1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
import copyreg
import io
import logging
import math
import pickle
from collections import defaultdict, deque
from dataclasses import fields
from typing import (
Any,
Callable,
Deque,
Dict,
List,
Optional,
Set,
Tuple,
TYPE_CHECKING,
TypeVar,
)
import torch._logging
import torch.fx
from torch._subclasses.fake_tensor import FakeTensor
from torch.utils._pytree import tree_flatten
T = TypeVar("T")
if TYPE_CHECKING:
from .symbolic_convert import InstructionTranslatorBase
Node = torch.fx.Node
Region = List[Node]
IdenticalNodes = List[Node]
GlobalStateKey = Tuple[bool, bool, int, bool, bool, torch.dtype, bool, bool, bool, bool]
log = logging.getLogger(__name__)
graph_expansion_log = torch._logging.getArtifactLogger(
__name__, "graph_region_expansion"
)
def debug_log(msg: str, *args) -> None: # type: ignore[no-untyped-def]
graph_expansion_log.debug(msg, *args)
def _extract_tensor_metadata_for_node_hash(
x: torch.Tensor,
) -> Tuple[Callable[[T], T], Tuple[Any, ...]]:
from torch._inductor.codecache import _ident, extract_tensor_metadata_for_cache_key
out = []
metadata = extract_tensor_metadata_for_cache_key(x)
for field in fields(metadata):
out.append(getattr(metadata, field.name))
return (_ident, tuple(out))
class NodeHashException(Exception):
pass
class InputPickler(pickle.Pickler):
def __init__(self) -> None:
from torch._inductor.codecache import _ident
stream = io.BytesIO()
self._stream = stream
super().__init__(stream)
self.dispatch_table = copyreg.dispatch_table.copy()
self.dispatch_table.update(
{
FakeTensor: _extract_tensor_metadata_for_node_hash,
torch.SymInt: lambda x: (_ident, (str(x),)),
torch.SymBool: lambda x: (_ident, (str(x),)),
torch.SymFloat: lambda x: (_ident, (str(x),)),
}
)
self.fast = True
def dumps(self, obj: Any) -> bytes:
"""
Pickle an object and return a byte string.
"""
try:
self.dump(obj)
return self._stream.getvalue()
except (TypeError, AttributeError) as e:
raise NodeHashException from e
finally:
self._stream.seek(0)
self._stream.truncate(0)
def _extract_tensor_arg(arg: Any) -> Any:
if isinstance(arg, Node):
return arg.meta.get("example_value")
else:
return None
def _normalize_args(
node: Node,
) -> Tuple[Tuple[str, ...], Tuple[Optional[Any], ...]]:
flat_args, _ = tree_flatten(node.args)
sorted_kwargs = sorted(node.kwargs.items(), key=lambda x: x[0])
sorted_keys = tuple(sorted(node.kwargs.keys()))
flat_kwargs, _ = tree_flatten(sorted_kwargs)
all_args = flat_args + flat_kwargs
return (sorted_keys, tuple(_extract_tensor_arg(arg) for arg in all_args))
def get_global_state_key() -> GlobalStateKey:
return (
torch.is_grad_enabled(),
torch.is_inference_mode_enabled(),
torch.get_num_threads(),
torch._C._get_cublas_allow_fp16_reduced_precision_reduction(),
torch._C._get_cublas_allow_bf16_reduced_precision_reduction(),
torch.get_default_dtype(),
torch.are_deterministic_algorithms_enabled(),
torch._C._get_cublas_allow_tf32(),
torch.is_deterministic_algorithms_warn_only_enabled(),
torch._C._autograd._saved_tensors_hooks_is_enabled(), # type: ignore[attr-defined]
)
# This is typical BFS with the caveat
# that a node's children need to be explicitly
# added with the add_children() method
# The flow is yield a node and check if it's valid for all regions
# if not valid, discard and continue onto the next node
# Note: this iterates backward through the graph by looking at args/kwargs
# of a node
class BackwardBfsArgIter:
def __init__(self, origin: Node) -> None:
self._cur: Optional[Node] = origin
self._queue: Deque[Optional[Node]] = deque()
@staticmethod
def create(origin: Node) -> "BackwardBfsArgIter":
it = BackwardBfsArgIter(origin)
it.add_children(origin)
return it
def next(self) -> Optional[Node]:
ret = self._cur
if not self._queue:
self._cur = None
else:
self._cur = self._queue.popleft()
return ret
def peek(self) -> Optional[Node]:
return self._cur
def add_children(self, node: Node) -> None:
arg: Any
flat_args, _ = tree_flatten(node.args)
for arg in flat_args:
if isinstance(arg, Node):
self._append(arg)
flat_kwargs, _ = tree_flatten(node.kwargs)
for kwarg in flat_kwargs:
if isinstance(kwarg, Node):
self._append(kwarg)
def _append(self, arg: Node) -> None:
if self._cur is None:
self._cur = arg
else:
self._queue.append(arg)
class GraphRegionTracker:
"""
GraphRegionTracker tracks each node added to the output graph and generates a key based on the source location,
instruction pointer, input shapes, and global state at the time the node is inserted into the graph. Nodes with
the same key are grouped together in a list of identical nodes (the value of node_to_duplicates).
hash_to_duplicates: Dict[str, IdenticalNodes] - A dictionary mapping the key to a list of identical nodes
node_to_duplicates: Dict[Node, IdenticalNodes] - A dictionary mapping a node to the list of identical nodes it belongs to
input_pickler: InputPickler - An instance of InputPickler used to generate a node hash
"""
def __init__(self) -> None:
self.hash_to_duplicates: Dict[str, IdenticalNodes] = defaultdict(list)
self.node_to_duplicates: Dict[Node, IdenticalNodes] = {}
self.input_pickler = InputPickler()
def _hash_node(
self, filename: str, lineno: int, instruction_pointer: Optional[int], node: Node
) -> str:
from torch._inductor.codecache import sha256_hash
key = (
get_global_state_key(),
filename,
lineno,
instruction_pointer,
_normalize_args(node),
)
return sha256_hash(self.input_pickler.dumps(key))
def _is_identical(self, n0: Node, n1: Node) -> bool:
return (
n0 in self.node_to_duplicates
and n1 in self.node_to_duplicates
and self.node_to_duplicates[n0] is self.node_to_duplicates[n1]
and n0 is not n1
)
def track_node(self, tx: "InstructionTranslatorBase", node: Node) -> None:
"""
The main entry point for tracking a node. This function will hash the node argument and group
nodes with the same hash together. It updates the hash_to_duplicates and node_to_duplicates dictionaries
to track the new node.
"""
try:
duplicates = self.hash_to_duplicates[
self._hash_node(
tx.f_code.co_filename, tx.lineno, tx.instruction_pointer, node
)
]
duplicates.append(node)
self.node_to_duplicates[node] = duplicates
except NodeHashException as e:
log.debug("Unable to hash node %s with exception %s", node, e)
def get_identical_regions(self, graph: torch.fx.Graph) -> List[List[Region]]:
"""
This function is responsible for extracting the largest regions of identical nodes from the given graph.
**Note**: This function assumes the nodes that have been tracked with track_node are in the provided graph argument.
The algorithm proceeds as follows:
The nodes tracked via track_node above are organized into region groups. The initial region groups look like this:
[[IdenticalNode1], [IdenticalNode2], [IdenticalNode3]] and each sublist is called a region. For each region group
(starting at the topologically latest region group), the inner regions are gradually expanded one node at time from
the flattened args and kwargs of the node in each region provided that for all regions in the group, the nodes being
added are also identical (ie have the same key computed by track_node). This is checked by verifying that the two
nodes have the same identical node list in node_to_duplicates.
"""
topological_ranking = {node: i for i, node in enumerate(graph.nodes)}
region_groups_with_rank = []
# Create region groups; a region group is a group
# of regions that are all identical. In this initial state
# each region in the group is a single node, and we discard
# groups that are only a single region.
# We track the topological ranking to start with groups later in the graph
# the reason for this is that we will necessarily create the largest groups first.
for group in self.hash_to_duplicates.values():
if len(group) > 1:
region_group = []
min_rank = math.inf
for node in group:
min_rank = min(min_rank, topological_ranking[node])
region_group.append([node])
region_groups_with_rank.append((region_group, min_rank))
region_groups_with_rank.sort(key=lambda rg: -rg[1])
region_groups = [rg for rg, _ in region_groups_with_rank]
# We start from regions later in the graph and expand them earlier
# as a result, we will create the largest regions first and they won't
# overlap.
seen_nodes: Set[Node] = set()
for region_group in region_groups:
fully_expand_region_group(region_group, seen_nodes, self._is_identical)
return [
region_group for region_group in region_groups if len(region_group[0]) > 1
]
def __str__(self) -> str:
return f"GraphRegionTracker(hash_to_duplicates={self.hash_to_duplicates}, node_to_duplicates={self.node_to_duplicates})"
def fully_expand_region_group(
regions: List[Region],
seen_nodes: Set[Node],
is_identical_fn: Callable[[Node, Node], bool],
) -> None:
debug_log("--------------------------------------------------")
debug_log("expanding new region group: %s", regions)
# All regions should start with 1 node
assert all(len(region) == 1 for region in regions)
region_iters = []
for region in regions:
(origin,) = region # Only works for 1 element sets
region_iters.append(BackwardBfsArgIter.create(origin))
nodes_to_add: List[Node] = []
# we already have the origin node in each region
for region_it in region_iters:
node = region_it.next()
assert node
region_it.add_children(node)
current_node = region_iters[0].next()
assert current_node is not None
# Loop incrementally adding new nodes to each region
# regions are only expanded if the node to add is valid
# for ALL regions
while current_node:
add_node = True
nodes_to_add.clear()
nodes_to_add.append(current_node)
nodes_to_add_set = set(nodes_to_add)
for region_it in region_iters[1:]:
node = region_it.next()
debug_log("--------------------")
debug_log("considering adding: %s, cur_node: %s", node, current_node)
debug_log("previously claimed nodes: %s", node in seen_nodes)
debug_log("%s", seen_nodes)
if node:
debug_log("is_identical: %s", is_identical_fn(node, current_node))
add_node &= (
node not in seen_nodes
and node not in nodes_to_add_set
and is_identical_fn(node, current_node)
)
nodes_to_add.append(node)
nodes_to_add_set.add(node)
else:
add_node = False
debug_log("--------------------")
if add_node:
for region, region_it, node in zip(regions, region_iters, nodes_to_add):
region.append(node)
debug_log("adding %s's children", node)
debug_log("%s %s", node.args, list(node.kwargs.items()))
region_it.add_children(node)
seen_nodes.add(node)
current_node = region_iters[0].next()
# Ensure regions are sorted in topological order
for region in regions:
region.reverse()
debug_log("end expand new region group: %s", regions)
debug_log("--------------------------------------------------")
|