1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
# mypy: allow-untyped-defs
import argparse
import copy
import functools
import logging
import os
import shutil
import sys
import textwrap
from importlib import import_module
from typing import Union
import torch
import torch.fx as fx
from torch._dynamo.backends.registry import CompiledFn
from torch._dynamo.debug_utils import (
AccuracyError,
backend_accuracy_fails,
BUCK_CMD_PREFIX,
BuckTargetWriter,
extra_imports,
generate_config_string,
helper_for_dump_minify,
InputReader,
InputWriter,
minifier_dir,
NNModuleToString,
NopInputReader,
run_fwd_maybe_bwd,
same_two_models,
)
from torch.fx.experimental.symbolic_shapes import fx_placeholder_targets
from torch.hub import tqdm
from .. import config
from ..backends.registry import lookup_backend, register_debug_backend
from ..debug_utils import clone_inputs_retaining_gradness
log = logging.getLogger(__name__)
inductor_config = import_module("torch._inductor.config")
use_buck = inductor_config.is_fbcode()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# MAIN ENTRY POINT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def _accuracy_fails(gm, example_inputs, compiler_fn):
return backend_accuracy_fails(
gm,
example_inputs,
compiler_fn,
only_fwd=config.repro_forward_only,
ignore_non_fp=config.repro_ignore_non_fp,
)
class WrapBackendDebug:
def __init__(self, unconfigured_compiler_fn, compiler_name: str) -> None:
functools.wraps(unconfigured_compiler_fn)(self)
self._torchdynamo_orig_callable = unconfigured_compiler_fn # type: ignore[attr-defined]
self._compiler_name = compiler_name
if hasattr(unconfigured_compiler_fn, "__name__"):
self.__name__ = unconfigured_compiler_fn.__name__
if hasattr(unconfigured_compiler_fn, "compiler_name"):
self.__name__ = unconfigured_compiler_fn.compiler_name
if hasattr(unconfigured_compiler_fn, "get_compiler_config"):
self.get_compiler_config = unconfigured_compiler_fn.get_compiler_config # type: ignore[attr-defined]
def __call__(self, gm, example_inputs, **kwargs):
compiler_fn = functools.partial(self._torchdynamo_orig_callable, **kwargs)
assert config.repro_after in ("dynamo", "aot", None)
if config.repro_after == "dynamo":
def add_paths(exc):
exc.minifier_path = os.path.join(minifier_dir(), "minifier_launcher.py")
if use_buck:
exc.buck_command = " ".join(
BUCK_CMD_PREFIX
+ [BuckTargetWriter(exc.minifier_path).cmd_line_path]
)
if config.repro_level == 3:
dump_to_minify_after_dynamo(gm, example_inputs, self._compiler_name)
# Check for either accuracy (level 4) or other type of failures.
if config.repro_level == 4:
# Check Accuracy
compiled_gm = compiler_fn(copy.deepcopy(gm), example_inputs)
if _accuracy_fails(gm, example_inputs, compiler_fn):
log.warning(
"Accuracy failed for the TorchDynamo produced graph. Creating script to minify the error."
)
dump_to_minify_after_dynamo(
fx.GraphModule(gm, copy.deepcopy(gm.graph)),
example_inputs,
self._compiler_name,
)
exc = AccuracyError("Bad accuracy detected.")
add_paths(exc)
raise exc
else:
try:
compiled_gm = compiler_fn(copy.deepcopy(gm), example_inputs)
run_fwd_maybe_bwd(compiled_gm, example_inputs)
except Exception as exc:
log.warning(
"Compiled Fx GraphModule failed. Creating script to minify the error."
)
if config.repro_level == 1:
dump_state_fn = functools.partial(
dump_backend_state, compiler_name=self._compiler_name
)
dump_state_fn(
fx.GraphModule(gm, copy.deepcopy(gm.graph)), example_inputs
)
elif config.repro_level == 2:
dump_to_minify_after_dynamo(
fx.GraphModule(gm, copy.deepcopy(gm.graph)),
example_inputs,
self._compiler_name,
)
add_paths(exc)
raise
else:
compiled_gm = compiler_fn(gm, example_inputs)
return compiled_gm
def wrap_backend_debug(unconfigured_compiler_fn, compiler_name: str):
"""
A minifier decorator that wraps the TorchDynamo produced Fx graph modules.
As opposed to wrap_compiler_debug, this wrapper intercepts at the
TorchDynamo produced Fx Graph Module. This makes it backend-agnostic to some
level, e.g., it is useful for minifying issues related to Aot Autograd
tracing. If an error is found, we minify and save the minified repro in
repro.tar.gz.
"""
return WrapBackendDebug(unconfigured_compiler_fn, compiler_name)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# REPRO DUMPERS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def generate_dynamo_fx_repro_string(
gm,
args,
compiler_name,
check_accuracy=False,
*,
stable_output=False,
save_dir=None,
command="run",
):
"""
Generate a repro string for backend-agnostic minified version.
"""
model_str = NNModuleToString.convert(gm)
# TODO: Figure out why torch.compile'd hash isn't work on this codepath
writer = InputWriter(save_dir, stable_hash=True)
for placeholder, arg in zip(fx_placeholder_targets(gm), args):
if isinstance(arg, (int, torch.SymInt)):
writer.symint(placeholder, arg)
elif isinstance(arg, torch.Tensor):
# TODO: improve these names with FQN
writer.tensor(placeholder, arg)
else:
raise TypeError(f"arg is neither SymInt/int nor torch.Tensor, {arg}")
load_args = "\n".join(writer.lines())
return textwrap.dedent(
f"""
from math import inf
import torch
from torch import tensor, device
import torch.fx as fx
import torch._dynamo
from torch._dynamo.testing import rand_strided
from torch._dynamo.debug_utils import run_fwd_maybe_bwd
{generate_config_string(stable_output=stable_output)}
{extra_imports}
{model_str}
mod = Repro()
{load_args}
if __name__ == '__main__':
from torch._dynamo.repro.after_dynamo import run_repro
run_repro(mod, load_args, accuracy={check_accuracy!r}, command={command!r},
save_dir={save_dir!r}, autocast={torch.is_autocast_enabled()!r}, backend={compiler_name!r})
"""
)
def dump_backend_repro_as_file(gm, args, compiler_name, check_accuracy=False):
"""
Saves the repro to a repro.py file
"""
curdir = os.getcwd()
subdir = os.path.join(os.getcwd(), "checkpoints")
if not os.path.exists(subdir):
os.makedirs(subdir, exist_ok=True)
file_name = os.path.join(subdir, f"minified_{len(gm.graph.nodes)}_nodes.py")
log.warning(
"Writing checkpoint with %s nodes to %s", len(gm.graph.nodes), file_name
)
with open(file_name, "w") as fd:
fd.write(
generate_dynamo_fx_repro_string(
gm, args, compiler_name, check_accuracy, save_dir=subdir
)
)
latest_repro = os.path.join(curdir, "repro.py")
log.warning("Copying %s to %s for convenience", file_name, latest_repro)
if use_buck:
BuckTargetWriter(latest_repro).write()
shutil.copyfile(file_name, latest_repro)
def dump_backend_state(gm, args, compiler_name, check_accuracy=False):
"""
Dumps the dynamo graph to repro the issue.
1) It tries to convert Fx GraphModule to a string. If we can, it writes to a
repro.py file.
2) If we can't convert Fx GraphModule to a string, we use to_folder to save
the module and save a tar file.
"""
assert NNModuleToString.can_convert_to_string(gm)
return dump_backend_repro_as_file(gm, args, compiler_name, check_accuracy)
# return dump_backend_repro_as_tarfile(gm, args, compiler_name)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# MINIFIER DUMPER
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def dump_to_minify_after_dynamo(gm, args, compiler_name):
# TODO: factor this out
subdir = os.path.join(minifier_dir(), "checkpoints")
if not os.path.exists(subdir):
os.makedirs(subdir, exist_ok=True)
helper_for_dump_minify(
generate_dynamo_fx_repro_string(
gm,
args,
compiler_name,
check_accuracy=config.repro_level == 4,
save_dir=subdir,
command="minify",
)
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# MINIFIER BACKENDS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
@register_debug_backend # type: ignore[arg-type]
def dynamo_minifier_backend(
gm: fx.GraphModule, example_inputs, compiler_name: CompiledFn
):
from functorch.compile import minifier
compiler_fn = lookup_backend(compiler_name)
# TODO: It's inconsistent to pass SymInt inputs but REAL tensors.
# We should pass ints and look at the GraphModule placeholders
# to resolve them to SymInt (if necessary)
example_inputs = [
i.node.hint if isinstance(i, torch.SymInt) else i for i in example_inputs
]
try:
compiled_gm = compiler_fn(gm, example_inputs)
run_fwd_maybe_bwd(compiled_gm, example_inputs)
raise ValueError("No issue was detected")
except Exception as exc:
orig_failure = str(exc)
log.warning(
"Compiled Fx GraphModule failed. Creating script to minify the error."
)
dump_state_fn = functools.partial(
dump_backend_state, compiler_name=compiler_name
)
dump_state_fn(fx.GraphModule(gm, copy.deepcopy(gm.graph)), example_inputs)
fails_fn = functools.partial(
backend_fails,
compiler_fn=compiler_fn,
orig_failure=orig_failure,
)
minifier(
gm,
example_inputs,
module_fails=fails_fn,
dump_state=dump_state_fn,
)
return gm
@register_debug_backend # type: ignore[arg-type]
def dynamo_accuracy_minifier_backend(gm, example_inputs, compiler_name):
from functorch.compile import minifier
compiler_fn = lookup_backend(compiler_name)
# Set the eval mode to remove randomness.
gm.eval()
# Check Accuracy
if _accuracy_fails(gm, example_inputs, compiler_fn):
log.warning("Accuracy failed for the TorchDynamo produced graph")
dump_state_fn = functools.partial(
dump_backend_state, compiler_name=compiler_name, check_accuracy=True
)
fails_fn = functools.partial(
_accuracy_fails,
compiler_fn=compiler_fn,
)
dump_state_fn(fx.GraphModule(gm, copy.deepcopy(gm.graph)), example_inputs)
minifier(
gm,
example_inputs,
module_fails=fails_fn,
dump_state=dump_state_fn,
)
else:
log.error("Input graph does not fail accuracy testing")
return gm
def backend_fails(gm, example_inputs, compiler_fn, orig_failure):
"""
Minifier uses this function to identify if the minified graph module fails
with the same error.
One caveat is that minifier can potentially go into a wrong direction when
the resulting graph module fails for a different reason. To avoid this, we
save the string for the original exception and check similarity between new
and old exception. They can be somewhat different in some cases, when the
exception string depends on the failing node information. So, we have a
loose similarity metric to guide the minifier path.
"""
from difflib import SequenceMatcher
try:
# Run the original gm to check eager validity
run_fwd_maybe_bwd(gm, clone_inputs_retaining_gradness(example_inputs))
compiled_gm = compiler_fn(gm, example_inputs)
run_fwd_maybe_bwd(compiled_gm, clone_inputs_retaining_gradness(example_inputs))
except Exception as e:
new_failure = str(e)
if SequenceMatcher(None, orig_failure, new_failure).ratio() > 0.5:
return True
return False
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# REPRO MAIN
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def run_load_args(options, mod, load_args):
if not hasattr(load_args, "_version"):
log.warning(
"load_args does not have a _version attribute, please file a bug to PyTorch "
"and describe how you generate this repro script"
)
else:
if load_args._version > 0:
log.warning(
"load_args is version %s, but this version of PyTorch only supports "
"version 0. We will try to run it anyway but there may be an incompatibility; "
"if so, try upgrading your version of PyTorch.",
load_args._version,
)
nop_reader = NopInputReader()
load_args(nop_reader)
with tqdm(desc="Loading inputs", total=nop_reader.total) as pbar:
input_reader = InputReader(save_dir=options.save_dir, pbar=pbar)
load_args(input_reader)
args = input_reader.args
return args
def repro_minify(options, mod, load_args):
args = run_load_args(options, mod, load_args)
# Setup debug minifier compiler
if not options.accuracy:
compiler_fn = lookup_backend("dynamo_minifier_backend")
else:
compiler_fn = lookup_backend("dynamo_accuracy_minifier_backend")
if options.backend is None:
raise RuntimeError(
"Compiler name is None - this likely means that a custom compiler "
"was called by torchdynamo. Please remove this error, import your "
"custom compiler function, and replace the backend=None "
"line in run_repro to backend=<my_imported_custom_function>"
)
dynamo_minifier_backend = functools.partial(
compiler_fn,
compiler_name=options.backend,
)
opt_mod = torch._dynamo.optimize(dynamo_minifier_backend)(mod)
with torch.amp.autocast("cuda", enabled=options.autocast):
opt_mod(*args)
def repro_run(options, mod, load_args):
opt_mod = torch._dynamo.optimize(options.backend)(mod)
if options.accuracy != "":
mod.eval()
opt_mod.eval()
with torch.amp.autocast("cuda", enabled=options.autocast):
# TODO: disable clone
args = run_load_args(options, mod, load_args)
assert same_two_models(mod, mod, args), "Eager itself failed"
if not same_two_models(
mod,
opt_mod,
args,
only_fwd=config.repro_forward_only,
ignore_non_fp=config.repro_ignore_non_fp,
):
raise AccuracyError("Dynamo failed")
else:
with torch.amp.autocast("cuda", enabled=options.autocast):
args = run_load_args(options, mod, load_args)
ref = run_fwd_maybe_bwd(
mod, args, only_fwd=options.only_fwd, disable_clone=True
)
del args
args = run_load_args(options, mod, load_args)
res = run_fwd_maybe_bwd(
opt_mod, args, only_fwd=options.only_fwd, disable_clone=True
)
def run_repro(
mod,
load_args,
*,
command="run",
accuracy: Union[bool, str] = "",
save_dir=None,
autocast=False,
backend="inductor",
**kwargs,
):
for k in kwargs:
log.warning(
"Unrecognized kwarg %s; perhaps this repro was made on a newer version of PyTorch",
k,
)
if accuracy is True:
accuracy = "accuracy"
elif accuracy is False:
accuracy = ""
parser = argparse.ArgumentParser(
description=f"""\
An after_dynamo repro script, typically triggering a bug in Dynamo or
AOTAutograd. When run with no arguments, this script defaults to running
'{command}'. Extra flags may be available; to find out more, try '{command}
--help'. There are also alternate subcommands available, see below.
default settings on this script:
{accuracy=}
{save_dir=}
""",
formatter_class=argparse.RawTextHelpFormatter,
)
def common_flags(parser):
accuracy_group = parser.add_mutually_exclusive_group()
accuracy_group.add_argument(
"--no-accuracy",
dest="accuracy",
action="store_const",
const="",
default=accuracy,
help="do not test accuracy, just run the module and see if it errors",
)
accuracy_group.add_argument(
"--accuracy",
action="store_const",
const="accuracy",
default=accuracy,
help="test accuracy",
)
parser.add_argument(
"--save-dir",
type=str,
default=save_dir,
metavar="DIR",
help="directory where saved inputs live",
)
parser.add_argument(
"--no-save-dir",
dest="save_dir",
action="store_const",
const=None,
help="don't use any directory for saved inputs",
)
parser.add_argument(
"--no-isolate",
dest="isolate",
action="store_false",
default=False,
help="no isolate (doesn't do anything for after_dynamo)",
)
parser.add_argument(
"--autocast",
default=autocast,
action="store_true",
help="use torch.cuda.amp.autocast",
)
parser.add_argument(
"--no-autocast",
dest="autocast",
action="store_false",
help="don't use torch.cuda.amp.autocast",
)
parser.add_argument(
"--backend",
type=str,
default=backend,
metavar="BACKEND",
help="torch.compile backend to use",
)
subparsers = parser.add_subparsers(
dest="command", metavar="{run,minify}", required=True
)
parser_run = subparsers.add_parser(
"run",
help="just run the repro",
)
common_flags(parser_run)
parser_run.add_argument(
"--only-fwd",
action="store_true",
help="don't run backwards compilation for testing",
)
parser_minify = subparsers.add_parser(
"minify", help="run the minifier on the repro"
)
common_flags(parser_minify)
args = None
if len(sys.argv) <= 1:
args = [command, *sys.argv[1:]]
options = parser.parse_args(args)
COMMAND_FNS = {
"minify": repro_minify,
"run": repro_run,
}
COMMAND_FNS[options.command](options, mod, load_args)
|