self.extend_output(create_call_method(nargs))

    def create_load_attr(self, name) -> Instruction:
        if name not in self.code_options["co_names"]:
            self.code_options["co_names"] += (name,)
        return create_instruction("LOAD_ATTR", argval=name)

    def load_attr(self, name):
        self.append_output(self.create_load_attr(name))

    def create_load_attrs(self, names):
        return [self.create_load_attr(name) for name in names.split(".")]

    def create_store_attr(self, name) -> Instruction:
        if name not in self.code_options["co_names"]:
            self.code_options["co_names"] += (name,)
        return create_instruction("STORE_ATTR", argval=name)

    def store_attr(self, name):
        self.append_output(self.create_store_attr(name))

    def load_function_name(self, fn_name, push_null, num_on_stack=0):
        """Load the global fn_name on the stack num_on_stack down"""
        output = []
        if push_null and sys.version_info >= (3, 11):
            output.extend(add_push_null(self.create_load_global(fn_name, add=True)))
            if num_on_stack > 0:
                output.extend(
                    [
                        *self.rot_n(num_on_stack + 2),
                        *self.rot_n(num_on_stack + 2),
                    ]
                )
        else:
            output.extend(
                [
                    self.create_load_global(fn_name, add=True),
                    *self.rot_n(num_on_stack + 1),
                ]
            )
        return output

    def rot_n(self, n):
        try:
            return create_rot_n(n)
        except AttributeError:
            # desired rotate bytecode doesn't exist, generate equivalent bytecode
            return [
                create_instruction("BUILD_TUPLE", arg=n),
                self.create_load_const_unchecked(rot_n_helper(n)),
                *create_rot_n(2),
                create_instruction("CALL_FUNCTION_EX", arg=0),
                create_instruction("UNPACK_SEQUENCE", arg=n),
            ]

    def pop_null(self):
        # POP_TOP doesn't work for null, so we pop nulls by pushing in a
        # nop function, calling it (which consumes the null), and popping the result.
        assert sys.version_info >= (3, 11)
        return [
            self.create_load_const_unchecked(lambda: None),
            # 3.13 swapped NULL and callable
            *(
                (create_instruction("SWAP", arg=2),)
                if sys.version_info >= (3, 13)
                else ()
            ),
            *create_call_function(0, False),
            create_instruction("POP_TOP"),
        ]

    def pop_top(self):
        self.append_output(create_instruction("POP_TOP"))

    def call_function(self, nargs: int, push_null: bool):
        self.extend_output(create_call_function(nargs, push_null=push_null))

    def dup_top(self):
        self.append_output(create_dup_top())

    def store(self, varname):
        self.append_output(self.create_store(varname))

    def load_deref(self, varname):
        self.append_output(self.create_load_deref(varname))

    def make_function_with_closure(
        self, fn_name: str, code: types.CodeType, push_null: bool, num_on_stack=0
    ):
        freevars = code.co_freevars
        assert freevars
        output = self._output

        def gen_fn():
            # Emitting `LOAD_FAST/LOAD_CLOSURE` with names in `co_freevars`
            # requires that in the generated bytecode, these cells would keep
            # their original local names, which we ensure via
            # `CellVariable.local_name`.
            for var in freevars:
                assert var in self.cell_and_freevars()
                output.append(self.create_load_closure(var))
            output.append(create_instruction("BUILD_TUPLE", arg=len(freevars)))
            output.append(self.create_load_const(code))
            if sys.version_info < (3, 11):
                output.append(self.create_load_const(fn_name))
            if sys.version_info >= (3, 13):
                output.extend(
                    [
                        create_instruction("MAKE_FUNCTION"),
                        create_instruction("SET_FUNCTION_ATTRIBUTE", arg=0x08),
                    ]
                )
            else:
                output.append(create_instruction("MAKE_FUNCTION", arg=0x08))

        if push_null and sys.version_info >= (3, 11):
            self.add_push_null(gen_fn)
            output.extend(self.rot_n(num_on_stack + 2))
            output.extend(self.rot_n(num_on_stack + 2))
        else:
            gen_fn()
            output.extend(self.rot_n(num_on_stack + 1))
        self.clear_tos()

    def create_load_python_module(self, mod) -> Instruction:
        """
        Generate a LOAD_GLOBAL instruction to fetch a given python module.
        """
        output = self.tx.output
        global_scope = output.global_scope
        name = re.sub(r"^.*[.]", "", mod.__name__)
        if global_scope.get(name, None) is mod:
            return self.create_load_global(name, add=True)
        prefix = f"___module_{name}"
        global_name = self.tx.output.install_global_by_id(prefix, mod)
        return self.create_load_global(global_name, add=True)

    def make_call_generated_code(self, fn_name: str) -> None:
        """Call the generated code function stored in fn_name"""
        self.extend_output(self.load_function_name(fn_name, True))

        graphargs = self.tx.output.graphargs
        for arg in graphargs:
            if arg.pass_arg_as_tensor:
                self.add_push_null(
                    lambda: self.extend_output(
                        [
                            self.create_load_python_module(torch),
                            self.create_load_attr("_as_tensor_fullprec"),
                        ]
                    )
                )
                self.call_reconstruct(arg)
                self.extend_output(create_call_function(1, False))
            else:
                self.call_reconstruct(arg)

        self.extend_output(create_call_function(len(graphargs), False))

    def load_import_from(self, module_name, object_name) -> None:
        self(AttrSource(self.tx.import_source(module_name), object_name))

    def create_call_function_kw(self, nargs, kw_names, push_null) -> List[Instruction]:
        if sys.version_info >= (3, 13):
            output = create_call_function(nargs, push_null)
            assert output[-1].opname == "CALL"
            output.insert(-1, self.create_load_const(kw_names))
            output[-1] = create_instruction("CALL_KW", arg=nargs)
            return output
        elif sys.version_info >= (3, 11):
            output = create_call_function(nargs, push_null)
            if sys.version_info >= (3, 12):
                idx = -1
                expected_inst = "CALL"
            else:
                idx = -2
                expected_inst = "PRECALL"
            assert output[idx].opname == expected_inst
            kw_names_inst = create_instruction("KW_NAMES", argval=kw_names)
            output.insert(idx, kw_names_inst)
            return output
        return [
            self.create_load_const(kw_names),
            create_instruction("CALL_FUNCTION_KW", arg=nargs),
        ]

    def create_delete(self, value) -> Instruction:
        return create_instruction("DELETE_FAST", argval=value)