1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
|
# mypy: allow-untyped-decorators
from __future__ import annotations
import collections
import contextlib
import cProfile
import dis
import functools
import itertools
import json
import logging
import os
import pstats
import random
import subprocess
import sys
import threading
import time
import traceback
import typing
import warnings
import weakref
from pathlib import Path
from types import CellType, CodeType, FunctionType, ModuleType
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TypeVar, Union
from typing_extensions import ParamSpec
from weakref import ReferenceType
import torch
import torch._logging
from torch._C._dynamo.guards import GlobalStateGuard
from torch._dynamo.distributed import get_compile_pg
from torch._dynamo.symbolic_convert import TensorifyState
from torch._guards import compile_context, CompileContext, CompileId, tracing
from torch._logging import structured
from torch._utils_internal import (
compile_time_strobelight_meta,
justknobs_check,
maybe_upload_prof_stats_to_manifold,
signpost_event,
)
from torch.fx._lazy_graph_module import _use_lazy_graph_module
from torch.fx.experimental.symbolic_shapes import (
ConstraintViolationError,
GuardOnDataDependentSymNode,
)
from torch.fx.graph_module import _forward_from_src as original_forward_from_src
from torch.monitor import _WaitCounter
from torch.nn.parallel.distributed import DistributedDataParallel
from torch.utils._python_dispatch import (
_disable_current_modes,
is_in_torch_dispatch_mode,
)
from torch.utils._traceback import CapturedTraceback, format_traceback_short
from . import config, exc, trace_rules
from .bytecode_analysis import remove_dead_code, remove_pointless_jumps
from .bytecode_transformation import (
check_inst_exn_tab_entries_valid,
Instruction,
is_generator,
propagate_inst_exn_table_entries,
transform_code_object,
)
from .cache_size import (
CacheSizeRelevantForFrame,
compute_cache_size,
exceeds_cache_size_limit,
is_recompilation,
)
from .eval_frame import (
always_optimize_code_objects,
dynamo_tls,
skip_code,
TorchPatcher,
)
from .exc import (
augment_exc_message,
BackendCompilerFailed,
FailOnRecompileLimitHit,
format_error_msg,
InternalTorchDynamoError,
RecompileLimitExceeded,
SkipCodeRecursiveException,
TorchRuntimeError,
UncapturedHigherOrderOpError,
unimplemented,
Unsupported,
)
from .guards import (
CheckFunctionManager,
get_and_maybe_log_recompilation_reason,
GuardedCode,
)
from .hooks import Hooks
from .pgo import put_code_state
from .replay_record import ExecutionRecord
from .resume_execution import TORCH_DYNAMO_RESUME_IN_PREFIX
from .symbolic_convert import (
DistributedState,
InstructionTranslator,
LocalState,
SpeculationLog,
)
from .trace_rules import is_numpy
from .utils import (
chromium_event_timed,
CleanupManager,
CompileTimeInstructionCounter,
counters,
dynamo_timed,
format_bytecode,
gen_record_file_name,
get_metrics_context,
increment_frame,
is_namedtuple,
istype,
LazyString,
orig_code_map,
reset_graph_break_dup_checker,
setup_compile_debug,
to_int_us,
troubleshooting_url,
write_record_to_file,
)
from .variables.torch_function import torch_function_mode_stack_state_mgr
np: Optional[ModuleType]
try:
import numpy as np
except ModuleNotFoundError:
np = None
if typing.TYPE_CHECKING:
from .backends.registry import CompilerFn
from .repro.after_dynamo import WrapBackendDebug
from .types import BytecodeHook, CacheEntry, DynamoFrameType
from .variables.builder import FrameStateSizeEntry
log = logging.getLogger(__name__)
bytecode_log = torch._logging.getArtifactLogger(__name__, "bytecode")
graph_break_log = torch._logging.getArtifactLogger(__name__, "graph_breaks")
compile_lock = threading.RLock()
_T = TypeVar("_T")
_P = ParamSpec("_P")
class TODO_UNKNOWN:
pass
class Tracker:
def __init__(self) -> None:
self.seen: List[ReferenceType[CodeType]] = []
self.seen_ids: Set[int] = set()
def add(self, strong_obj: CodeType) -> None:
idx = id(strong_obj)
if idx not in self.seen_ids:
obj = weakref.ref(strong_obj, lambda _: self.seen_ids.remove(idx))
self.seen.append(obj)
self.seen_ids.add(idx)
def __contains__(self, item: CodeType) -> bool:
return id(item) in self.seen_ids
def clear(self) -> None:
self.seen.clear()
self.seen_ids.clear()
input_codes = Tracker()
output_codes = Tracker()
initial_global_state: Optional[GlobalStateGuard] = None
@functools.wraps(original_forward_from_src)
def fx_forward_from_src_skip_result(
src: str, globals: Dict[str, Any], co_fields: Optional[Dict[str, str]] = None
) -> FunctionType:
# we monkey patch FX to prevent infinite loop of trying to convert
# our generated code
result = original_forward_from_src(src, globals, co_fields)
skip_code(result.__code__)
return result
def preserve_global_state(fn: Callable[_P, _T]) -> Callable[_P, _T]:
"""
Context manager to:
1) Save/restore torch.is_grad_enabled() state
2) Save/restore python random state
3) Save/restore torch random state
4) Monkey patch torch.fx.graph_module._forward_from_src
"""
@functools.wraps(fn)
def _fn(*args: _P.args, **kwargs: _P.kwargs) -> _T:
guards = GlobalStateGuard()
prior_grad_mode = torch.is_grad_enabled()
# Just in case we get left in a bad dispatch state we want to restore
# it. This can happen because the dispatch bits aren't a true
# stack/counter - so we can't just increment/decrement them as we enter
# and leave.
with torch._C._PreserveDispatchKeyGuard():
prior_inference_mode = torch.is_inference_mode_enabled()
prior_deterministic = torch.are_deterministic_algorithms_enabled()
prior_warn_only = torch.is_deterministic_algorithms_warn_only_enabled()
py_rng_state = random.getstate()
torch_rng_state = torch.random.get_rng_state()
cuda_rng_state = None
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state()
allow_tf32 = torch._C._get_cublas_allow_tf32()
prior_fwd_from_src = torch.fx.graph_module._forward_from_src
torch.fx.graph_module._forward_from_src = fx_forward_from_src_skip_result
cleanup = setup_compile_debug()
exit_stack = contextlib.ExitStack()
exit_stack.enter_context(
torch.fx._symbolic_trace._maybe_revert_all_patches()
)
exit_stack.enter_context(torch_function_mode_stack_state_mgr)
try:
return fn(*args, **kwargs)
finally:
cleanup.close()
assert (
torch._C._len_torch_function_stack() == 0
), "Torch function mode stack state changed while dynamo tracing, please report a bug"
exit_stack.close()
torch._C._set_grad_enabled(prior_grad_mode)
torch.autograd.grad_mode._enter_inference_mode(prior_inference_mode)
torch.use_deterministic_algorithms(
prior_deterministic, warn_only=prior_warn_only
)
random.setstate(py_rng_state)
torch.random.set_rng_state(torch_rng_state)
if cuda_rng_state is not None:
torch.cuda.set_rng_state(cuda_rng_state)
torch._C._set_cublas_allow_tf32(allow_tf32)
torch.fx.graph_module._forward_from_src = prior_fwd_from_src
assert (
guards.check()
), f"Global {guards.reason()}state changed while dynamo tracing, please report a bug"
_fn._torchdynamo_orig_callable = fn # type: ignore[attr-defined]
return _fn
@TorchPatcher.suppress_torch_distributed_warnings
def has_tensor_in_frame(frame: DynamoFrameType) -> bool:
"""Check if the frame has torch.* related bits"""
# Check if the function was decorated using torch._dynamo.optimize
if frame.f_code in always_optimize_code_objects:
return True
# Check if there is global import of torch.*
for co_name in frame.f_code.co_names:
if co_name in frame.f_globals:
obj = frame.f_globals[co_name]
if isinstance(obj, ModuleType) and (
obj.__name__.startswith("torch.") or obj is torch
):
return True
# ... or a global import of numpy.*
if np and config.trace_numpy and (obj is np or is_numpy(obj)):
return True
seen_ids: Dict[int, bool] = {}
def has_tensor(obj: object) -> bool:
"""Recursively check if the obj has a tensor"""
obj_id = id(obj)
if obj_id in seen_ids:
return seen_ids[obj_id]
seen_ids[obj_id] = False
if isinstance(obj, (torch.Tensor, torch.nn.Module)) or (
istype(obj, type) and issubclass(obj, torch.nn.Module)
):
seen_ids[obj_id] = True
return seen_ids[obj_id]
elif (
config.trace_numpy
and np
and (istype(obj, np.ndarray) or isinstance(obj, np.generic))
):
seen_ids[obj_id] = True
return seen_ids[obj_id]
elif istype(obj, (list, tuple)):
seen_ids[obj_id] = any(has_tensor(v) for v in obj)
return seen_ids[obj_id]
elif istype(obj, dict):
# Some packages like pytest can be updated during runtime. So, make a
# copy of values to avoid issues like "RuntimeError: dictionary
# changed size during iteration"
values = list(obj.values())
seen_ids[obj_id] = any(has_tensor(v) for v in values)
return seen_ids[obj_id]
elif istype(obj, (str, int, float, type(None), bool)):
seen_ids[obj_id] = False
return seen_ids[obj_id]
elif is_namedtuple(obj) and hasattr(obj, "_fields"):
seen_ids[obj_id] = any(has_tensor(getattr(obj, v)) for v in obj._fields)
return seen_ids[obj_id]
else:
# if config.debug:
# print(
# f"Assuming that object of type {type(obj)} does not have a tensor"
# )
return False
# Check if the passed arguments are of type Tensor
for value in frame.f_locals.values():
if has_tensor(value):
return True
log.debug(
"skipping because no torch.* %s \
%s %s",
frame.f_code.co_name,
frame.f_code.co_filename,
frame.f_code.co_firstlineno,
)
return False
def exception_handler(
e: Exception,
code: CodeType,
frame: Optional[DynamoFrameType] = None,
export: bool = False,
) -> None:
record_filename = None
if hasattr(e, "exec_record"):
record_filename = gen_record_file_name(e, code)
write_record_to_file(record_filename, e.exec_record)
e.record_filename = record_filename # type: ignore[attr-defined]
augment_exc_message(e, export=export)
FRAME_COUNTER = 0
FRAME_COMPILE_COUNTER: typing.Counter[
Union[int, FrameStateSizeEntry]
] = collections.Counter()
def maybe_cprofile(func: Callable[_P, _T]) -> Callable[_P, _T]:
if config.cprofile:
return cprofile_wrapper(func)
return func
def cprofile_wrapper(func: Callable[_P, _T]) -> Callable[_P, _T]:
@functools.wraps(func)
def profile_wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _T:
trace_id = CompileContext.current_trace_id()
assert trace_id, "Trace id is None"
profile_path = Path(
f"/tmp/{func.__name__}_{str(trace_id).replace('/', '_')}.profile"
)
prof = cProfile.Profile()
prof.enable()
start_ts = time.time()
retval = prof.runcall(func, *args, **kwargs)
profile_latency = time.time() - start_ts
prof.disable()
log.warning(
"### Cprofile for %s trace id [%s] took %.3f seconds ###",
func.__name__,
trace_id,
profile_latency,
)
ps = pstats.Stats(prof)
try:
prof.dump_stats(profile_path)
except PermissionError:
log.exception("Cannot write to %s", profile_path)
log.warning("Raw profile at %s", profile_path)
svg_path = profile_path.with_suffix(".svg")
try:
gprof2dot_process = subprocess.Popen(
[
"gprof2dot",
"-f",
"pstats",
"--node-label=total-time-percentage",
"--node-label=self-time-percentage",
"--node-label=total-time",
str(profile_path),
],
stdout=subprocess.PIPE,
)
subprocess.check_call(
["dot", "-Tsvg", "-o", str(svg_path)],
stdin=gprof2dot_process.stdout,
)
log.warning("Generated SVG from profile at %s", svg_path)
except FileNotFoundError:
log.warning(
"Failed to generate SVG from profile -- dumping stats instead."
"Try installing gprof2dot and dot for a better visualization"
)
ps.sort_stats(pstats.SortKey.TIME).print_stats(20)
ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20)
if manifold_link := maybe_upload_prof_stats_to_manifold(
str(profile_path)
): # fb-only
torch._logging.trace_structured(
"link",
lambda: {"name": "cprofile_manifold_url", "url": manifold_link},
)
return retval
return profile_wrapper
class ConvertFrameAssert:
def __init__(
self,
compiler_fn: CompilerFn,
one_graph: bool = True,
export: bool = False,
export_constraints: Optional[typing.Never] = None,
) -> None:
# assert export_constraints is None
reset_graph_break_dup_checker()
self._torchdynamo_orig_callable = compiler_fn
self._one_graph = one_graph
self._export = export
self._export_constraints = export_constraints
@property
def _clone_with_backend(self) -> Callable[[CompilerFn], ConvertFrameAssert]:
return lambda backend: convert_frame_assert(
backend, self._one_graph, self._export, self._export_constraints
)
def __call__(
self,
frame: DynamoFrameType,
cache_entry: Optional[CacheEntry],
hooks: Hooks,
frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
*,
skip: int = 0,
) -> Optional[GuardedCode]:
increment_frame()
code = frame.f_code
cache_size = compute_cache_size(frame, cache_entry)
input_codes.add(code)
if code in output_codes:
return None
if (
os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION")
and os.environ.get("TORCHDYNAMO_DEBUG_FUNCTION") != code.co_name
):
return None
if code.co_name == "<genexpr>" and code.co_filename.endswith(
(
"transformers/file_utils.py",
"transformers/utils/generic.py",
"diffusers/utils/outputs.py",
)
):
# not needed, but cleans up torchbench error stats
return None
if code.co_name == "__setattr__":
# setattr could be tricky to handle generally,
# but also not likely useful to compile- skip the whole frame
return None
if code.co_name == "__init__" and code.co_filename.startswith(
os.path.dirname(torch.optim.__file__)
):
# optimizer support is still incomplete see
# test_state_dict in test/dynamo/test_optimizers.py
return None
# Check if the frame is generated by an exec builtin call
# TODO - Running exec generated frame seems propagates f_globals to the
# next frames.
if code.co_name == "<module>" and code.co_filename == "<string>":
return None
if (
code.co_name == "<lambda>"
and code.co_filename == "<string>"
and not bool(frame.f_builtins)
):
# namedtuple subclass constructor. Empty builtins cause issue with
# len keyword in LIST_LEN guard.
return None
if is_generator(code):
unimplemented("generator")
if not has_tensor_in_frame(frame):
return None
global initial_global_state
initial_global_state = GlobalStateGuard()
global FRAME_COUNTER
if "_id" not in frame_state:
frame_state["_id"] = FRAME_COUNTER
FRAME_COUNTER += 1
frame_id = frame_state["_id"]
assert isinstance(frame_id, int)
frame_compile_id = FRAME_COMPILE_COUNTER[frame_id]
FRAME_COMPILE_COUNTER[frame_id] += 1
compile_id = CompileId(frame_id, frame_compile_id)
signpost_event(
"dynamo",
"_convert_frame_assert._compile",
{
"co_name": code.co_name,
"frame_id": frame_id,
"compile_id": str(compile_id),
"co_filename": code.co_filename,
"co_firstlineno": code.co_firstlineno,
"cache_size": cache_size.num_cache_entries_with_same_id_matched_objs,
"accumulated_cache_size": cache_size.num_cache_entries,
},
)
# Record traced frames, skipping Dynamo generated ones.
if not code.co_name.startswith(TORCH_DYNAMO_RESUME_IN_PREFIX):
info = f"{code.co_name} {code.co_filename}:{code.co_firstlineno}"
dynamo_tls.traced_frame_infos.append(info)
with compile_context(CompileContext(compile_id)):
return _compile(
frame.f_code,
frame.f_globals,
frame.f_locals,
frame.f_builtins,
frame.closure,
self._torchdynamo_orig_callable,
self._one_graph,
self._export,
self._export_constraints,
hooks,
cache_entry,
cache_size,
frame,
frame_state=frame_state,
compile_id=compile_id,
skip=skip + 1,
)
def convert_frame_assert(
compiler_fn: CompilerFn,
one_graph: bool = True,
export: bool = False,
export_constraints: Optional[typing.Never] = None,
) -> ConvertFrameAssert:
"""Fully convert a frame into an FX graph"""
return ConvertFrameAssert(compiler_fn, one_graph, export, export_constraints)
from collections import OrderedDict
from torch.utils.hooks import RemovableHandle
if typing.TYPE_CHECKING:
from .output_graph import OutputGraph
# we have to use `OrderedDict` to make `RemovableHandle` work.
_bytecode_hooks: Dict[int, BytecodeHook] = OrderedDict()
def register_bytecode_hook(hook: BytecodeHook) -> RemovableHandle:
"""Register hooks for bytecode generated by Dynamo. The hook can do some
logging, as well as return a new code object to be used. Please refer
to `BytecodeHook` for the hook signature.
"""
handle = RemovableHandle(_bytecode_hooks)
_bytecode_hooks[handle.id] = hook
return handle
def _compile(
code: CodeType,
globals: Dict[str, object],
locals: Dict[str, object],
builtins: Dict[str, object],
closure: Tuple[CellType],
compiler_fn: CompilerFn,
one_graph: bool,
export: bool,
export_constraints: Optional[typing.Never],
hooks: Hooks,
cache_entry: Optional[CacheEntry],
cache_size: CacheSizeRelevantForFrame,
frame: Optional[DynamoFrameType] = None,
frame_state: Optional[Dict[str, Union[int, FrameStateSizeEntry]]] = None,
*,
compile_id: CompileId,
skip: int = 0,
) -> Optional[GuardedCode]:
from torch.fx.experimental.validator import (
bisect,
BisectValidationException,
translation_validation_enabled,
ValidationException,
)
# Only nonlocal defs here please!
# Time spent compiling this frame before restarting or failing analysis
dynamo_time_before_restart: float = 0.0
output: Optional[OutputGraph] = None
tracer: Optional[InstructionTranslator] = None
tf_mode_stack: List[
torch.overrides.TorchFunctionMode
] = torch.overrides._get_current_function_mode_stack()
@preserve_global_state
def transform(
instructions: List[Instruction], code_options: Dict[str, object]
) -> None:
nonlocal output
nonlocal tracer
speculation_log.restart()
tracer = InstructionTranslator(
instructions,
code,
locals,
globals,
builtins,
closure,
tf_mode_stack,
code_options,
compiler_fn,
one_graph,
export,
export_constraints,
frame_state=frame_state,
speculation_log=speculation_log,
distributed_state=distributed_state,
)
try:
with tracing(tracer.output.tracing_context), tracer.set_current_tx():
tracer.run()
except exc.UnspecializeRestartAnalysis:
speculation_log.clear()
raise
except (
exc.SpeculationRestartAnalysis,
exc.TensorifyScalarRestartAnalysis,
exc.SkipFrame,
):
raise
except Exception:
if translation_validation_enabled():
bisect(tracer.output.shape_env)
raise
finally:
tracer.output.call_cleanup_hooks()
output = tracer.output
assert output is not None
assert output.output_instructions
instructions[:] = output.output_instructions
code_options.update(output.code_options)
# The config.dead_code_elimination flag is deprecated
# See https://github.com/pytorch/pytorch/issues/136862 for more information
if not config.dead_code_elimination:
warnings.warn(
"The config.dead_code_elimination flag is deprecated, it's now always true."
)
propagate_inst_exn_table_entries(instructions)
check_inst_exn_tab_entries_valid(instructions)
instructions[:] = remove_pointless_jumps(remove_dead_code(instructions))
def compile_inner(
code: CodeType,
one_graph: bool,
hooks: Hooks,
transform: Callable[[List[Instruction], Dict[str, Any]], Any],
) -> Optional[GuardedCode]:
with contextlib.ExitStack() as stack:
stack.enter_context(
dynamo_timed(
"_compile.compile_inner",
phase_name="entire_frame_compile",
dynamo_compile_column_us="dynamo_cumulative_compile_time_us",
)
)
stack.enter_context(
_WaitCounter("pytorch.wait_counter.dynamo_compile").guard()
)
stack.enter_context(torch._dynamo.callback_handler.install_callbacks())
stack.enter_context(CompileTimeInstructionCounter.record())
return _compile_inner(code, one_graph, hooks, transform)
return None # dead, but see https://github.com/python/mypy/issues/7577
@compile_time_strobelight_meta(phase_name="compile_inner")
@maybe_cprofile
def _compile_inner(
code: CodeType,
one_graph: bool,
hooks: Hooks,
transform: Callable[[List[Instruction], Dict[str, Any]], Any],
) -> Optional[GuardedCode]:
nonlocal dynamo_time_before_restart
last_attempt_start_time = start_time = time.time()
def log_bytecode(
prefix: str, name: str, filename: str, line_no: int, code: CodeType
) -> None:
if bytecode_log.isEnabledFor(logging.DEBUG):
bytecode_log.debug(
format_bytecode(prefix, name, filename, line_no, code)
)
log_bytecode(
"ORIGINAL BYTECODE",
code.co_name,
code.co_filename,
code.co_firstlineno,
code,
)
out_code = None
for attempt in itertools.count():
CompileContext.get().attempt = attempt
try:
out_code = transform_code_object(code, transform)
break
except exc.RestartAnalysis as e:
if not isinstance(e, exc.TensorifyScalarRestartAnalysis):
TensorifyState.clear()
log.info(
"Restarting analysis due to %s",
LazyString(format_traceback_short, e.__traceback__),
)
# If restart reason is None just log the type of the exception
restart_reasons.add(e.restart_reason or str(type(e)))
# We now have a new "last attempt", reset the clock
last_attempt_start_time = time.time()
if attempt > 100:
unimplemented("100+ RestartAnalysis() calls")
except exc.SkipFrame as e:
if not isinstance(e, exc.TensorifyScalarRestartAnalysis):
TensorifyState.clear()
log.debug(
"Skipping frame %s %s \
%s %s",
e,
code.co_name,
code.co_filename,
code.co_firstlineno,
)
if one_graph:
log.debug("No graph captured with one_graph=True")
return None
assert (
distributed_state is None or distributed_state.all_states is not None
), "compiler collective wasn't run before compilation completed"
assert out_code is not None
log_bytecode(
"MODIFIED BYTECODE",
code.co_name,
code.co_filename,
code.co_firstlineno,
out_code,
)
for hook in _bytecode_hooks.values():
hook_output = hook(code, out_code)
if hook_output is not None:
out_code = hook_output
orig_code_map[out_code] = code
output_codes.add(out_code)
dynamo_time_before_restart = last_attempt_start_time - start_time
assert output is not None
# Tests for new code objects.
# The rationale for these tests can be found in torch/csrc/dynamo/eval_frame.c
# Only test once the code object is created.
# They are not tested during runtime.
def count_args(code: CodeType) -> int:
import inspect
return (
code.co_argcount
+ code.co_kwonlyargcount
+ bool(code.co_flags & inspect.CO_VARARGS)
+ bool(code.co_flags & inspect.CO_VARKEYWORDS)
)
assert out_code is not None
total_argcount_old = count_args(code)
total_argcount_new = count_args(out_code)
msg = "arg mismatch: "
msg += f"old code object has args {code.co_varnames[:total_argcount_old]}, "
msg += f"new code object has args {out_code.co_varnames[:total_argcount_new]}"
assert (
code.co_varnames[:total_argcount_old]
== out_code.co_varnames[:total_argcount_new]
), msg
msg = "free var mismatch: "
msg += f"old code object has free var {code.co_freevars}, "
msg += f"new code object has free var {out_code.co_freevars}"
assert code.co_freevars == out_code.co_freevars, msg
msg = "cell var mismatch: "
msg += f"old code object has cell var {code.co_cellvars}, "
msg += f"new code object has cell var {out_code.co_cellvars}"
assert code.co_cellvars == out_code.co_cellvars, msg
# Skipping Dynamo on a frame without any extracted graph.
# This does not affect eager functionality. But this is necessary
# for export for cases where Dynamo-reconstructed bytecode can create
# new function frames, confusing export in thinking that there
# are extra graphs now.
if output.export and output.is_empty_graph():
return None
assert output.guards is not None
CleanupManager.instance[out_code] = output.cleanups
nonlocal cache_entry
check_fn = CheckFunctionManager(
output,
cache_entry,
hooks.guard_fail_fn if hooks else None,
)
compile_id_str = str(compile_id) if compile_id is not None else "Unknown"
annotation_str = "Torch-Compiled Region: " + compile_id_str
guarded_code = GuardedCode(
out_code, check_fn.guard_manager, compile_id, annotation_str # type: ignore[arg-type]
)
if not output.is_empty_graph() and hooks.guard_export_fn is not None:
# We should not run the guard_export_fn when Dynamo does not
# generate any graph. This can happen in export when TorchDynamo
# generated bytecode has some reconstruction logic for mutated
# variables which can trigger TorchDynamo on the children frames but
# they are benign and do not generate any new graphs.
hooks.guard_export_fn(output.guards)
return guarded_code
metrics_context = get_metrics_context()
with _use_lazy_graph_module(config.use_lazy_graph_module), compile_context(
CompileContext(compile_id)
), chromium_event_timed(
"dynamo", reset_event_log=True, log_pt2_compile_event=True
), metrics_context:
restart_reasons: set[str] = set()
# This is shared across restarts
speculation_log = SpeculationLog()
if compile_pg := get_compile_pg():
distributed_state = DistributedState(compile_pg, LocalState())
else:
distributed_state = None
# Check recompilations
recompile_reasons = None
if is_recompilation(cache_size) and frame:
recompile_reasons = get_and_maybe_log_recompilation_reason(
cache_entry, frame
)
exceeded, limit_type = exceeds_cache_size_limit(cache_size, compile_id)
if exceeded:
def format_func_info(code: CodeType) -> str:
return f"'{code.co_name}' ({code.co_filename}:{code.co_firstlineno})"
def format_guard_failures() -> str:
if not recompile_reasons:
return "Unable to find recompilation reasons"
return recompile_reasons[-1]
log.warning(
"torch._dynamo hit config.%s (%s)\n"
" function: %s\n"
" last reason: %s\n"
'To log all recompilation reasons, use TORCH_LOGS="recompiles".\n'
"To diagnose recompilation issues, see %s.",
limit_type,
getattr(config, limit_type),
format_func_info(code),
format_guard_failures(),
troubleshooting_url,
)
if config.fail_on_cache_limit_hit:
raise FailOnRecompileLimitHit(
f"{limit_type} reached, because fail_on_cache_limit_hit = True this is a HARD failure"
)
elif config.skip_code_recursive_on_cache_limit_hit and justknobs_check(
"pytorch/compiler:skip_code_recursive_on_cache_limit_hit"
):
raise RecompileLimitExceeded(f"{limit_type} reached")
else:
# do not recursively skip frames
unimplemented(f"{limit_type} reached")
log.debug(
"torchdynamo start compiling %s %s:%s, stack (elided %s frames):\n%s",
code.co_name,
code.co_filename,
code.co_firstlineno,
skip + 2,
# -2: omit current frame, omit contextlib decorator
"".join(CapturedTraceback.extract(skip=2 + skip).format()),
)
# -4: -2 as above, plus trace_structured frames
#
# NB: the frame looks like this:
#
# # handled by skip argument
# torch/_dynamo/convert_frame.py:1069 in catch_errors
# torch/_dynamo/convert_frame.py:910 in _convert_frame
# torch/_dynamo/convert_frame.py:464 in _convert_frame_assert
# torch/_utils_internal.py:70 in wrapper_function
#
# # 2 current frame and context lib
# env/lib/python3.10/contextlib.py:79 in inner
# torch/_dynamo/convert_frame.py:776 in _compile
#
# # 2 extra here
# torch/_logging/_internal.py:1064 in trace_structured
# torch/_dynamo/convert_frame.py:780 in <lambda>
convert_frame_intern = structured.intern_string(__file__)
# Initialize the ChromiumEventLogger on start
torch._logging.trace_structured(
"dynamo_start",
lambda: {
"stack": list(
itertools.takewhile(
lambda f: f["filename"] != convert_frame_intern,
structured.from_traceback(
CapturedTraceback.extract(skip=4 + skip).summary()
),
)
)
+ [
{
"line": code.co_firstlineno,
"name": code.co_name,
"filename": structured.intern_string(code.co_filename),
}
]
},
)
start_time_ns = time.time_ns()
fail_type: Optional[str] = None
fail_reason: Optional[str] = None
fail_user_frame_filename: Optional[str] = None
fail_user_frame_lineno: Optional[int] = None
torch._dynamo.utils.ReinplaceCounters.clear()
guarded_code = None
try:
guarded_code = compile_inner(code, one_graph, hooks, transform)
# NB: We only put_code_state in success case. Success case here
# does include graph breaks; specifically, if a graph break still
# resulted in a partially compiled graph, we WILL return here. An
# Unsupported exception will only bubble to the top level if we
# are unable to compile the frame at all. In this case, there's
# no point in uploading the code state, because we will always
# fail exactly the same way even without the update. (It's useful
# to upload for graph break though, because this can prevent
# extra graph break compilations.)
put_code_state()
return guarded_code
except Exception as e:
# NB: e's msg is mutated here to add user stack, but we DON'T want
# that stack in the Scuba logged fail_reason. So we grab the fail
# info here and add it to the metrics context below.
fail_type = type(e).__qualname__
fail_reason = str(e)
exception_handler(e, code, frame, export=export)
# NB: this is the post-mutation exception
torch._logging.trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "dynamo_error",
"encoding": "string",
},
payload_fn=lambda: traceback.format_exc(),
)
fail_user_frame_filename, fail_user_frame_lineno = exc.get_exc_message(
e, compile_id
)
if isinstance(
e,
(
Unsupported,
TorchRuntimeError,
BackendCompilerFailed,
AssertionError,
ConstraintViolationError,
GuardOnDataDependentSymNode,
ValidationException,
UncapturedHigherOrderOpError,
BisectValidationException,
),
):
raise
else:
# Rewrap for clarity
raise InternalTorchDynamoError(
f"{type(e).__qualname__}: {str(e)}"
).with_traceback(e.__traceback__) from None
finally:
# === WARNING WARNING WARNING ===
# If you commit a bug here, it will suppress writing to
# dynamo_compile table, and we will not have telemetry.
# Be extra careful when making changes here!
if tracer:
tracer.output.local_scope = {}
from .utils import curr_frame
frame_key = str(curr_frame)
if fail_reason is None and output is not None:
guard_count = len(output.guards)
shape_env_guard_count = len(output.shape_env.guards)
graph_op_count = output.count_calls()
graph_node_count = len(output.graph.nodes)
graph_input_count = len(output.placeholders)
non_compliant_ops = {op.__qualname__ for op in output.non_compliant_ops}
compliant_custom_ops = {
op.__qualname__ for op in output.compliant_custom_ops
}
torch._dynamo.utils.ReinplaceCounters.log()
else:
guard_count = None
shape_env_guard_count = None
graph_op_count = None
graph_node_count = None
graph_input_count = None
non_compliant_ops = set({})
compliant_custom_ops = set({})
restart_reasons = set()
# If compilation failed, the entire time is wasted
dynamo_time_before_restart = (time.time_ns() - start_time_ns) / 1e9
def clean_for_json(d: Dict[str, Any]) -> Dict[str, Any]:
blocklist = {
"TYPE_CHECKING",
"log_file_name",
"verbose",
"repro_after",
"repro_level",
"repro_forward_only",
"repro_tolerance",
"repro_ignore_non_fp",
"same_two_models_use_fp64",
"base_dir",
"debug_dir_root",
"_save_config_ignore",
"log_compilation_metrics",
"inject_BUILD_SET_unimplemented_TESTING_ONLY",
"_autograd_backward_strict_mode_banned_ops",
"reorderable_logging_functions",
"ignore_logger_methods",
"traceable_tensor_subclasses",
"_custom_ops_profile",
}
return {
key: list(value) if isinstance(value, set) else value
for key, value in d.items()
if key not in blocklist
}
config_dict = clean_for_json(config.get_config_copy())
metrics = {
"frame_key": frame_key,
"co_name": code.co_name,
"co_filename": code.co_filename,
"co_firstlineno": code.co_firstlineno,
"cache_size": cache_size.num_cache_entries_with_same_id_matched_objs,
"accumulated_cache_size": cache_size.num_cache_entries,
"guard_count": guard_count,
"shape_env_guard_count": shape_env_guard_count,
"graph_op_count": graph_op_count,
"graph_node_count": graph_node_count,
"graph_input_count": graph_input_count,
"fail_type": fail_type,
"fail_reason": fail_reason,
"fail_user_frame_filename": fail_user_frame_filename,
"fail_user_frame_lineno": fail_user_frame_lineno,
"non_compliant_ops": non_compliant_ops,
"compliant_custom_ops": compliant_custom_ops,
"restart_reasons": restart_reasons,
"dynamo_time_before_restart_s": dynamo_time_before_restart,
"has_guarded_code": guarded_code is not None,
"config_suppress_errors": config.suppress_errors,
"config_inline_inbuilt_nn_modules": config.inline_inbuilt_nn_modules,
"specialize_float": config.specialize_float,
"dynamo_config": json.dumps(config_dict),
"is_forward": True,
"dynamo_compile_time_before_restart_us": to_int_us(
dynamo_time_before_restart
),
}
metrics_context.update_outer(metrics)
# === END WARNING WARNING WARNING ===
class ConvertFrame:
def __init__(self, compiler_fn: CompilerFn, hooks: Hooks) -> None:
self._torchdynamo_orig_callable = compiler_fn
self._inner_convert = convert_frame_assert(compiler_fn, one_graph=False)
self._hooks = hooks
@property
def _clone_with_backend(self) -> Callable[[WrapBackendDebug], ConvertFrame]:
return lambda backend: convert_frame(backend, self._hooks)
def __call__(
self,
frame: DynamoFrameType,
cache_entry: Optional[CacheEntry],
hooks: Hooks,
frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
skip: int = 0,
) -> Optional[
Union[
GuardedCode,
torch._C._dynamo.eval_frame.SkipCodeRecursiveFlag,
torch._C._dynamo.eval_frame.CacheLimitHitFlag,
]
]:
counters["frames"]["total"] += 1
try:
result = self._inner_convert(
frame, cache_entry, hooks, frame_state, skip=skip + 1
)
counters["frames"]["ok"] += 1
return result
except Exception as e:
# These two exception types are "soft" failure, in the sense that
# we know this is due to something we didn't implement all the
# way, scare the user less about it. That being said, if you
# are trying to understand why a graph break happened, it's still
# important to have this information, so offer it.
#
# NB: NotImplementedError used to be on this list, but actually
# it is impossible for it to reach here, as it is converted into
# InternalTorchDynamoError. This behavior seemed reasonable
# to me (ezyang, Aug 2023) so I kept it, but maybe at some point
# someone wanted these to also get suppressed. If so, you'll
# need to make these exceptions not get wrapped
# We intentionally don't want to suppress error here.
if isinstance(e, UncapturedHigherOrderOpError):
raise
soft_fail = isinstance(e, Unsupported)
# This is a soft failure. In the sense, the code path reaches here
# when we do not support graph breaks on bytecodes like LOAD_ATTR,
# BUILD_SET etc. In such case, we can fallback to eager without
# scaring users.
if isinstance(e, Unsupported) and graph_break_log.isEnabledFor(
logging.DEBUG
):
# Log this message in the graph break. Also use the string
# "skip: " to tell that the whole frame is falling back to
# eager.
if hasattr(e, "compile_id"):
with compile_context(CompileContext(e.compile_id)): # type: ignore[attr-defined]
user_stack = e.real_stack
user_stack_formatted = "".join(
traceback.format_list(user_stack)
)
user_stack_trace = f"Graph break: skip: from user code at:\n{user_stack_formatted}"
torch._logging.trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "dynamo_graph_break_reason",
"encoding": "string",
},
payload_fn=lambda: f"{user_stack_trace}\n{traceback.format_exc()}",
)
graph_break_log.debug(
user_stack_trace,
exc_info=True,
)
if not config.suppress_errors and not soft_fail:
raise
# Suppress the error. NB: It's very important to do the
# suppression logging HERE, where the actual suppression
# happens. Previously it was somewhere else and so it was
# possible to accidentally not log at all.
record_filename = getattr(e, "record_filename", None)
code = frame.f_code
error_msg = format_error_msg(e, code, record_filename, frame)
if soft_fail:
log.info(error_msg, exc_info=True)
else:
log.warning(error_msg, exc_info=True)
# If we encounter SkipCodeRecursiveException, return skip_code_recursive_flag
# to signal to Dynamo eval frame to skip the current frame and any recursive calls.
if isinstance(e, SkipCodeRecursiveException):
return torch._C._dynamo.eval_frame.skip_code_recursive_flag
elif isinstance(e, RecompileLimitExceeded):
# signal to Dynamo to run this frame on run-only mode, skipping recursively if
# no valid cache entry is found.
return torch._C._dynamo.eval_frame.cache_limit_hit_flag
return None
def convert_frame(compiler_fn: CompilerFn, hooks: Hooks) -> ConvertFrame:
"""Try to convert a frame into an FX graph, if error leave frame unmodified"""
return ConvertFrame(compiler_fn, hooks)
# TODO mlazos: add support for same args, or record them
def replay(filename: str) -> None:
from .backends.debugging import eager
original_replay_val = config.replay_record_enabled
config.replay_record_enabled = False
with open(filename, "rb") as in_file:
record = ExecutionRecord.load(in_file)
record.globals = dict(itertools.chain(record.globals.items(), globals().items()))
try:
_compile(
record.code,
record.globals,
record.locals,
record.builtins,
record.closure,
compiler_fn=eager,
one_graph=False,
export=False,
export_constraints=None,
hooks=Hooks(),
cache_size=CacheSizeRelevantForFrame(0, 0),
cache_entry=None,
frame=None,
frame_state={},
compile_id=CompileId(42, 999),
)
finally:
config.replay_record_enabled = original_replay_val
def first_real_inst_idx(code: CodeType) -> int:
if sys.version_info < (3, 11):
return 0
for inst in dis.get_instructions(code):
if inst.opname == "RESUME":
return inst.offset // 2
raise RuntimeError("RESUME instruction not found in code")
class ConvertFrameProtocol(typing.Protocol):
def __call__(
self,
frame: DynamoFrameType,
cache_entry: Optional[CacheEntry],
hooks: Hooks,
frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
*,
skip: int = 0,
) -> Optional[GuardedCode]:
...
class CatchErrorsWrapper:
def __init__(self, callback: ConvertFrameProtocol, hooks: Hooks) -> None:
functools.wraps(callback)(self)
self._torchdynamo_orig_callable = callback
self.hooks = hooks
def __call__(
self,
frame: DynamoFrameType,
cache_entry: Optional[CacheEntry],
frame_state: Dict[str, Union[int, FrameStateSizeEntry]],
) -> Optional[GuardedCode]:
assert frame_state is not None
is_skipfile = trace_rules.check(frame.f_code)
if sys.version_info >= (3, 13):
has_started_execution = frame.f_lasti > first_real_inst_idx(frame.f_code)
else:
has_started_execution = frame.f_lasti >= first_real_inst_idx(frame.f_code)
if (
# TODO: the first condition is not covered by any test
has_started_execution
or is_skipfile
or config.disable
or (
is_in_torch_dispatch_mode(include_infra_modes=False)
and not getattr(self._torchdynamo_orig_callable, "_export", False)
)
):
if log.isEnabledFor(logging.DEBUG):
if has_started_execution:
skip_reason = "traced frame already"
elif trace_rules.check(frame.f_code):
skip_reason = "in skipfiles"
elif is_in_torch_dispatch_mode(include_infra_modes=False):
skip_reason = "non-infra torch dispatch mode present, this is not supported today in torch.compile"
else:
skip_reason = "dynamo tracing is disabled"
log.debug(
"skipping: %s (reason: %s, file: %s)",
frame.f_code.co_name,
skip_reason,
frame.f_code.co_filename,
)
return None
if frame.f_code.co_filename == "<string>" and frame.f_code.co_name == "__new__":
# nametuple constructor
return None
if config._get_optimize_ddp_mode() == "ddp_optimizer":
ddp_module = DistributedDataParallel._get_active_ddp_module()
if ddp_module:
with compile_lock:
from torch._dynamo.backends.distributed import DDPOptimizer
ddp_optimizer = DDPOptimizer(
bucket_bytes_cap=ddp_module.bucket_bytes_cap,
backend_compile_fn=self._torchdynamo_orig_callable._torchdynamo_orig_callable, # type: ignore[attr-defined]
)
assert hasattr(
self._torchdynamo_orig_callable, "_clone_with_backend"
), "DDPOptimizer only supports callback fns that know how to clone themselves."
hijacked_callback = (
self._torchdynamo_orig_callable._clone_with_backend(
ddp_optimizer.compile_fn,
)
)
return hijacked_callback(
frame, cache_entry, self.hooks, frame_state
)
with compile_lock, _disable_current_modes():
# skip=1: skip this frame
return self._torchdynamo_orig_callable(
frame, cache_entry, self.hooks, frame_state, skip=1
)
def catch_errors_wrapper(
callback: ConvertFrameProtocol, hooks: Hooks
) -> CatchErrorsWrapper:
return CatchErrorsWrapper(callback, hooks)
|