1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
# mypy: allow-untyped-defs
import argparse
import functools
import io
import logging
import os
import re
import shutil
import sys
import textwrap
from importlib import import_module
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch._dynamo.debug_utils import (
_cuda_system_info_comment,
BuckTargetWriter,
extra_imports,
generate_config_string,
helper_for_dump_minify,
InputReader,
minifier_dir,
NNModuleToString,
NopInputReader,
)
from torch.export import ExportedProgram
from torch.hub import tqdm
log = logging.getLogger(__name__)
inductor_config = import_module("torch._inductor.config")
use_buck = inductor_config.is_fbcode()
class AOTIMinifierError(Exception):
def __init__(self, original_exception):
additional_message = "This error is caused by a bug in the AOTI minifier, please report a bug to PyTorch"
full_message = f"{additional_message}: {str(original_exception)}"
super().__init__(full_message)
self.original_exception = original_exception
def dump_to_minify(
exported_program: ExportedProgram,
compiler_name: str,
options: Optional[Dict[str, Any]] = None,
):
out = io.StringIO()
subdir = os.path.join(minifier_dir(), "checkpoints")
if not os.path.exists(subdir):
os.makedirs(subdir, exist_ok=True)
save_graph_repro_ep(
out,
compiler_name,
exported_program=exported_program,
save_dir=subdir,
command="minify",
config_patches=options,
)
return helper_for_dump_minify(out.getvalue())
def get_module_string(gm):
def _convert_to_comment(s_):
s = s_.split("\n")
if len(s) == 1:
return "# " + s_
first = s.pop(0)
for i in range(len(s)):
line = s[i]
if line.strip() != "":
s[i] = "# " + line
else:
s[i] = ""
s = "\n".join(s)
s = first + "\n" + s
return s
module_string = NNModuleToString.convert(gm)
return _convert_to_comment(module_string)
def save_graph_repro_ep(
fd,
compiler_name,
*,
exported_program: Optional[ExportedProgram] = None,
gm: Optional[torch.nn.Module] = None,
args: Optional[Tuple[Any]] = None,
config_patches: Optional[Dict[str, str]] = None,
stable_output=False,
save_dir=None,
command="run",
accuracy=None,
check_str=None,
module_in_comment=False,
strict=False,
):
# Save graph for reproducing the error.
# Either exported_program or gm will be saved, depending on which one is defined.
# Only one of exported_program and gm should be defined.
if exported_program is None and gm is None:
raise AOTIMinifierError("One of exported_program and gm must be defined")
if exported_program is not None and gm is not None:
raise AOTIMinifierError("Only one of exported_program and gm can be defined")
if gm is not None and args is None:
raise AOTIMinifierError("If gm is defined, args should also be defined")
if exported_program is None:
assert gm is not None
assert args is not None
exported_program = torch.export.export(gm, args, strict=strict)
elif gm is None:
gm = exported_program.module()
# save a graph preview using gm
module_string = get_module_string(gm)
fd.write(module_string)
# save a graph repro using exported_program
fd.write(
generate_compiler_repro_exported_program(
exported_program,
options=config_patches,
stable_output=stable_output,
save_dir=save_dir,
)
)
if accuracy is None:
accuracy = "_accuracy" in compiler_name
fd.write("if __name__ == '__main__':\n")
fd.write(" from torch._dynamo.repro.aoti import run_repro\n")
fd.write(
f" with torch.no_grad():\n"
f" run_repro(exported_program, config_patches=config_patches, accuracy={accuracy!r}, command={command!r}, "
f"save_dir={save_dir!r}, check_str={check_str!r})\n"
)
def dump_compiler_graph_state(
gm,
args,
compiler_name,
*,
config_patches=None,
accuracy=None,
strict=False,
):
subdir = os.path.join(minifier_dir(), "checkpoints")
if not os.path.exists(subdir):
os.makedirs(subdir, exist_ok=True)
file_name = os.path.join(subdir, f"{len(gm.graph.nodes)}.py")
log.warning(
"Writing checkpoint with %s nodes to %s", len(gm.graph.nodes), file_name
)
with open(file_name, "w") as fd:
save_graph_repro_ep(
fd,
compiler_name,
gm=gm,
args=tuple(args),
config_patches=config_patches,
save_dir=subdir,
accuracy=accuracy,
module_in_comment=True,
strict=strict,
)
curdir = os.getcwd()
repro_path = os.path.join(curdir, "repro.py")
try:
shutil.copyfile(file_name, repro_path)
log.warning("Copying repro file for convenience to %s", repro_path)
if use_buck:
BuckTargetWriter(file_name).write()
except OSError:
log.warning("No write permissions for %s", repro_path)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# DUMP REPROS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def generate_compiler_repro_exported_program(
exported_program,
*,
options: Optional[Dict[str, str]] = None,
stable_output=False,
save_dir=None,
):
model_str = textwrap.dedent(
f"""
import torch
import torch._inductor.inductor_prims
{generate_config_string(stable_output=stable_output)}
isolate_fails_code_str = None
{extra_imports}
"""
)
if not stable_output:
model_str += f"# torch version: {torch.version.__version__}\n"
if hasattr(torch.version, "cuda"):
model_str += f"# torch cuda version: {torch.version.cuda}\n"
if hasattr(torch.version, "git_version"):
model_str += f"# torch git version: {torch.version.git_version}\n\n\n"
model_str += _cuda_system_info_comment()
ep_path = os.path.join(save_dir, "exported_program.pt2")
torch.export.save(exported_program, ep_path)
model_str += f"exported_program = torch.export.load('{ep_path}')\n"
model_str += "# print(exported_program.graph)\n"
model_str += f"config_patches={options}\n"
return model_str
def repro_load_args(load_args, save_dir):
if not hasattr(load_args, "_version"):
log.warning(
"load_args does not have a _version attribute, please file a bug to PyTorch "
"and describe how you generate this repro script"
)
else:
if load_args._version > 0:
log.warning(
"load_args is version %s, but this version of PyTorch only supports "
"version 0. We will try to run it anyway but there may be an incompatibility; "
"if so, try upgrading your version of PyTorch.",
load_args._version,
)
nop_reader = NopInputReader()
load_args(nop_reader)
with tqdm(desc="Loading inputs", total=nop_reader.total) as pbar:
input_reader = InputReader(save_dir=save_dir, pbar=pbar)
load_args(input_reader)
args = input_reader.args
return tuple(args)
def repro_common(options, exported_program):
torch._inductor.config.generate_intermediate_hooks = True
mod = exported_program.module()
args, kwargs = exported_program.example_inputs
return mod, args, kwargs
def repro_get_args(options, exported_program, config_patches):
mod, args, kwargs = repro_common(options, exported_program)
return mod, args, kwargs
def repro_run(options, exported_program, config_patches):
from torch._inductor import _aoti_compile_and_package_inner, aoti_load_package
gm, args, kwargs = repro_common(options, exported_program)
from torch.cuda import synchronize
package_path = _aoti_compile_and_package_inner(
gm,
args,
kwargs,
load_and_run=False,
inductor_configs=config_patches,
)
compiled = aoti_load_package(package_path)
assert not isinstance(compiled, str)
need_sync = False
for arg in args:
if isinstance(arg, torch.Tensor) and arg.is_cuda:
need_sync = True
break
compiled(*args, **kwargs)
if need_sync:
synchronize() # ensure segfaults are surfaced
def export_for_aoti_minifier(
gm, tuple_inputs, strict=False, skip_export_error=True
) -> Optional[torch.nn.Module]:
# Some graphs cannot be used for AOTI/export (illegal graphs), these should be
# considered as graphs that don't fail in the minifier, so the minifier keeps searching.
# In these case, we return None. Otherwise, we return the exported graph module.
# This won't affect the minifier result because the minifier is only responsible for catching
# errors in AOTI, not export.
#
# Please add to this list of illegal graphs if you change the implementation here.
# - graph output is not allowed by export
#
# If skip_export_error=True, then the errors in export will not be raised, and the minifier
# will keep exploring and ignore this graph.
from torch._dynamo.exc import UserError, UserErrorType
try:
ep = torch.export.export(gm, tuple_inputs, strict=strict)
gm = ep.module()
return gm
except Exception as e:
if skip_export_error:
return None
if isinstance(e, UserError) and e.error_type == UserErrorType.INVALID_OUTPUT:
# graph output is not allowed by export when strict=True
return None
if isinstance(e, RuntimeError):
# graph output is not allowed by export when strict=False
pattern = r"Found .* in output, which is not a known type\."
if re.search(pattern, str(e)) is not None:
return None
raise AOTIMinifierError(e) from e
# we should never reach here
return None
def repro_minify(options, exported_program, config_patches):
from functorch.compile import minifier
from torch._inductor import _aoti_compile_and_package_inner
from torch._inductor.compile_fx import _aoti_flatten_inputs
mod, args, kwargs = repro_common(options, exported_program)
# update serialized_in_spec and serialized_out_spec
flat_example_inputs, inductor_configs = _aoti_flatten_inputs(
mod, args, kwargs, options=config_patches
)
compiler_name = "aot_inductor"
assert options.minifier_export_mode in ["dynamo", "python"]
strict = options.minifier_export_mode == "dynamo"
skip_export_error = options.skip_export_error
from torch.cuda import synchronize
need_sync = False
for arg in args:
if isinstance(arg, torch.Tensor) and arg.is_cuda:
need_sync = True
break
def module_fails(gm, flat_example_inputs, check_str=None):
# Need to export first so the in_spec and out_spec are populated
tuple_inputs = tuple(flat_example_inputs)
gm = export_for_aoti_minifier(
gm, tuple_inputs, strict=strict, skip_export_error=skip_export_error
)
# Some graphs cannot be used for AOTI/export (illegal graphs), these should be
# considered as graphs that don't fail in the minifier, so the minifier keeps searching.
if gm is None:
return False
assert isinstance(gm, torch.fx.GraphModule)
try:
_aoti_compile_and_package_inner(
gm,
tuple_inputs,
load_and_run=True,
inductor_configs=inductor_configs,
)
if need_sync:
synchronize() # ensure segfaults are surfaced
return False
except Exception as e:
if check_str is not None and check_str not in repr(e):
return False
return True
minifier(
mod,
flat_example_inputs,
module_fails=functools.partial(module_fails, check_str=options.check_str),
dump_state=functools.partial(
dump_compiler_graph_state,
compiler_name=compiler_name,
config_patches=config_patches,
strict=strict,
),
save_dir=options.save_dir,
offload_to_disk=options.offload_to_disk,
skip_offload=options.skip_saving_eager_intermediates,
skip_sanity=options.skip_sanity,
max_granularity=options.max_granularity,
)
def run_repro(
exported_program,
*,
config_patches: Optional[Dict[str, str]] = None,
command="run",
accuracy: Union[bool, str] = "",
save_dir=None,
tracing_mode=None,
check_str=None,
minifier_export_mode="python",
skip_export_error=True,
**more_kwargs,
):
for k in more_kwargs:
log.warning(
"Unrecognized kwarg %s; perhaps this repro was made on a newer version of PyTorch",
k,
)
if accuracy is True:
accuracy = "accuracy"
raise NotImplementedError("check for accuracy is not supported yet")
elif accuracy is False:
accuracy = ""
parser = argparse.ArgumentParser(
description=f"""\
An AOTI repro script, typically triggering a bug in PyTorch AOTInductor.
When run with no arguments, this script defaults to running '{command}'.
Extra flags may be available; to find out more, try '{command} --help'.
There are also alternate subcommands available, see below.
default settings on this script:
{accuracy=}
{tracing_mode=}
{save_dir=}
{check_str=}
""",
formatter_class=argparse.RawTextHelpFormatter,
)
def common_flags(parser):
parser.add_argument(
"--save-dir",
type=str,
default=save_dir,
metavar="DIR",
help="directory where saved inputs live",
)
parser.add_argument(
"--no-save-dir",
dest="save_dir",
action="store_const",
const=None,
help="don't use any directory for saved inputs",
)
subparsers = parser.add_subparsers(
dest="command", metavar="{run,minify,analyze}", required=True
)
parser_run = subparsers.add_parser(
"run",
help="just run the repro",
)
common_flags(parser_run)
parser_minify = subparsers.add_parser(
"minify", help="run the minifier on the repro"
)
common_flags(parser_minify)
parser_get_args = subparsers.add_parser("get_args", help="get the args")
common_flags(parser_get_args)
parser_minify.add_argument(
"--skip-saving-eager-intermediates",
action="store_true",
help="skip saving eager intermediates on --minify",
)
parser_minify.add_argument(
"--offload-to-disk",
action="store_true",
help="during minification, offload delta debugging intermediates to disk. Use if you're OOMing",
)
parser_minify.add_argument(
"--skip-sanity",
action="store_true",
help="skip sanity check at beginning of minification on original graph",
)
parser_minify.add_argument(
"--max-granularity",
type=int,
default=None,
help="start at this granularity and work down; must be power of 2",
)
parser_minify.add_argument(
"--check-str",
type=str,
default=check_str,
help="require minified program to fail with error containing this string",
)
parser_minify.add_argument(
"--minifier-export-mode",
type=str,
default=minifier_export_mode,
help=(
"The export mode used in minifier, either dynamo or python."
"`dynamo` corresponds to strict=True, and `python` corresponds to strict=False."
),
)
parser_minify.add_argument(
"--skip-export-error",
type=bool,
default=skip_export_error,
help="Skip intermediate graphs that cannot be exported.",
)
# Run the repro in the context of minification, inverting exit code meaning
parser_minifier_query = subparsers.add_parser(
"minifier-query",
)
common_flags(parser_minifier_query)
parser_minifier_query.add_argument(
"--check-str",
type=str,
default=check_str,
help="require minified program to fail with error containing this string",
)
args = None
if len(sys.argv) <= 1:
args = [command, *sys.argv[1:]]
options = parser.parse_args(args)
COMMAND_FNS = {
"minify": repro_minify,
"run": repro_run,
"get_args": repro_get_args,
}
return COMMAND_FNS[options.command](
options, exported_program, config_patches=config_patches
)
|