1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
|
# mypy: allow-untyped-defs
import contextlib
import functools
import operator
from typing import Any, Dict, List, Optional, Tuple, TYPE_CHECKING, Union
import torch
from torch._dynamo.external_utils import (
call_backward,
call_hook,
FakeCompiledAutogradEngine,
)
from torch._dynamo.source import GetItemSource, LocalSource
from torch._dynamo.utils import counters, lazy_format_graph_code, set_locals_to_steal
from torch._logging import getArtifactLogger, trace_structured
from torch._prims_common import clone_preserve_strides
from torch._subclasses import FakeTensorMode
from torch.fx import GraphModule
from torch.fx.experimental._backward_state import BackwardState
from torch.fx.experimental.proxy_tensor import (
decompose,
disable_autocast_cache,
disable_proxy_modes_tracing,
fetch_object_proxy,
ProxyTorchDispatchMode,
PythonKeyTracer,
track_tensor_tree,
)
from torch.fx.experimental.symbolic_shapes import DimDynamic, ShapeEnv
from torch.fx.traceback import preserve_node_meta, set_stack_trace
from torch.utils._ordered_set import OrderedSet
from torch.utils._traceback import CapturedTraceback
if TYPE_CHECKING:
from torch.fx.proxy import Proxy
compiled_autograd_log = getArtifactLogger(__name__, "compiled_autograd")
verbose_log = getArtifactLogger(__name__, "compiled_autograd_verbose")
def snapshot_verbose_logging_enabled():
return torch._logging._internal.log_state.is_artifact_enabled(
"compiled_autograd_verbose"
)
def snapshot_cudagraph_enabled():
return torch._inductor.config.triton.cudagraphs
def maybe_clone(x):
if x is not None:
return clone_preserve_strides(x)
return x
_graph_placeholders = ["inputs", "sizes", "scalars", "hooks"]
_impure_targets = OrderedSet(
[
call_hook,
call_backward,
FakeCompiledAutogradEngine._exec_final_callbacks_stub,
torch.ops.inductor.accumulate_grad_.default,
]
)
class AutogradCompilerInstance:
def __init__(self, compiler_fn) -> None:
self.compiler_fn = compiler_fn
self.stack = contextlib.ExitStack()
self.close = self.stack.close
self.shape_env = ShapeEnv()
self.fake_tensor_mode = FakeTensorMode(
allow_fallback_kernels=True,
allow_non_fake_inputs=True,
shape_env=self.shape_env,
)
self.fx_tracer = PythonKeyTracer()
self.proxy_mode = ProxyTorchDispatchMode(self.fx_tracer, "symbolic")
self.hooks_proxy: Optional[Proxy] = None
def wrap_fake(self, x, source):
assert isinstance(x, torch.Tensor)
return self.fake_tensor_mode.from_tensor(x, source=source)
@staticmethod
def source(name, idx) -> GetItemSource:
return GetItemSource(LocalSource(name), idx)
def begin_capture(
self,
inputs: List[torch.Tensor],
sizes: List[int],
scalars: List[Union[int, float]],
origins: List[List[Tuple[int, str]]],
):
counters["compiled_autograd"]["captures"] += 1
self.aot_graph_cls_name: Optional[str] = None
self.aot_graph_infos: Dict[int, Dict[str, Any]] = {}
self.fx_tracer.root = torch.nn.Module()
self.fx_tracer.graph = torch.fx.Graph(tracer_cls=PythonKeyTracer)
self.fx_tracer.tensor_attrs = {}
args_proxy, sizes_proxy, scalars_proxy, self.hooks_proxy = (
self.fx_tracer.create_proxy("placeholder", name, (), {})
for name in _graph_placeholders
)
self.stack.enter_context(preserve_node_meta())
inputs_origins, sizes_origins, scalars_origins = origins
# tensor inputs to fake tensors
inputs = [
self.wrap_fake(x, self.source("inputs", idx))
for idx, x in enumerate(inputs)
]
self.bind_tensors_to_proxies(inputs, args_proxy, inputs_origins)
# size inputs to symints
sizes = [
self.shape_env.create_unspecified_symint_and_symbol(
val,
self.source("sizes", idx),
DimDynamic.DYNAMIC,
)
for idx, val in enumerate(sizes)
]
self.bind_tensors_to_proxies(sizes, sizes_proxy, sizes_origins)
for idx, val in enumerate(scalars):
source = self.source("scalars", idx)
if isinstance(val, int):
scalars[idx] = self.shape_env.create_unspecified_symint_and_symbol(
val,
source,
DimDynamic.DYNAMIC,
)
elif isinstance(val, float):
scalars[idx] = self.shape_env.create_symfloatnode(
self.shape_env.create_unspecified_symbol(
val,
source=source,
dynamic_dim=DimDynamic.DYNAMIC,
),
hint=val,
source=source,
)
else:
raise AssertionError("Unexpected scalar type: ", type(val))
self.bind_tensors_to_proxies(scalars, scalars_proxy, scalars_origins)
# TODO(jansel): are all these modes needed?
self.stack.enter_context(decompose({}))
self.stack.enter_context(self.fake_tensor_mode)
self.stack.enter_context(self.proxy_mode)
self.stack.enter_context(disable_autocast_cache())
# Needed to make sure we don't accidentally specialize any symbols
assert self.fake_tensor_mode.shape_env is not None
env = self.fake_tensor_mode.shape_env
self.stack.enter_context(
torch.fx.experimental.symbolic_shapes._suppress_guards(env)
)
return inputs, sizes, scalars
def proxy_call_backward(
self,
inputs,
output_metadatas,
saved_tensors,
backward_idx: int,
):
assert self.hooks_proxy is not None
backward_c_function = self.hooks_proxy[backward_idx] # type: ignore[index]
proxies = self.fx_tracer.create_proxy(
kind="call_function",
target=call_backward,
args=(
backward_c_function,
self.to_proxy(saved_tensors),
*self.to_proxy(inputs),
),
kwargs={},
)
with disable_proxy_modes_tracing():
# create fake Tensors
grad_ins: List[Optional[torch.Tensor]] = []
for output_metadata in output_metadatas:
if output_metadata is None:
grad_ins.append(None)
continue
layout, device, dtype, size = output_metadata
grad_ins.append(
torch.empty(size=size, dtype=dtype, layout=layout, device=device)
)
self.bind_tensors_to_proxies(grad_ins, proxies)
return tuple(grad_ins)
def proxy_call_hook(self, hook, *args, **kwargs):
return self.fx_tracer.create_proxy(
"call_function",
call_hook,
(
hook,
*[self.to_proxy(x) for x in args],
),
kwargs,
)
def tensor_pre_hook(self, inputs, hook_id, i: int):
assert self.hooks_proxy is not None
hook = self.hooks_proxy[hook_id] # type: ignore[index]
proxy = self.proxy_call_hook(
hook,
inputs[i],
hook_type="tensor_pre_hook",
)
with disable_proxy_modes_tracing():
inputs[i] = maybe_clone(inputs[i])
self.bind_tensors_to_proxies([inputs[i]], [proxy])
return inputs
def pre_hook(self, inputs, hook_id):
assert self.hooks_proxy is not None
hook = self.hooks_proxy[hook_id] # type: ignore[index]
proxies = self.proxy_call_hook(
hook,
inputs,
hook_type="pre_hook",
)
with disable_proxy_modes_tracing():
inputs = [maybe_clone(x) for x in inputs]
self.bind_tensors_to_proxies(inputs, proxies)
return inputs
def post_hook(self, outputs, inputs, hook_id):
assert self.hooks_proxy is not None
hook = self.hooks_proxy[hook_id] # type: ignore[index]
proxies = self.proxy_call_hook(
hook,
outputs,
inputs,
hook_type="post_hook",
)
with disable_proxy_modes_tracing():
outputs = [maybe_clone(x) for x in outputs]
self.bind_tensors_to_proxies(outputs, proxies)
return outputs
def post_acc_grad_hook(self, input, hook_id):
assert isinstance(input, torch.Tensor)
assert self.hooks_proxy is not None
hook = self.hooks_proxy[hook_id] # type: ignore[index]
proxy = self.proxy_call_hook(
hook,
input,
hook_type="post_acc_grad_hook",
)
with disable_proxy_modes_tracing():
input = [maybe_clone(input)]
self.bind_tensors_to_proxies(input, [proxy])
return input
# Note: [Compiled autograd and cudagraphs]
# Eager autograd backward implements scalars as 0-dim tensors, see DivBackward0::other_.
# When compiled autograd traces those nodes, it lifts the scalar tensors, resulting in a graph
# with some cpu 0-dim tensor inputs. To prevent the entire graph from skipping cudagraph, we move the
# scalars tensors to cuda. This works because ATen/prims ops will accept cuda 0-dim tensors too.
def move_graph_nodes_to_cuda(self, graph) -> List[int]:
to_move: Dict[int, torch.fx.Node] = {}
has_cuda_inputs = False
nodes = list(graph.nodes)
assert nodes[0].target == "inputs"
inputs = nodes[0]
inputs_users = list(inputs.users.keys())
# input access nodes should immediately follow placeholder nodes
first_getitem_idx = len(_graph_placeholders)
assert nodes[first_getitem_idx] == inputs_users[0]
last_getitem_idx = first_getitem_idx + len(inputs_users) - 1
assert nodes[last_getitem_idx] == inputs_users[-1]
for i, node in enumerate(inputs_users):
if not has_cuda_inputs and node.meta["val"].device.type == "cuda":
has_cuda_inputs = True
continue
is_cpu = node.meta["val"].device.type == "cpu"
is_scalar = len(node.meta["val"].size()) == 0
if is_cpu and is_scalar:
node_users = list(node.users.keys())
if all(
isinstance(user.target, torch._ops.OpOverload)
and user.target.namespace in ("prims", "aten")
for user in node_users
):
# all users are prims/aten, can move safely
to_move[i] = node
# only move cpu scalars to cuda if there were cuda activations in this graph,
# this is to handle the case where cudagraphs is enabled on a cpu-only graph
if has_cuda_inputs:
for node in to_move.values():
node.meta["val"] = node.meta["val"].cuda()
# return runtime indices we need to move to cuda
return list(to_move.keys())
return []
def is_sym_node(self, node):
return (
isinstance(node, torch.fx.Node)
and node.op == "call_function"
and node.target
in [torch.ops.aten.sym_size.int, torch.ops.aten.sym_numel.default]
)
def dce(self):
# Most of these removed nodes would have been removed during Dynamo and AOTDispatch
# Remove some of these nodes earlier to improve compilation speed
# Dynamo guards will error instead of creating aliasing guards unless we unpack them in the graph
unpack_nodes: OrderedSet[torch.fx.Node] = OrderedSet()
for i, node in enumerate(self.fx_tracer.graph.find_nodes(op="placeholder")):
unpack_nodes.update(node.users.keys())
assert i == len(_graph_placeholders) - 1
def is_impure(node):
return (
node in unpack_nodes
or node.op == "placeholder"
or node.op == "output"
or (node.op == "call_function" and node.target in _impure_targets)
)
self.fx_tracer.graph.eliminate_dead_code(is_impure)
def end_capture(self, outputs):
self.fx_tracer.create_proxy(
"call_function",
FakeCompiledAutogradEngine._exec_final_callbacks_stub,
(),
{},
)
self.stack.close()
self.fx_tracer.create_node(
"output",
"output",
(self.fx_tracer.create_arg(self.to_proxy(outputs)),),
{},
)
self.rename_aot_dispatcher_nodes()
self.reorder_tensor_pre_hook_nodes()
self.reorder_pre_hook_nodes_to_schedule_asap()
self.reorder_accumulate_grad_nodes()
self.reorder_pre_hook_nodes_to_mimic_eager()
self.reorder_post_acc_grad_hook_nodes()
self.reorder_post_hook_nodes()
# TODO(yf225): work around: remove dead codes like `sym_size` and `sym_numel` which are not used downstream. e.g.
# ```
# sym_numel_default = torch.ops.aten.sym_numel.default(sum_109); sum_109 = None
# eq_115 = 16 == sym_numel_default; sym_numel_default = eq_115 = None
# sym_size_int_39 = torch.ops.aten.sym_size.int(getitem_112, 1); getitem_112 = None
# eq_116 = 16 == sym_size_int_39; eq_116 = None
# eq_117 = 16 == sym_size_int_39; sym_size_int_39 = eq_117 = None
# ```
# Proper fix is Richard's Python compiled autograd effort which will avoid calling make_fx and
# should prevent these ops from going into the CA graph.
self.dce()
runtime_inputs_to_move: List[int] = []
if snapshot_cudagraph_enabled():
runtime_inputs_to_move = self.move_graph_nodes_to_cuda(self.fx_tracer.graph)
graph = GraphModule(
self.fx_tracer.root, self.fx_tracer.graph, "CompiledAutograd"
)
set_locals_to_steal(graph, ["inputs"])
lazy_graph_code = lazy_format_graph_code(
"Compiled autograd graph",
graph,
include_device=True,
include_stride=True,
colored=True,
)
compiled_autograd_log.info("%s", lazy_graph_code)
verbose_log.debug("%s", lazy_graph_code)
trace_structured(
"compiled_autograd_graph",
payload_fn=lambda: graph.print_readable(print_output=False),
)
def runtime_wrapper(compiled_fn, inputs, sizes, scalars, hooks):
global in_compiled_autograd_region
try:
in_compiled_autograd_region = True
for i in runtime_inputs_to_move:
inputs[i] = inputs[i].pin_memory().cuda(non_blocking=True)
with _disable():
return compiled_fn(inputs, sizes, scalars, hooks)
finally:
in_compiled_autograd_region = False
return runtime_wrapper, self.compiler_fn(graph)
def rename_aot_dispatcher_nodes(self):
"""
Renames nodes as they appear in the AOTDispatcher backward graphs, prefixed by AOT id
e.g. AOTDispatcher backward graph X's `sin_Y` -> `aotX_sin_Y`
"""
if self.aot_graph_cls_name is None:
return
def is_similar(ca: torch.fx.node.Node, aot: torch.fx.node.Node):
# 1. comparing using target (for aten ops)
target_match = ca.target == aot.target
if not target_match:
# 2. comparing using name (for HOPs)
target_match = (
hasattr(ca.target, "__name__")
and hasattr(aot.target, "__name__")
and ca.target.__name__ == aot.target.__name__
)
if (
not target_match
and hasattr(ca.target, "name")
and hasattr(aot.target, "name")
and aot.target.name() == "aten::reshape"
and hasattr(aot.meta.get("original_aten"), "name")
):
# 3. undo view_to_reshape post grad pass
target_match = ca.target.name() == aot.meta["original_aten"].name()
return (
target_match
and ca.op == aot.op
and ca.type == aot.type
and len(ca.all_input_nodes) == len(aot.all_input_nodes)
)
for nodecall_index, info in self.aot_graph_infos.items():
ca_node_start_idx = info["ca_node_start_idx"]
aot_id = info["aot_id"]
aot_graph = info["aot_gm"].graph
# 1. Find the first op from user code in the AOT graph
aot_it = iter(aot_graph.nodes)
aot_node = next(aot_it)
assert aot_node is not None
try:
while aot_node.op != "call_function":
aot_node = next(aot_it)
except StopIteration:
continue
try:
# 2. Find the first op in the compiled autograd graph segment
ca_it = iter(self.fx_tracer.graph.nodes)
for _ in range(ca_node_start_idx):
next(ca_it)
ca_node = next(ca_it)
# Graphs should all end with output node
while ca_node.op != "output" and not is_similar(ca_node, aot_node):
# The compiled autograd graph may contain lazily inserted ops
# We skip those when aligning nodes
ca_node = next(ca_it)
# 3. Keep alligned and rename nodes
while aot_node.op != "output" and ca_node.op != "output":
if not ca_node.users:
# TODO: DCE for compiled autograd graph
ca_node = next(ca_it)
continue
if not is_similar(ca_node, aot_node):
# There should be no lazily inserted ops in the middle of a match
# So any deviation is an error
raise StopIteration
ca_node.name = f"aot{aot_id}_{aot_node.name}"
for i, inp in enumerate(aot_node.all_input_nodes):
ca_node.all_input_nodes[i].name = f"aot{aot_id}_{inp.name}"
aot_node = next(aot_it)
ca_node = next(ca_it)
except StopIteration:
verbose_log.debug(
"Failed to match %s%s (NodeCall %s) nodes with AOT backward graph %s nodes",
self.aot_graph_cls_name,
aot_id,
nodecall_index,
aot_id,
)
@staticmethod
def get_all_nodes(args):
# filter out non-Node args, like None
nodes = [n for n in args if type(n) is torch.fx.Node]
return nodes
@staticmethod
def is_placeholder(node):
if node.op == "placeholder" or (
node.op == "call_function"
and node.target == operator.getitem
and node.args[0].op == "placeholder"
):
return True
return False
def reorder_accumulate_grad_nodes(self):
"""
Usage of AOTAutograd causes all the accumulate_grad_ nodes to get pushed to the end of
the graph. This differs from eager mode, which schedules them as soon as possible. This
pass attempts to reorder the graph to mimic eager behavior.
"""
for node in self.fx_tracer.graph.find_nodes(
op="call_function", target=torch.ops.inductor.accumulate_grad_.default
):
param_node, grad_node = node.args[0], node.args[1]
getitem_node = None
if grad_node.target == operator.getitem:
getitem_node = grad_node
grad_node = getitem_node.args[0]
arg = max([param_node, grad_node]) # last arg
if arg is not node.prev and not self.is_placeholder(arg):
arg.append(node)
if getitem_node is not None:
arg.append(getitem_node)
def reorder_tensor_pre_hook_nodes(self):
"""
Usage of AOTAutograd causes all the tensor_pre_hook nodes to get pushed
to the end of the graph. This differs from eager mode, which schedules
them as soon as possible. This pass attempts to reorder the graph to
mimic eager behavior.
"""
for node in self.fx_tracer.graph.find_nodes(
op="call_function", target=call_hook
):
if node.kwargs.get("hook_type", None) != "tensor_pre_hook":
continue
getitem_node = node.args[0]
input_node = node.args[1] # tensor_pre_hook handle only one grad tensor
if input_node is not node.prev and not self.is_placeholder(input_node):
input_node.append(getitem_node)
getitem_node.append(node)
def reorder_pre_hook_nodes_to_schedule_asap(self):
"""
In this function, we schedule the pre hooks as soon as possible. This
does not match eager behavior (schedule pre hook right before its
registered node), but it can make acc grad be scheduled properly when
the pre hooks are registered to them. After reordering acc grad node, we
will reorder the pre hooks again to mimic eager behavior.
"""
for node in self.fx_tracer.graph.find_nodes(
op="call_function", target=call_hook
):
if node.kwargs.get("hook_type", None) != "pre_hook":
continue
getitem_node = node.args[0]
# pre_hook handle a tuple of grad tensors
input_nodes = self.get_all_nodes(node.args[1])
to_remove = []
to_append = []
hook_block = [node] # contain the hook and hook args getitem
for n in input_nodes:
if n.op == "call_function" and n.target == operator.getitem:
to_append.append(n.args[0])
to_remove.append(n)
hook_block.append(n)
for a, b in zip(to_remove, to_append):
input_nodes.remove(a)
input_nodes.append(b)
arg = max(input_nodes) # last input
if arg is not node.prev and not self.is_placeholder(arg):
arg.append(getitem_node)
for n in hook_block:
getitem_node.append(n)
def reorder_pre_hook_nodes_to_mimic_eager(self):
"""
Usage of AOTAutograd causes all the pre_hook nodes to get pushed to the
end of the graph. This differs from eager mode, which schedules them
right before their registered node execution. This pass attempts to
reorder the graph to mimic eager behavior.
"""
pre_hooks = []
for node in self.fx_tracer.graph.find_nodes(
op="call_function", target=call_hook
):
if node.kwargs.get("hook_type", None) != "pre_hook":
continue
pre_hooks.append(node)
for node in reversed(pre_hooks):
hook_getitem_node = node.args[0]
users = list(node.users.keys())
if len(users) == 0:
continue
# users are all getitem ops and they are used by same registered node
assert all(
user.op == "call_function" and user.target == operator.getitem
for user in users
)
registered_node = next(iter(users[0].users.keys()))
if registered_node is not node.next:
registered_node.prepend(hook_getitem_node)
registered_node.prepend(node)
for getitem in users:
registered_node.prepend(getitem)
def reorder_post_acc_grad_hook_nodes(self):
"""
Usage of AOTAutograd causes all the post_acc_grad_hook nodes to get
pushed to the end of the graph. This differs from eager mode, which
schedules them as soon as possible. This pass attempts to reorder the
graph to mimic eager behavior.
"""
post_acc_grad_hooks = []
for node in self.fx_tracer.graph.find_nodes(
op="call_function", target=call_hook
):
if node.kwargs.get("hook_type", None) != "post_acc_grad_hook":
continue
post_acc_grad_hooks.append(node)
# nodes in post_acc_grad_hooks are in topo order. For hooks registered
# to same node, we should keep their relative order
for node in reversed(post_acc_grad_hooks):
getitem_node = node.args[0]
param_node = node.args[1] # post_acc_grad_hook handle one param
# find the corresponding acc_grad node
acc_grad_node = None
for n in list(param_node.users.keys()):
if (
n.op == "call_function"
and n.target == torch.ops.inductor.accumulate_grad_.default
):
acc_grad_node = n
break
assert (
acc_grad_node is not None
), "post_acc_grad_hook must have corresponding acc grad node"
# append post_acc_grad_hook after acc_grad node
acc_grad_node.append(getitem_node)
getitem_node.append(node)
def reorder_post_hook_nodes(self):
"""
Usage of AOTAutograd causes all the post_hook nodes to get pushed to the
end of the graph. This differs from eager mode, which schedules them as
soon as possible. This pass attempts to reorder the graph to mimic eager
behavior.
"""
post_hooks = []
for node in self.fx_tracer.graph.find_nodes(
op="call_function", target=call_hook
):
if node.kwargs.get("hook_type", None) != "post_hook":
continue
post_hooks.append(node)
for node in reversed(post_hooks):
getitem_node = node.args[0]
output_nodes = node.args[1]
input_nodes = node.args[2]
if len(output_nodes) > 0:
continue
input_nodes_and_users = []
input_nodes_and_users.extend(list(input_nodes))
for input_node in input_nodes:
input_nodes_and_users.extend(
user
for user in list(input_node.users.keys())
if not (
user.op == "call_function"
and user.target == call_hook
and node.kwargs.get("hook_type", None) == "post_hook"
)
)
arg = max(input_nodes_and_users) # last input users
if (
arg.op == "call_function"
and arg.target == torch.ops.inductor.accumulate_grad_.default
):
param_node = arg.args[0]
post_acc_grad_hook_node = None
for n in list(param_node.users.keys()):
if (
n.op == "call_function"
and n.target == call_hook
and n.kwargs.get("hook_type", None) == "post_acc_grad_hook"
):
post_acc_grad_hook_node = n
if post_acc_grad_hook_node is not None:
post_acc_grad_hook_node.append(getitem_node)
getitem_node.append(node)
continue
if arg is not node.prev and not self.is_placeholder(arg):
arg.append(getitem_node)
getitem_node.append(node)
def to_proxy(self, t):
if t is None:
return None
if isinstance(t, list):
return [self.to_proxy(x) for x in t]
if isinstance(t, tuple):
return tuple(self.to_proxy(x) for x in t)
# can it be torch.SymInt as the code used to imply?
assert isinstance(t, torch.Tensor)
proxy_tensor = fetch_object_proxy(self.fx_tracer, t)
assert isinstance(proxy_tensor, torch.fx.experimental.proxy_tensor._ProxyTensor)
return proxy_tensor.proxy
def bind_tensors_to_proxies(
self, tensors, proxies, origins: Optional[List[Tuple[int, str]]] = None
):
if isinstance(proxies, torch.fx.Proxy):
if origins:
assert len(origins) == len(tensors)
bound_proxies = []
for i in range(len(tensors)):
nodecall_index, node_name = origins[i]
self.set_node_origin(node_name, nodecall_index, None)
bound_proxies.append(proxies[i]) # type: ignore[index]
proxies = bound_proxies
else:
proxies = [proxies[i] for i in range(len(tensors))] # type: ignore[index]
assert len(tensors) == len(proxies)
track_tensor_tree(tensors, proxies, constant=None, tracer=self.fx_tracer)
def bind_backward_state(self, index: int):
assert self.hooks_proxy is not None
proxy = self.hooks_proxy[index] # type: ignore[index]
bw_state = BackwardState()
track_tensor_tree(bw_state, proxy, constant=None, tracer=self.fx_tracer)
return bw_state
def set_node_origin(
self,
node_name: str,
nodecall_index: int,
pyobj: Optional[torch.autograd.Function],
):
maybe_aot_id = ""
if pyobj is not None:
forward_cls = pyobj._forward_cls # type: ignore[attr-defined]
if hasattr(forward_cls, "_aot_id"):
# backward was created by AOT Dispatcher
self.aot_graph_cls_name = node_name
maybe_aot_id = forward_cls._aot_id
self.aot_graph_infos[nodecall_index] = {
"ca_node_start_idx": len(self.fx_tracer.graph.nodes),
"aot_id": maybe_aot_id,
"aot_gm": forward_cls._lazy_backward_info.bw_module,
}
new_code = f"{node_name}{maybe_aot_id} (NodeCall {nodecall_index})"
raw_stack_trace = CapturedTraceback.extract().format()[-1]
new_stack_trace = raw_stack_trace.replace(
"raw_stack_trace = CapturedTraceback.extract().format()[-1]", new_code
)
set_stack_trace(new_stack_trace)
# state of the autograd engine dispatch, kept in sync by enable/disable context managers
compiled_autograd_enabled = False
# global flag to check if compiled autograd is enabled but Dynamo stance is "force_eager"
compiled_autograd_enabled_force_eager = False
# global flag to check if we are processing graphs produced from a compiled autograd graph
in_compiled_autograd_region = False
@contextlib.contextmanager
def _enable(compiler_fn, dynamic=False):
if dynamic:
assert type(dynamic) is bool
from torch._dynamo import eval_frame
if eval_frame._stance.stance == "force_eager":
# If user explicitly sets Dynamo stance to "force_eager", we want Compiled Autograd
# to fall back to eager as well.
global compiled_autograd_enabled_force_eager
compiled_autograd_enabled_force_eager = True
try:
yield
finally:
compiled_autograd_enabled_force_eager = False
else:
# we need to import this, because user might not have imported it if they directly use this context manager
# we need to lazily import it, because of circular dependencies
import torch._inductor.cudagraph_trees
(
prior_compiler,
prior_dynamic,
) = torch._C._dynamo.compiled_autograd.set_autograd_compiler(
functools.partial(AutogradCompilerInstance, compiler_fn), dynamic
)
if snapshot_verbose_logging_enabled():
torch._C._dynamo.compiled_autograd.set_verbose_logger(verbose_log)
global compiled_autograd_enabled
compiled_autograd_enabled = True
try:
with torch.autograd.set_multithreading_enabled(False):
yield
finally:
if not prior_compiler:
compiled_autograd_enabled = False
torch._C._dynamo.compiled_autograd.set_autograd_compiler(
prior_compiler, prior_dynamic
)
@contextlib.contextmanager
def _disable():
(
prior_compiler,
prior_dynamic,
) = torch._C._dynamo.compiled_autograd.set_autograd_compiler(None, False)
global compiled_autograd_enabled
compiled_autograd_enabled = False
try:
yield
finally:
if prior_compiler:
compiled_autograd_enabled = True
torch._C._dynamo.compiled_autograd.set_autograd_compiler(
prior_compiler, prior_dynamic
)
# return to starting state of a new process
def reset() -> None:
global compiled_autograd_enabled
compiled_autograd_enabled = False
assert not in_compiled_autograd_region
torch._C._dynamo.compiled_autograd.set_autograd_compiler(None, False)
torch._C._dynamo.compiled_autograd.set_verbose_logger(None)
|