File: after_aot.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1034 lines) | stat: -rw-r--r-- 35,168 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
# mypy: allow-untyped-defs

import argparse
import copy
import functools
import io
import logging
import os
import shutil
import subprocess
import sys
import textwrap
import uuid
from importlib import import_module
from tempfile import TemporaryFile
from typing import Any, Callable, Dict, Sequence, TYPE_CHECKING, Union
from typing_extensions import Unpack

import torch
import torch.fx as fx
import torch.nn as nn
from torch._dynamo.debug_utils import (
    _cuda_system_info_comment,
    AccuracyError,
    backend_accuracy_fails,
    BuckTargetWriter,
    cast_to_fp64,
    extra_deps,
    extra_imports,
    generate_config_string,
    helper_for_dump_minify,
    InputReader,
    InputWriter,
    MAX_CONSTANT_NUMEL_INLINE,
    minifier_dir,
    NNModuleToString,
    NopInputReader,
    same_two_models,
)
from torch._dynamo.trace_rules import is_fbcode
from torch._dynamo.utils import clone_inputs, counters, same
from torch._inductor.output_code import OutputCode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.experimental.symbolic_shapes import (
    fx_placeholder_targets,
    has_free_symbols,
)
from torch.hub import tqdm

from .. import config


if TYPE_CHECKING:
    from torch._inductor.compile_fx import _CompileFxCallable, _CompileFxKwargs
    from torch._inductor.utils import InputType


log = logging.getLogger(__name__)


inductor_config = import_module("torch._inductor.config")
use_buck = inductor_config.is_fbcode()

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#                           MAIN ENTRY POINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def wrap_compiler_debug(
    unconfigured_compiler_fn: "_CompileFxCallable",
    compiler_name: str,
) -> "_CompileFxCallable":
    """
    Minifier for Fx Graph modules after Aot Autograd has finished. We wrap both
    forward and backward call separately with the backend compiler_fn - like
    inductor or nvfuser. Intercepting after Aot Autograd presents neat
    abstraction, where all the params are lifted as graph inputs, making it easy
    to save the graph as a string.
    """

    @functools.wraps(unconfigured_compiler_fn)
    def debug_wrapper(
        gm: torch.fx.GraphModule,
        example_inputs: Sequence["InputType"],
        **kwargs: Unpack["_CompileFxKwargs"],
    ) -> OutputCode:
        from torch._subclasses import FakeTensorMode

        compiler_fn = functools.partial(unconfigured_compiler_fn, **kwargs)

        from torch._functorch.aot_autograd import get_aot_graph_name

        graph_name = get_aot_graph_name()

        # TODO: why do we need to deepcopy the original graph?
        orig_graph = copy.deepcopy(gm.graph)
        assert config.repro_after in ("dynamo", "aot", None)

        try:
            # Call the compiler_fn - which is either aot_autograd or inductor
            # with fake inputs
            inner_compiled_fn = compiler_fn(gm, example_inputs)
        except Exception as e:
            # TODO: Failures here are troublesome because no real inputs,
            # need a different serialization strategy
            if config.repro_after == "aot":
                if config.repro_level == 1:
                    dump_compiler_graph_state(
                        fx.GraphModule(gm, orig_graph),
                        example_inputs,
                        compiler_name,
                    )
                elif config.repro_level == 2:
                    dump_to_minify(
                        fx.GraphModule(gm, orig_graph),
                        example_inputs,
                        compiler_name,
                    )
                log.error("CompilerError")
            raise

        # We may run regular PyTorch compute that may trigger Dynamo, do NOT
        # recursively attempt to accuracy minify in that case!
        def deferred_for_real_inputs(
            real_inputs: Sequence["InputType"], **_kwargs: object
        ) -> Any:
            # This is a bit obscure: if we recursively try to accuracy minify
            # the SAME function, this would trigger.  But most of the time
            # we should never hit this branch
            assert not _kwargs
            if config.repro_after != "aot":
                assert not isinstance(inner_compiled_fn, str)
                return inner_compiled_fn(real_inputs)
            with config.patch(repro_after=None):
                return inner_debug_fn(real_inputs)

        def inner_debug_fn(real_inputs):
            """
            Aot Autograd fw_compiler and bw_compiler can have fake tensors. So,
            example_inputs can be fake tensors. We can call compiler_fn (which is
            inductor or nvfuser) with fake tensors but the actually compiled_fn
            should be called with real tensors. Therefore, the actual invocation
            is deferred.
            """
            # Copy the tensor attrs like shape, stride etc by converting to Fake Tensor
            # because inductor clears the tensor list in its codegen. And example_inputs
            # are available only for the first invocation.
            fake_mode = FakeTensorMode()
            copy_tensor_attrs = [
                fake_mode.from_tensor(x) if isinstance(x, torch.Tensor) else x
                for x in real_inputs
            ]
            if config.repro_level == 3:
                # Always dump the original module in case we have segfaults
                dump_to_minify(
                    fx.GraphModule(gm, orig_graph), real_inputs, compiler_name
                )

            if config.repro_level == 4:
                if compiler_name != "inductor":
                    raise NotImplementedError(
                        "Accuracy minification is supported for inductor only"
                    )
                failed = not same_two_models(
                    gm,
                    inner_compiled_fn,
                    real_inputs,
                    only_fwd=True,
                    ignore_non_fp=config.repro_ignore_non_fp,
                )

                if failed:
                    log.warning(
                        "Accuracy failed for the AOT Autograd graph %s", graph_name
                    )
                    dump_compiler_graph_state(
                        fx.GraphModule(gm, orig_graph),
                        real_inputs,
                        f"{compiler_name}_accuracy",
                    )
                    dump_to_minify(
                        fx.GraphModule(gm, orig_graph),
                        real_inputs,
                        f"{compiler_name}_accuracy",
                    )
                    raise AccuracyError("Bad accuracy detected")
                else:
                    # Call the compiled function with real inputs
                    return inner_compiled_fn(real_inputs)  # type: ignore[operator]
            else:
                try:
                    # Call the compiled function with real inputs
                    out = inner_compiled_fn(real_inputs)  # type: ignore[operator]
                    # sync cuda kernels to ensure IMA detection
                    for arg in example_inputs:
                        if isinstance(arg, torch.Tensor) and arg.is_cuda:
                            torch.cuda.synchronize()
                            break
                    return out
                except Exception as e:
                    if config.repro_level == 1:
                        dump_compiler_graph_state(
                            fx.GraphModule(gm, orig_graph),
                            copy_tensor_attrs,
                            compiler_name,
                        )
                    elif config.repro_level == 2:
                        dump_to_minify(
                            fx.GraphModule(gm, orig_graph),
                            copy_tensor_attrs,
                            compiler_name,
                        )
                    raise

        if config.repro_after == "aot":
            compiled_fn = deferred_for_real_inputs
            compiled_fn._boxed_call = True  # type: ignore[attr-defined]
            return compiled_fn  # type: ignore[return-value]
        else:
            return inner_compiled_fn

    return debug_wrapper


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#                           DUMP REPROS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def maybe_fbcode_instructions():
    if is_fbcode:
        extra_deps_formatted = "\n".join([f'        "{dep}",' for dep in extra_deps])
        if len(extra_deps_formatted) > 0:
            extra_deps_formatted = "\n" + extra_deps_formatted
        return f"""\
\"\"\"
To run this script in fbcode:
- Create a directory (//scripts/{{your_unixname}}/repro)
- Put this file in scripts/{{your_unixname}}/repro/fx_graph_runnable.py
- Add a TARGETS file that looks like the following
- `buck2 run //scripts/{{your_unixname}}/repro:repro`

NOTE: you may need additional deps to actually be able to run the script.
```
# Contents of TARGETS file
load("@fbcode_macros//build_defs:python_binary.bzl", "python_binary")

python_binary(
    name = "repro",
    main_src = "fx_graph_runnable.py",
    deps = [
        "//caffe2:torch",{extra_deps_formatted}
    ],
)
```
\"\"\"
"""
    else:
        return ""


def generate_compiler_repro_string(
    gm, args, *, stable_output=False, save_dir=None, stable_hash=False
):
    model_str = textwrap.dedent(
        f"""
import torch
from torch import tensor, device
import torch.fx as fx
from torch._dynamo.testing import rand_strided
from math import inf
import torch._inductor.inductor_prims

{generate_config_string(stable_output=stable_output)}

isolate_fails_code_str = None

{extra_imports}

{maybe_fbcode_instructions()}
        """
    )
    if not stable_output:
        model_str += f"# torch version: {torch.version.__version__}\n"
        if hasattr(torch.version, "cuda"):
            model_str += f"# torch cuda version: {torch.version.cuda}\n"
        if hasattr(torch.version, "git_version"):
            model_str += f"# torch git version: {torch.version.git_version}\n\n\n"
        model_str += _cuda_system_info_comment()

    model_str += NNModuleToString.convert(gm)

    # get hint shape/stride when dynamic shape enabled
    def hint_if_symint(x):
        return tuple(i.node.hint if isinstance(i, torch.SymInt) else i for i in x)

    writer = InputWriter(save_dir, stable_hash=stable_hash)
    for placeholder, arg in zip(fx_placeholder_targets(gm), args):
        if isinstance(arg, (int, torch.SymInt)):
            writer.symint(placeholder, arg)
        elif isinstance(arg, torch.Tensor):
            # TODO: improve these names with FQN
            writer.tensor(placeholder, arg)
        elif arg is None:
            writer.const(placeholder)
        else:
            # It's better to produce a slightly wrong repro string than none
            # at all
            writer.unsupported(placeholder, arg)

    model_str += "\n".join(writer.lines()) + "\n"

    model_str += "mod = Repro()\n"
    return model_str


def save_graph_repro(
    fd,
    gm,
    args,
    compiler_name,
    *,
    stable_output=False,
    save_dir=None,
    command="run",
    accuracy=None,
    tracing_mode=None,
    check_str=None,
    stable_hash=False,
):
    if any(
        isinstance(arg, torch.fx.experimental._backward_state.BackwardState)
        for arg in args
    ):
        fd.write(
            "Repro is not generated due to existence of BackwardState in graph input"
        )
        return

    fd.write(
        generate_compiler_repro_string(
            gm,
            args,
            stable_output=stable_output,
            save_dir=save_dir,
            stable_hash=stable_hash,
        )
    )
    if accuracy is None:
        accuracy = "_accuracy" in compiler_name
    if tracing_mode is None:
        tracing_mode = "real"
        if any(has_free_symbols(a) for a in args):
            tracing_mode = "symbolic"
    fd.write("if __name__ == '__main__':\n")
    fd.write("    from torch._dynamo.repro.after_aot import run_repro\n")
    fd.write(
        f"    with torch.no_grad():\n"
        f"        run_repro(mod, load_args, accuracy={accuracy!r}, command={command!r}, "
        f"save_dir={save_dir!r}, tracing_mode={tracing_mode!r}, check_str={check_str!r})\n"
        f"        # To run it separately, do \n"
        f"        # mod, args = run_repro(mod, load_args, accuracy={accuracy!r}, command='get_args', "
        f"save_dir={save_dir!r}, tracing_mode={tracing_mode!r}, check_str={check_str!r})\n"
        f"        # mod(*args)"
    )


def dump_compiler_graph_state(gm, args, compiler_name, *, accuracy=None):
    subdir = os.path.join(minifier_dir(), "checkpoints")
    if not os.path.exists(subdir):
        os.makedirs(subdir, exist_ok=True)
    file_name = os.path.join(subdir, f"{len(gm.graph.nodes)}.py")
    log.warning(
        "Writing checkpoint with %s nodes to %s", len(gm.graph.nodes), file_name
    )
    with open(file_name, "w") as fd:
        save_graph_repro(
            fd, gm, args, compiler_name, save_dir=subdir, accuracy=accuracy
        )
    curdir = os.getcwd()
    repro_path = os.path.join(curdir, "repro.py")
    try:
        shutil.copyfile(file_name, repro_path)
        log.warning("Copying repro file for convenience to %s", repro_path)
        if use_buck:
            BuckTargetWriter(file_name).write()
    except OSError:
        log.warning("No write permissions for %s", repro_path)


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#                           DUMP MINIFIER
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def dump_to_minify(gm, args, compiler_name: str):
    out = io.StringIO()
    # TODO: factor this out
    subdir = os.path.join(minifier_dir(), "checkpoints")
    if not os.path.exists(subdir):
        os.makedirs(subdir, exist_ok=True)
    save_graph_repro(out, gm, args, compiler_name, save_dir=subdir, command="minify")
    return helper_for_dump_minify(out.getvalue())


def isolate_fails(
    fx_g,
    args,
    compiler_name: str,
    env=None,
    save_dir=None,
    accuracy=None,
    tracing_mode=None,
    check_str=None,
):
    if env is None:
        env = {}
    subdir = os.path.join(os.getcwd(), "isolate")
    if not os.path.exists(subdir):
        os.makedirs(subdir, exist_ok=True)
    file_name = os.path.join(subdir, f"{str(uuid.uuid4())[:5]}.py")
    with open(file_name, "w") as fd:
        save_graph_repro(
            fd,
            fx_g,
            args,
            compiler_name,
            save_dir=save_dir,
            command="minifier-query",
            accuracy=accuracy,
            tracing_mode=tracing_mode,
            check_str=check_str,
        )
    # with open(file_name, "r") as fd:
    #     print(fd.read())
    new_env = os.environ.copy()
    new_env = {**new_env, **env}
    stdout, stderr = TemporaryFile(), TemporaryFile()

    if use_buck:
        cmd = BuckTargetWriter(file_name).write(print_msg=False)
    else:
        cmd = ["python", file_name]

    p = subprocess.Popen(
        cmd,
        cwd=subdir,
        stdout=stdout,
        stderr=stderr,
        env=new_env,
    )
    p.wait()

    stdout.seek(0)
    stderr.seek(0)
    print(
        textwrap.indent(stdout.read().decode("utf-8"), prefix=">>  "), file=sys.stdout
    )
    print(
        textwrap.indent(stderr.read().decode("utf-8"), prefix=">>  "), file=sys.stderr
    )
    # print(f"Isolated test failed - {file_name}")
    return p.returncode != 0


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#                       MINIFIER TOOLS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def inductor_fails(fx_g, args, check_str=None):
    has_cuda = False
    for arg in args:
        if isinstance(arg, torch.Tensor) and arg.is_cuda:
            has_cuda = True
            break

    def sync():
        if has_cuda:
            # Ensures that segfaults are surfaced
            torch.cuda.synchronize()

    from torch._inductor.compile_fx import compile_fx_inner

    try:
        result = fx_g(*args)
        assert isinstance(result, (tuple, list))
        assert not any(isinstance(x, (tuple, list)) for x in result)
    except Exception:
        return False

    sync()

    try:
        compile_mod = compile_fx_inner(fx_g, args)
        assert not isinstance(compile_mod, str)
        compile_mod(args)
        sync()
    except Exception as e:
        if check_str is not None and check_str not in repr(e):
            return False
        print(repr(e))
        return True
    return False


def inductor_accuracy_fails(
    fx_g, args, check_str=None, *, require_fp64=False, ignore_non_fp=False
):
    from torch._inductor.compile_fx import compile_fx_inner

    return backend_aot_accuracy_fails(
        fx_g,
        args,
        compile_fx_inner,
        require_fp64=require_fp64,
        ignore_non_fp=ignore_non_fp,
    )


backend_aot_accuracy_fails = functools.partial(backend_accuracy_fails, only_fwd=True)


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#                           REPRO MAIN
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


def repro_common(options, mod, load_args):
    # Invariant for graphs we generate with the repro script
    assert not any(mod.named_parameters())
    for n, b in mod.named_buffers():
        if b.numel() > MAX_CONSTANT_NUMEL_INLINE:
            log.warning(
                "Constant %s was not serialized, generated random data instead. "
                "If you think this is affecting you, please comment on "
                "https://github.com/pytorch/pytorch/issues/100468",
                n,
            )

    if not hasattr(load_args, "_version"):
        log.warning(
            "load_args does not have a _version attribute, please file a bug to PyTorch "
            "and describe how you generate this repro script"
        )
    else:
        if load_args._version > 0:
            log.warning(
                "load_args is version %s, but this version of PyTorch only supports "
                "version 0.  We will try to run it anyway but there may be an incompatibility; "
                "if so, try upgrading your version of PyTorch.",
                load_args._version,
            )

    nop_reader = NopInputReader()
    load_args(nop_reader)

    with tqdm(desc="Loading inputs", total=nop_reader.total) as pbar:
        input_reader = InputReader(save_dir=options.save_dir, pbar=pbar)
        load_args(input_reader)
        args = input_reader.args

    # Turn mod into a GraphModule the slow way
    # TODO: speed this up
    mod = make_fx(mod, tracing_mode=options.tracing_mode)(*args)

    torch._inductor.config.generate_intermediate_hooks = True

    return mod, args


ACCURACY_FAILS: Dict[str, Callable[[nn.Module, Any], bool]] = {
    "": inductor_fails,
    # This might look inverted but it's not.  strict_accuracy means "we will
    # minify any time we see anything that diverges", whereas accuracy is more
    # conservative, and will only minify if there is a meaningful fp64
    # divergence
    "accuracy": functools.partial(
        inductor_accuracy_fails, require_fp64=True, ignore_non_fp=True
    ),
    "strict_accuracy": inductor_accuracy_fails,
}


def repro_minifier_query(options, mod, load_args):
    mod, args = repro_common(options, mod, load_args)
    fail_fn = functools.partial(
        ACCURACY_FAILS[options.accuracy], check_str=options.check_str  # type: ignore[call-arg]
    )
    if fail_fn(mod, args):
        sys.exit(1)
    else:
        sys.exit(0)


def repro_minify(options, mod, load_args):
    from functorch.compile import minifier

    mod, args = repro_common(options, mod, load_args)
    compiler_name = "inductor_accuracy" if options.accuracy != "" else "inductor"

    favored_device = 1 if torch.cuda.device_count() >= 2 else 0
    env_variables = {"CUDA_VISIBLE_DEVICES": str(favored_device)}

    module_fails: Any
    if options.isolate:
        module_fails = functools.partial(
            isolate_fails,
            env=env_variables,
            compiler_name=compiler_name,
            save_dir=options.save_dir,
            accuracy=options.accuracy,
            tracing_mode=options.tracing_mode,
        )
    else:
        module_fails = ACCURACY_FAILS[options.accuracy]

    minifier(
        mod,
        args,
        module_fails=functools.partial(module_fails, check_str=options.check_str),
        dump_state=functools.partial(
            dump_compiler_graph_state, compiler_name=compiler_name
        ),
        save_dir=options.save_dir,
        offload_to_disk=options.offload_to_disk,
        skip_offload=options.skip_saving_eager_intermediates,
        skip_sanity=options.skip_sanity,
        max_granularity=options.max_granularity,
    )


def repro_analyze(options, mod, load_args):
    from torch._inductor.compile_fx import compile_fx_inner
    from torch._inductor.hooks import intermediate_hook

    mod, args = repro_common(options, mod, load_args)

    # TODO: The logic for cloning inputs/models here is intentionally
    # modeled off of run_fwd_maybe_bwd, but arguably it is better not to
    # clone inputs (as you are doubling your effective GPU memory usage).
    # It is certainly faster though!  It probably makes sense to let the
    # user specify the offload strategy.

    with tqdm(desc="Compiling"):
        compiled = compile_fx_inner(mod, args)
    total = counters["inductor"]["intermediate_hooks"]

    known_names = set()

    def save_hook(name, val):
        known_names.add(name)
        if not options.skip_saving_inductor_intermediates:
            writer.write_tensor(os.path.join("inductor", name), val)
        pbar.update(1)  # type: ignore[has-type]

    writer = torch.utils._content_store.ContentStoreWriter(
        options.save_dir, stable_hash=options.stable_hash
    )
    reader = torch.utils._content_store.ContentStoreReader(options.save_dir)

    new_args = clone_inputs(args)
    with intermediate_hook(save_hook), tqdm(
        desc="Saving inductor intermediates", total=total
    ) as pbar:
        assert not isinstance(compiled, str)
        compiled(new_args)
        assert not new_args

    def compare_tuples(tuple1, tuple2):
        diff_indices = [i for i in range(len(tuple1)) if tuple1[i] != tuple2[i]]
        diff_values = [(tuple1[i], tuple2[i]) for i in diff_indices]

        if not diff_values:
            return None
        else:
            return " and ".join(f"{a} != {b}" for a, b in diff_values)

    def check_hook(name, val):
        meta = writer.compute_tensor_metadata(val)
        meta2 = reader.read_tensor_metadata(os.path.join("inductor", name))
        reason = compare_tuples(meta, meta2)
        if reason is not None:
            pbar.write(f"NONDETERMINISTIC INDUCTOR at {name} ({reason})")
        pbar.update(1)

    if not options.skip_check_deterministic:
        new_args = clone_inputs(args)
        with intermediate_hook(check_hook), tqdm(
            desc="Checking inductor determinism", total=total
        ) as pbar:
            compiled(new_args)
            assert not new_args

    class WriterInterp(fx.Interpreter):
        def __init__(self, mod, subdir) -> None:
            super().__init__(mod)
            self.subdir = subdir

        def run_node(self, n):
            r = super().run_node(n)
            name = n.name
            if name in known_names:
                pbar.update(1)
                writer.write_tensor(os.path.join(self.subdir, name), r)
            return r

    # NB: the module cast doesn't actually do anything, since there are no
    # parameters/buffers on the module
    if not options.skip_saving_float64_intermediates:
        new_mod, new_args = cast_to_fp64(copy.deepcopy(mod), clone_inputs(args))
        with tqdm(desc="Saving float64 intermediates", total=total) as pbar:
            WriterInterp(new_mod, "float64").boxed_run(new_args)
        assert not new_args

    class ExactReaderInterp(fx.Interpreter):
        def run_node(self, n):
            r = super().run_node(n)
            name = n.name
            if name in known_names:
                meta = writer.compute_tensor_metadata(r)
                meta2 = reader.read_tensor_metadata(os.path.join("float64", name))
                reason = compare_tuples(meta, meta2)
                if reason is not None:
                    pbar.write(f"NONDETERMINISTIC FLOAT64 at {name} ({reason})")
                pbar.update(1)
            return r

    # TODO: check eager determinism

    if not options.skip_check_deterministic:
        new_mod, new_args = cast_to_fp64(copy.deepcopy(mod), clone_inputs(args))
        with tqdm(desc="Checking float64 determinism", total=total) as pbar:
            ExactReaderInterp(new_mod).boxed_run(new_args)
            assert not new_args

    # Now that we've saved everything, interp through the eager graph
    # and do comparisons
    class ReaderInterp(fx.Interpreter):
        def run_node(self, n):
            r = super().run_node(n)
            name = n.name
            if name in known_names:
                inductor = reader.read_tensor(os.path.join("inductor", name))
                float64 = reader.read_tensor(os.path.join("float64", name))
                logged = False

                def log_error(msg, *args):
                    nonlocal logged
                    logged = True
                    pbar.write(f"DIVERGED at {name}: {msg % args}")

                if not same(
                    r,
                    inductor,
                    float64,
                    tol=torch._dynamo.config.repro_tolerance,
                    equal_nan=True,
                    log_error=log_error,
                ):
                    assert logged
                pbar.update(1)
            return r

    with tqdm(desc="Checking divergence", total=total) as pbar:
        ReaderInterp(mod).boxed_run(args)
    assert not args


def repro_get_args(options, mod, load_args):
    mod, args = repro_common(options, mod, load_args)
    return mod, args


def repro_run(options, mod, load_args):
    from torch._inductor.compile_fx import compile_fx_inner

    mod, args = repro_common(options, mod, load_args)

    from torch.cuda import synchronize

    compiled = compile_fx_inner(mod, args)
    assert not isinstance(compiled, str)

    if options.accuracy != "":
        # We don't really respect --accuracy vs --strict-accuracy here, it
        # seems counterintuitive
        if not same_two_models(
            mod,
            compiled,
            args,
            only_fwd=True,
            ignore_non_fp=config.repro_ignore_non_fp,
        ):
            raise AccuracyError("Bad accuracy detected")
    else:
        need_sync = False

        for arg in args:
            if isinstance(arg, torch.Tensor) and arg.is_cuda:
                need_sync = True
                break

        compiled(list(args))

        if need_sync:
            synchronize()  # ensure segfaults are surfaced


# TODO: lazily load the inputs or something, rather than cloning them
def run_repro(
    mod,
    load_args,
    *,
    command="run",
    accuracy: Union[bool, str] = "",
    save_dir=None,
    tracing_mode=None,
    patch_code=None,
    check_str=None,
    **kwargs,
):
    for k in kwargs:
        log.warning(
            "Unrecognized kwarg %s; perhaps this repro was made on a newer version of PyTorch",
            k,
        )

    if accuracy is True:
        accuracy = "accuracy"
    elif accuracy is False:
        accuracy = ""

    if patch_code is not None:
        log.warning(
            "patch_code no longer works on this version of PyTorch, silently ignoring"
        )

    parser = argparse.ArgumentParser(
        description=f"""\
An after_aot repro script, typically triggering a bug in PyTorch Inductor.
When run with no arguments, this script defaults to running '{command}'.
Extra flags may be available; to find out more, try '{command} --help'.
There are also alternate subcommands available, see below.

default settings on this script:
  {accuracy=}
  {tracing_mode=}
  {save_dir=}
  {check_str=}
""",
        formatter_class=argparse.RawTextHelpFormatter,
    )

    def common_flags(parser):
        accuracy_group = parser.add_mutually_exclusive_group()
        accuracy_group.add_argument(
            "--no-accuracy",
            dest="accuracy",
            action="store_const",
            const="",
            default=accuracy,
            help="do not test accuracy, just run the module and see if it errors",
        )
        accuracy_group.add_argument(
            "--accuracy",
            action="store_const",
            const="accuracy",
            default=accuracy,
            help="""\
test if the RMSE between the compiled module and the fp64 reference is greater
than eager and the fp64 reference. This is usually more reliable than the
standard allclose test, as we expect numeric differences from compiling, often
improving accuracy over eager.  RMSE test allows for compiled module to
diverge greatly from eager, as long as this divergence moves it closer to the
'true' mathematical value of the network.  Caveats: (1) double precision can
still suffer from rounding error, so it is not a perfect reference (see for
example 'Herbie: Automatically Improving Floating Point Accuracy') for
approaches that detect the necessary working precision and compute it in
arbitrary precision floating point; unfortunately, this is not practical for
tensor computation; (2) if there are not enough samples in the output being
compared, we may get unlucky and have an unlucky greater RMSE than eager; this
could be overcome by applying a more rigorous statistical test at some
p-value, which we leave for future work.
""",
        )
        accuracy_group.add_argument(
            "--strict-accuracy",
            dest="accuracy",
            action="store_const",
            const="strict_accuracy",
            default=accuracy,
            help="""\
by default, when doing accuracy minification we will reject reductions which
change the divergence from a floating point divergence to a integral/boolean
divergence.  This is because some operations like ReLU involve temporarily
sharp boundaries that smooth out again afterwards; without requiring
divergence on floating point, the minifier will often fixate on divergent
boolean tensor even though this is not the true source of the divergence.
However, rejecting these reductions makes it more difficult for the minifier
to make process.  Using this option will let the minifier progress for ALL
divergences--you just might not end up with a useful repro in the end.""",
        )

        parser.add_argument(
            "--save-dir",
            type=str,
            default=save_dir,
            metavar="DIR",
            help="directory where saved inputs live",
        )
        parser.add_argument(
            "--no-save-dir",
            dest="save_dir",
            action="store_const",
            const=None,
            help="don't use any directory for saved inputs",
        )
        parser.add_argument(
            "--tracing-mode",
            type=str,
            metavar="{real,fake,symbolic}",
            default=tracing_mode,
            help="how to trace the repro module into a GraphModule with metadata",
        )

    subparsers = parser.add_subparsers(
        dest="command", metavar="{run,minify,analyze}", required=True
    )

    parser_run = subparsers.add_parser(
        "run",
        help="just run the repro",
    )
    common_flags(parser_run)

    parser_minify = subparsers.add_parser(
        "minify", help="run the minifier on the repro"
    )
    common_flags(parser_minify)
    parser_get_args = subparsers.add_parser("get_args", help="get the args")
    common_flags(parser_get_args)
    parser_minify_isolate = parser_minify.add_mutually_exclusive_group()
    parser_minify_isolate.add_argument(
        "--isolate",
        action="store_true",
        default=True,
        help="run in separate processes to avoid interference (default)",
    )
    parser_minify_isolate.add_argument(
        "--no-isolate",
        dest="isolate",
        action="store_false",
        help="speed up by running all compilation in same process",
    )
    parser_minify.add_argument(
        "--skip-saving-eager-intermediates",
        action="store_true",
        help="skip saving eager intermediates on --minify",
    )
    # TODO: make this an option for --analyze too
    parser_minify.add_argument(
        "--offload-to-disk",
        action="store_true",
        help="during minification, offload delta debugging intermediates to disk.  Use if you're OOMing",
    )
    parser_minify.add_argument(
        "--skip-sanity",
        action="store_true",
        help="skip sanity check at beginning of minification on original graph",
    )
    parser_minify.add_argument(
        "--max-granularity",
        type=int,
        default=None,
        help="start at this granularity and work down; must be power of 2",
    )
    parser_minify.add_argument(
        "--check-str",
        type=str,
        default=check_str,
        help="require minified program to fail with error containing this string",
    )

    parser_analyze = subparsers.add_parser(
        "analyze", help="run the accuracy analyzer on the repro"
    )
    common_flags(parser_analyze)
    parser_analyze.add_argument(
        "--skip-saving-inductor-intermediates",
        action="store_true",
        help="skip saving inductor intermediates on --analyze",
    )
    parser_analyze.add_argument(
        "--skip-saving-float64-intermediates",
        action="store_true",
        help="skip saving float64 intermediates",
    )
    parser_analyze.add_argument(
        "--skip-check-deterministic",
        action="store_true",
        help="skip checking that the network is deterministic",
    )
    parser_analyze.add_argument(
        "--stable-hash",
        action="store_true",
        help="use SHA-1 checksum instead of fast (but possibly unsound) hash",
    )

    # Run the repro in the context of minification, inverting exit code meaning
    parser_minifier_query = subparsers.add_parser(
        "minifier-query",
    )
    common_flags(parser_minifier_query)
    parser_minifier_query.add_argument(
        "--check-str",
        type=str,
        default=check_str,
        help="require minified program to fail with error containing this string",
    )

    args = None
    if len(sys.argv) <= 1:
        args = [command, *sys.argv[1:]]

    options = parser.parse_args(args)
    COMMAND_FNS = {
        "minify": repro_minify,
        "analyze": repro_analyze,
        "minifier-query": repro_minifier_query,
        "run": repro_run,
        "get_args": repro_get_args,
    }
    return COMMAND_FNS[options.command](options, mod, load_args)