File: metrics_context.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (128 lines) | stat: -rw-r--r-- 4,551 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import time
from typing import Any, Callable, Dict, Optional, Type
from typing_extensions import TypeAlias


OnExitType: TypeAlias = Callable[
    [int, int, Dict[str, Any], Optional[Type[BaseException]], Optional[BaseException]],
    None,
]


class MetricsContext:
    def __init__(self, on_exit: OnExitType):
        """
        Use this class as a contextmanager to create a context under which to accumulate
        a set of metrics, e.g., metrics gathered during a compilation. On exit of the
        contextmanager, call the provided 'on_exit' function and pass a dictionary of
        all metrics set during the lifetime of the contextmanager.
        """
        self._on_exit = on_exit
        self._metrics: Dict[str, Any] = {}
        self._start_time_ns: int = 0
        self._level: int = 0

    def __enter__(self) -> "MetricsContext":
        """
        Initialize metrics recording.
        """
        if self._level == 0:
            # In case of recursion, track at the outermost context.
            self._metrics = {}
            self._start_time_ns = time.time_ns()

        self._level += 1
        return self

    def __exit__(
        self,
        exc_type: Optional[Type[BaseException]],
        exc_value: Optional[BaseException],
        _traceback: Any,
    ) -> None:
        """
        At exit, call the provided on_exit function.
        """
        self._level -= 1
        assert self._level >= 0
        if self._level == 0:
            end_time_ns = time.time_ns()
            self._on_exit(
                self._start_time_ns, end_time_ns, self._metrics, exc_type, exc_value
            )

    def in_progress(self) -> bool:
        """
        True if we've entered the context.
        """
        return self._level > 0

    def increment(self, metric: str, value: int) -> None:
        """
        Increment a metric by a given amount.
        """
        if self._level == 0:
            raise RuntimeError(f"Cannot increment {metric} outside of a MetricsContext")
        if metric not in self._metrics:
            self._metrics[metric] = 0
        self._metrics[metric] += value

    def set(self, metric: str, value: Any) -> None:
        """
        Set a metric to a given value. Raises if the metric has been assigned previously
        in the current context.
        """
        if self._level == 0:
            raise RuntimeError(f"Cannot set {metric} outside of a MetricsContext")
        if metric in self._metrics:
            raise RuntimeError(
                f"Metric '{metric}' has already been set in the current context"
            )
        self._metrics[metric] = value

    def set_key_value(self, metric: str, key: str, value: Any) -> None:
        """
        Treats a give metric as a dictionary and set the k and value within it.
        Note that the metric must be a dictionary or not present.

        We allow this to be called multiple times (i.e. for features, it's not uncommon
        for them to be used multiple times within a single compilation).
        """
        if self._level == 0:
            raise RuntimeError(f"Cannot set {metric} outside of a MetricsContext")
        if metric not in self._metrics:
            self._metrics[metric] = {}
        self._metrics[metric][key] = value

    def update(self, values: Dict[str, Any]) -> None:
        """
        Set multiple metrics directly. This method does NOT increment. Raises if any
        metric has been assigned previously in the current context.
        """
        if self._level == 0:
            raise RuntimeError("Cannot update metrics outside of a MetricsContext")
        existing = self._metrics.keys() & values.keys()
        if existing:
            raise RuntimeError(
                f"Metric(s) {existing} have already been set in the current context"
            )
        self._metrics.update(values)

    def update_outer(self, values: Dict[str, Any]) -> None:
        """
        Update, but only when at the outermost context.
        """
        if self._level == 0:
            raise RuntimeError("Cannot update metrics outside of a MetricsContext")
        if self._level == 1:
            self.update(values)

    def add_to_set(self, metric: str, value: Any) -> None:
        """
        Records a metric as a set() of values.
        """
        if self._level == 0:
            raise RuntimeError(f"Cannot add {metric} outside of a MetricsContext")
        if metric not in self._metrics:
            self._metrics[metric] = set()
        self._metrics[metric].add(value)