File: side_effects.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (802 lines) | stat: -rw-r--r-- 33,985 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
# mypy: allow-untyped-defs
import contextlib
import functools
import inspect
import warnings
import weakref
from collections.abc import MutableMapping
from types import CellType
from typing import Any, Dict, List, Optional, Set, Type

import torch.nn

from . import utils, variables
from .bytecode_transformation import (
    bytecode_from_template,
    create_call_function,
    create_call_method,
    create_instruction,
)
from .codegen import PyCodegen
from .exc import unimplemented
from .source import GlobalSource, LocalCellSource, LocalSource, Source
from .utils import is_frozen_dataclass, nn_module_new, object_new
from .variables.base import (
    AttributeMutation,
    AttributeMutationExisting,
    AttributeMutationNew,
    is_side_effect_safe,
    ValueMutationExisting,
    VariableTracker,
)
from .variables.user_defined import FrozenDataClassVariable


def _manual_update_dict(dict_from, dict_to):
    for k, v in dict_from.items():
        dict_to[k] = v


class SideEffects:
    """
    Track side effects (list mutation, setattr, etc) that need to be
    applied after an FX graph is run.
    """

    id_to_variable: Dict[int, VariableTracker]
    store_attr_mutations: Dict[VariableTracker, Dict[str, VariableTracker]]
    keepalive: List[Any]

    def __init__(
        self,
        output_graph,
        id_to_variable=None,
        store_attr_mutations=None,
        keepalive=None,
        save_for_backward=None,
        tensor_hooks=None,
    ):
        super().__init__()
        self.output_graph_weakref = weakref.ref(output_graph)
        self.id_to_variable = id_to_variable or {}
        self.store_attr_mutations = store_attr_mutations or {}
        self.keepalive = keepalive or []
        self.save_for_backward = save_for_backward or []
        self.tensor_hooks = tensor_hooks or {}
        # Track Compiled Autograd final callbacks that must be called at the end of Compiled Autograd backward graph.
        # Only applicable if this graph is created from Dynamo tracing in Compiled Autograd.
        self.ca_final_callbacks_var = None

    def __eq__(self, other: object) -> bool:
        assert isinstance(other, SideEffects)
        # NB: do NOT test keepalive
        return (
            self.id_to_variable == other.id_to_variable
            and self.store_attr_mutations == other.store_attr_mutations
            and self.save_for_backward == other.save_for_backward
            and self.tensor_hooks == other.tensor_hooks
        )

    def diff(self, other: "SideEffects") -> Optional[str]:
        if self.id_to_variable != other.id_to_variable:
            sk_itv = self.id_to_variable.keys()
            ok_itv = other.id_to_variable.keys()
            if sk_itv != ok_itv:
                return f"id_to_variable keys: {sk_itv} != {ok_itv}"
            # Feel free to augment this with more fancy diffing logic
            # if needed for debugging
            return "id_to_variable: unknown diff"
        elif self.store_attr_mutations != other.store_attr_mutations:
            sk_sam = self.store_attr_mutations.keys()
            ok_sam = other.store_attr_mutations.keys()
            if sk_sam != ok_sam:
                return f"store_attr_mutations keys: {sk_sam} != {ok_sam}"
            return "store_attr_mutations: unknown diff"
        elif self.save_for_backward != other.save_for_backward:
            return "save_for_backward"
        elif self.tensor_hooks != other.tensor_hooks:
            return "tensor_hooks"
        else:
            return None

    def clone(self):
        """Create a shallow copy"""
        return self.__class__(
            output_graph=self.output_graph_weakref(),
            id_to_variable=dict(self.id_to_variable),
            store_attr_mutations={
                k: dict(v) for k, v in self.store_attr_mutations.items()
            },
            keepalive=list(self.keepalive),
            save_for_backward=self.save_for_backward,
            tensor_hooks=self.tensor_hooks,
        )

    def __contains__(self, item):
        return id(item) in self.id_to_variable

    def __getitem__(self, item):
        return self.id_to_variable[id(item)]

    def should_allow_side_effects_under_checkpoint(self):
        output_graph = self.output_graph_weakref()
        return (
            output_graph
            and output_graph.current_tx.output.current_tracer.under_activation_checkpoint
            and output_graph.current_tx.output.current_tracer.allow_side_effects_under_checkpoint
        )

    def check_allowed_side_effect(self, item):
        from torch._dynamo.variables.misc import AutogradFunctionContextVariable

        # People do things like self.dim = dim inside autograd.Function.
        # These are benign.
        if isinstance(item, AutogradFunctionContextVariable):
            return True
        if self.should_allow_side_effects_under_checkpoint():
            return True
        if not is_side_effect_safe(item.mutation_type):
            unimplemented(
                "HigherOrderOperator: Mutating a variable not in the current scope (SideEffects)"
            )

    def store_attr(self, item: VariableTracker, name: str, value: VariableTracker):
        assert self.is_attribute_mutation(item)
        self.check_allowed_side_effect(item)
        if item not in self.store_attr_mutations:
            self.store_attr_mutations[item] = {}
        self.store_attr_mutations[item][name] = value

    def load_attr(self, item, name, deleted_ok=False, check=False):
        if check:
            assert self.is_attribute_mutation(item)
        result = self.store_attr_mutations[item][name]
        if not deleted_ok and isinstance(result, variables.DeletedVariable):
            unimplemented("read deleted attribute")
        return result

    def store_cell(self, cellvar, value):
        if cellvar.is_immutable():
            unimplemented("Dynamo currently doesn't support writing to such cell")
        assert isinstance(cellvar, variables.CellVariable)
        assert isinstance(value, variables.VariableTracker)
        self.store_attr(cellvar, "cell_contents", value)

    def load_cell(self, cellvar):
        assert isinstance(cellvar, variables.CellVariable)
        if self.has_pending_mutation_of_attr(cellvar, "cell_contents"):
            return self.load_attr(cellvar, "cell_contents", check=False)
        if cellvar.pre_existing_contents:
            return cellvar.pre_existing_contents
        unimplemented("cannot read uninitialized cell")

    def load_global(self, gvar: VariableTracker, name: str):
        assert isinstance(gvar, variables.VariableTracker)
        return self.load_attr(gvar, name)

    def store_global(self, gvar: VariableTracker, name: str, value: VariableTracker):
        assert isinstance(gvar, variables.VariableTracker)
        assert isinstance(value, variables.VariableTracker)
        self.store_attr(gvar, name, value)

    @staticmethod
    def cls_supports_mutation_side_effects(cls):
        return (
            inspect.getattr_static(cls, "__getattribute__", None)
            is object.__getattribute__
        )

    def is_attribute_mutation(self, item):
        return isinstance(item.mutation_type, AttributeMutation)

    def has_pending_mutation(self, item):
        return self.is_attribute_mutation(item) and bool(
            self.store_attr_mutations.get(item)
        )

    def has_pending_mutation_of_attr(self, item, name):
        return self.is_attribute_mutation(
            item
        ) and name in self.store_attr_mutations.get(item, ())

    def is_modified(self, item):
        if item.is_immutable():
            return False
        if isinstance(item.mutation_type, AttributeMutationNew):
            return True
        if self.is_attribute_mutation(item):
            return item in self.store_attr_mutations
        return item.mutation_type.is_modified

    def _track_obj(
        self,
        item: Any,
        variable: VariableTracker,
        mutation_type_cls=ValueMutationExisting,
    ):
        """Start tracking a new variable for mutation"""
        assert variable.source is not None

        if id(item) in self.id_to_variable:
            raise AssertionError(
                f"{variable} is already tracked for mutation. This could be "
                "because you are not using VariableBuilder to construct "
                "the variable tracker. "
                f"Source of new object: {variable.source}. "
                f"Source of previously tracked object: {self.id_to_variable[id(item)].source}."
            )

        variable.mutation_type = mutation_type_cls()
        self.id_to_variable[id(item)] = variable
        self.keepalive.append(item)
        return variable

    track_mutable = _track_obj

    def track_object_existing(
        self,
        item: Any,
        variable: VariableTracker,
    ):
        return self._track_obj(
            item, variable, mutation_type_cls=AttributeMutationExisting
        )

    def track_object_new(
        self,
        cls_source: Source,
        user_cls: Any,
        variable_cls: Any,
        options,
    ):
        if user_cls is torch.autograd.function.FunctionCtx:
            with warnings.catch_warnings(record=True):
                obj = torch.autograd.Function()
        elif issubclass(user_cls, torch.nn.Module):
            obj = nn_module_new(user_cls)
        else:
            try:
                obj = object_new(user_cls)
            except TypeError:
                # TODO(anijain2305/jansel) - Even though object.__new__ is same
                # as user_cls.__new__, calling object.__new__(user_cls) fails
                # with TypeError.
                unimplemented(f"Unable to construct the object of type {user_cls}")
        variable = variable_cls(
            obj,
            mutation_type=AttributeMutationNew(cls_source),
            **options,
        )
        self.id_to_variable[id(obj)] = variable
        self.keepalive.append(obj)
        return variable

    def track_object_new_from_user_defined_class(
        self,
        cls_variable: "variables.UserDefinedClassVariable",
    ):
        cls_source = cls_variable.source
        user_cls = cls_variable.value

        # Find the variable class
        variable_cls: Type[
            variables.UserDefinedObjectVariable
        ] = variables.UserDefinedObjectVariable
        if issubclass(user_cls, torch.nn.Module):
            variable_cls = variables.UnspecializedNNModuleVariable
        elif issubclass(user_cls, MutableMapping):
            variable_cls = variables.MutableMappingVariable
        elif is_frozen_dataclass(user_cls):
            variable_cls = FrozenDataClassVariable
        else:
            variable_cls = variables.UserDefinedObjectVariable

        assert issubclass(variable_cls, variables.UserDefinedObjectVariable)

        variable_cls = functools.partial(variable_cls, cls_source=cls_source)

        return self.track_object_new(cls_source, user_cls, variable_cls, {})

    def track_cell_new(
        self,
    ):
        obj = object()
        variable = variables.CellVariable(
            mutation_type=AttributeMutationNew(),
        )
        self.id_to_variable[id(obj)] = variable
        self.keepalive.append(obj)
        return variable

    def track_cell_existing(
        self, source: Optional[Source], cell: CellType, contents: VariableTracker
    ):
        variable = variables.CellVariable(
            # We don't support mutation to cell without source because we need
            # source to properly codegen the mutations.
            mutation_type=None if source is None else AttributeMutationExisting(),
            pre_existing_contents=contents,
            source=source,
        )
        self.id_to_variable[id(cell)] = variable
        self.keepalive.append(cell)
        return variable

    def track_global_existing(self, source: Source, item: Any):
        variable = variables.NewGlobalVariable(
            mutation_type=AttributeMutationExisting(),
            source=source,
        )
        self.id_to_variable[id(item)] = variable
        self.keepalive.append(item)
        return variable

    def track_save_for_backward(self, ctx, args):
        assert isinstance(ctx, variables.AutogradFunctionContextVariable)
        self.save_for_backward.append((ctx, args))

    def track_tensor_variables_from_runahead_side_effects(self, other):
        # In higher order ops we want to keep track of tensors seen in the
        # speculate_subgraph so that we don't lift them again as a new input in
        # other speculate_subgraph or in the root tracer.
        for other_item in other.keepalive:
            other_id = id(other_item)
            other_variable = other.id_to_variable[other_id]
            if other_id not in self.id_to_variable and isinstance(
                other_variable, variables.TensorVariable
            ):
                self.track_object_existing(other_item, other_variable)

    def prune_dead_object_new(self, tx):
        # Avoid VT cycles from e.g., recursive function.
        visited: Set[VariableTracker] = set()
        live_new_objects: Set[VariableTracker] = set()

        def visit(var: VariableTracker):
            if var in visited:
                return
            visited.add(var)
            # Object may have been mutated, store this mutation.
            if isinstance(var.mutation_type, AttributeMutationNew):
                live_new_objects.add(var)
            # It's possible that we have mutated the value of this variable
            # to be another one. The new value is in store_attr_mutations.
            # Also recurse through the new value to detect alive AttributeMutationNew.
            if var in self.store_attr_mutations:
                VariableTracker.visit(
                    visit, self.store_attr_mutations[var]  # noqa: F821
                )

        def is_live(var: VariableTracker):
            if isinstance(var.mutation_type, AttributeMutationNew):
                return var in live_new_objects
            return True

        pre_existing_vars = [
            var
            for var in self.id_to_variable.values()
            if not isinstance(var.mutation_type, AttributeMutationNew)
        ]

        # The only live side effects come from returns (tx.stack), any intermediates
        # during a graph break (tx.symbolic_locals), and mutation on pre-existing variables.
        # Recursively visit Variables and see if any of them have been mutated.
        VariableTracker.visit(
            visit,
            # TODO track from all possible sources.
            (
                tx.stack,
                tx.symbolic_locals,
                pre_existing_vars,
                tx.output.backward_state,
                self.tensor_hooks,
            ),
        )
        # Manually release the self-referential function, which indirectly
        # captures certain `VariableTracker` and affects parts of PT test/logic
        # that are sensitive to when certain objects get released.
        del visit

        # NB: cell variable handling.is tricky.
        # cell variables must stay alive if any NestedUserFunctionVariable
        # are live. "visit"-ing the NestedUserFunctionVariable visits
        # the .closures field, from which we will see if we need to keep
        # any mutations to cell variables alive.

        self.id_to_variable = {
            k: v for k, v in self.id_to_variable.items() if is_live(v)
        }
        self.store_attr_mutations = {
            k: v for k, v in self.store_attr_mutations.items() if is_live(k)
        }

    def mutation(self, var):
        self.check_allowed_side_effect(var)
        if isinstance(var.mutation_type, ValueMutationExisting):
            var.mutation_type.is_modified = True

    def _get_modified_vars(self):
        return [var for var in self.id_to_variable.values() if self.is_modified(var)]

    def codegen_save_tempvars(self, cg: PyCodegen):
        # Make sure we codegen these modified VT to their source by default, so
        # that mutation and aliasing are properly accounted for.
        for var in self._get_modified_vars():
            if isinstance(var.mutation_type, AttributeMutationNew) and isinstance(
                var, variables.CellVariable
            ):
                # Cells created in the root frame are created either by
                # `MAKE_CELL` or by them being in `co_cellvars`, so we only emit
                # `make_cell` for the non-root-frame cells here.
                # TODO generalize this so we never need to call `make_cell`.
                if var.local_name is None:
                    cg.add_push_null(
                        lambda: cg.load_import_from(utils.__name__, "make_cell")
                    )
                    cg.extend_output(create_call_function(0, False))
                    cg.add_cache(var)
                    var.source = LocalSource(cg.tempvars[var])  # type: ignore[attr-defined]
                elif var.source is None:
                    var.source = LocalCellSource(var.local_name)
            elif isinstance(var.mutation_type, AttributeMutationNew):
                if isinstance(var, variables.AutogradFunctionContextVariable):
                    unimplemented("AutogradFunctionContextVariable escaped")
                cg.add_push_null(
                    lambda: cg.load_import_from(utils.__name__, "object_new")
                )
                cg(var.mutation_type.cls_source)
                cg.extend_output(create_call_function(1, False))
                cg.add_cache(var)
                var.source = LocalSource(cg.tempvars[var])
            else:
                # The remaning cases here are `AttributeMutationExisting` and
                # `MutableSideEffects`, which have sources already.
                assert var.source is not None

        for ctx, args in self.save_for_backward:
            cg(ctx.source)
            cg.load_method("save_for_backward")
            for arg in args:
                cg(arg)
            cg.extend_output(
                [
                    *create_call_method(len(args)),
                    create_instruction("POP_TOP"),
                ]
            )

    def register_hook(self, tensor, hook, handle, name):
        assert isinstance(tensor, variables.TensorVariable)
        assert isinstance(hook, variables.VariableTracker)
        assert (
            isinstance(handle, variables.RemovableHandleVariable)
            and handle.is_mutable()
        )
        assert hasattr(torch.Tensor, name)
        idx = len(self.tensor_hooks.keys())
        # duplicate index possible because of self.remove_hook()
        while idx in self.tensor_hooks:
            idx += 1
        self.tensor_hooks[idx] = (tensor, hook, handle, name)
        assert not handle.idx
        handle.idx = idx

    def remove_hook(self, idx):
        del self.tensor_hooks[idx]

    def codegen_hooks(self, cg):
        for (
            tensor,
            hook,
            handle,
            name,
        ) in self.tensor_hooks.values():
            # Note: [On tensor.register_hook]
            #
            # register_hook on a tensor, AKA backward hooks, have slightly nuanced differences in how they are implemented
            # when it comes to hooks on objects with sources (inputs, params) vs objects without sources (intermediaries).
            #
            # For tensors with a source, we bypass direct inclusion of register_hook calls in the graph.
            # Instead, these are tracked and stashed as a global variable, enabling their association with tensors in
            # the residuals. During dynamo's frame creation, these hooks are invoked seamlessly on known reconstructible/fetch-able
            # tensors. Because a source indicates knowledge of this object outside the torch compile region, and
            # because we are running residuals firmly before .backward() can be run, it is sound to invoke
            # `register_hook` on a known tensor.
            #
            # For tensors without a source, we support a limited subset of hooks. Global functions only, and
            # compiled_autograd must be enabled or we will graph break.
            #
            # Handling the Handle: When a user retains the register_hook result in a handle, we intercept the
            # STORE_FAST operation to record the user-designated local variable name. This ensures the reconstructed
            # bytecode retains this name. If no handle is defined, we simply pop the generated value to keep the
            # stack intact.
            #
            # Dynamo Tensor Hooks Workflow:
            # - Functions passed to register_hook are lifted globally.
            # - For tensors with sources:
            #   - In the "side_effects" phase of codegen, we iterate over tensors with hooks to:
            #     - Generate the tensor.
            #     - Issue a register_hook call on the tensor, linking to the globally stored function.
            #     - Incorporate a handle if one was established in the eager phase.
            #  - For tensors without sources:
            #    - We don't generate any instructions for registering a hook.
            #    - Handles from intermediary hooks are NYI.
            #    - We produce a call function that utilizes the trace_wrapped higher order op, closing over it.
            #    - We then manually insert the call function above into the graph.
            # - The handle's exact user-specified name, "user_code_variable_name", is discerned and associated during STORE_FAST.
            assert tensor.source, "Hooks on non input tensors NYI - should not get here"

            def gen_fn():
                cg(tensor)
                cg.extend_output([cg.create_load_attr(name)])

            cg.add_push_null(gen_fn)
            cg(hook)
            cg.extend_output(create_call_function(1, False))

            # Adding the handle to the cache means RemovableHandleVariable().reconstruct() will
            # be associated with the return value of register_hook().  This consumes the top of stack.
            cg.add_cache(handle)

    def get_ca_final_callbacks_var(self):
        from .variables.base import ValueMutationNew

        if self.ca_final_callbacks_var is None:
            self.ca_final_callbacks_var = variables.ListVariable(
                [], mutation_type=ValueMutationNew()
            )
        return self.ca_final_callbacks_var

    def codegen_update_mutated(self, cg: PyCodegen):
        suffixes = []
        for var in self._get_modified_vars():
            if isinstance(var, variables.ListVariable):
                # old[:] = new
                cg(var, allow_cache=False)  # Don't codegen via source
                cg(var.source)  # type: ignore[attr-defined]
                cg.extend_output(
                    [
                        cg.create_load_const(None),
                        cg.create_load_const(None),
                        create_instruction("BUILD_SLICE", arg=2),
                    ]
                )
                suffixes.append([create_instruction("STORE_SUBSCR")])
            elif isinstance(var, variables.lists.DequeVariable):
                # For limited maxlen, the order of operations matter for side
                # effect, but we currently don't track the order, so no support.
                if not (
                    isinstance(var.maxlen, variables.ConstantVariable)
                    and var.maxlen.value is None
                ):
                    unimplemented("side effect on existing deque with limited maxlen")

                # old.extend(new), this runs last
                cg(var.source)
                cg.load_method("extend")
                cg(var, allow_cache=False)  # Don't codegen via source
                suffixes.append(
                    [
                        *create_call_method(1),
                        create_instruction("POP_TOP"),
                    ]
                )

                # old.clear(), this runs first
                cg(var.source)
                cg.load_method("clear")
                suffixes.append(
                    [
                        *create_call_method(0),
                        create_instruction("POP_TOP"),
                    ]
                )

            elif isinstance(var, variables.CustomizedDictVariable):
                # need to update the dict manually since update method may be invalid
                varname_map = {}
                for name in _manual_update_dict.__code__.co_varnames:
                    varname_map[name] = cg.tx.output.new_var()

                cg(var.source)  # type: ignore[attr-defined]
                cg.extend_output(
                    [create_instruction("STORE_FAST", argval=varname_map["dict_to"])]
                )

                cg(var, allow_cache=False)  # Don't codegen via source
                cg.extend_output(
                    [create_instruction("STORE_FAST", argval=varname_map["dict_from"])]
                )

                cg(var.source)  # type: ignore[attr-defined]
                cg.load_method("clear")

                # unfortunately can't just use DICT_MERGE due to possible custom behaviors
                dict_update_insts = bytecode_from_template(
                    _manual_update_dict, varname_map=varname_map
                )

                suffixes.append(
                    [
                        *create_call_method(0),  # clear
                        create_instruction("POP_TOP"),
                        *dict_update_insts,
                        create_instruction("POP_TOP"),
                    ]
                )

            elif isinstance(var, variables.ConstDictVariable):
                # Reconstruct works as follow:
                # (1) Skip codegen if there are no new items
                # (2) codegen(...) each pair of key/value
                # (3) create a new dictionary with the pairs of key/values above
                # (4) clear the original dictionary
                #   + only if a key was removed from the input dict
                # (5) update the original dictionary with the dict created in (2)

                if var.has_new_items():
                    cg(var.source)  # type: ignore[attr-defined]
                    cg.load_method("update")
                    cg(var, allow_cache=False)  # Don't codegen via source

                    if var.should_reconstruct_all:
                        cg(var.source)  # type: ignore[attr-defined]
                        cg.load_method("clear")

                    suffixes.append(
                        [
                            *create_call_method(1),  # update
                            create_instruction("POP_TOP"),
                        ]
                    )

                    if var.should_reconstruct_all:
                        # clear will appear before "update" as the suffixes are
                        # applied in reverse order.
                        suffixes.append(
                            [
                                *create_call_method(0),  # clear
                                create_instruction("POP_TOP"),
                            ]
                        )

            elif isinstance(
                var, variables.torch_function.TorchFunctionModeStackVariable
            ):
                # Needed in the finally block for stack restoration
                cg.add_push_null(
                    lambda: cg.load_import_from(
                        utils.__name__, "get_torch_function_mode_stack"
                    )
                )
                cg.call_function(0, False)
                name = variables.torch_function.get_prev_stack_var_name()
                cg.code_options["co_varnames"] += (name,)
                cg.append_output(create_instruction("STORE_FAST", argval=name))
                cg.add_push_null(
                    lambda: cg.load_import_from(
                        utils.__name__, "set_torch_function_mode_stack"
                    )
                )

                cg.foreach(var.symbolic_stack)
                cg.append_output(
                    create_instruction("BUILD_LIST", arg=len(var.symbolic_stack))
                )
                cg.call_function(1, False)
                cg.append_output(create_instruction("POP_TOP"))

            elif isinstance(var, variables.CellVariable) and var.local_name is not None:
                # Emit more readable and performant bytecode.
                # TODO generalize this for cells created during inlining.
                if var in self.store_attr_mutations:
                    contents_var = self.load_cell(var)
                    cg(contents_var)
                    suffixes.append([cg.create_store_deref(var.local_name)])

            elif self.is_attribute_mutation(var):
                # Applying mutations involves two steps: 1) Push all
                # reconstructed objects onto the stack.  2) Call STORE_ATTR to
                # apply the mutations.
                #
                # Dynamo must ensure that mutations are applied in the same
                # order as in the original program. Therefore, two reverse
                # operations occur below.
                #
                # The first reverse operation concerns `suffixes`. We apply
                # suffixes in reverse order due to the way Python handles the
                # stack. In Step 1, we push all reconstructed objects onto the
                # stack, but the item at the top of the stack refers to the last
                # attribute in the mutation order. If not fixed, this will apply
                # the mutations of attributes in the reverse order.  To account
                # for this reversal, we iterate through the mutable attributes
                # in reverse order.
                for name, value in reversed(
                    self.store_attr_mutations.get(var, {}).items()
                ):
                    if isinstance(var, variables.NewGlobalVariable):
                        cg.tx.output.update_co_names(name)
                        cg(value)
                        assert isinstance(var.source, GlobalSource)  # type: ignore[attr-defined]
                        suffixes.append(
                            [create_instruction("STORE_GLOBAL", argval=name)]
                        )
                    elif isinstance(value, variables.DeletedVariable):
                        if isinstance(
                            var.mutation_type, AttributeMutationExisting
                        ) and hasattr(getattr(var, "value", None), name):
                            cg.tx.output.update_co_names(name)
                            cg(var.source)
                            suffixes.append(
                                [create_instruction("DELETE_ATTR", argval=name)]
                            )
                    elif (
                        isinstance(var, variables.UserDefinedObjectVariable)
                        and var.needs_slow_setattr()
                    ):
                        # __setattr__ is defined on this object, so call object.__setattr__ directly
                        cg.load_import_from("builtins", "object")
                        cg.load_method("__setattr__")
                        cg(var.source)  # type: ignore[attr-defined]
                        cg(variables.ConstantVariable(name))
                        cg(value)
                        suffixes.append(
                            [*create_call_method(3), create_instruction("POP_TOP")]
                        )
                    else:
                        cg.tx.output.update_co_names(name)
                        cg(value)
                        cg(var.source)
                        suffixes.append([create_instruction("STORE_ATTR", argval=name)])
            elif isinstance(var, variables.ListIteratorVariable):
                for _ in range(var.index):
                    cg.add_push_null(
                        lambda: cg.load_import_from(utils.__name__, "iter_next")
                    )
                    cg(var.source)  # type: ignore[attr-defined]
                    cg.call_function(1, False)
                    cg.pop_top()
            elif isinstance(var, variables.RandomVariable):
                # set correct random seed state
                def gen_fn():
                    cg(var.source)  # type: ignore[attr-defined]
                    cg.load_attr("setstate")

                cg.add_push_null(gen_fn)
                cg(var.wrap_state(var.random.getstate()))

                suffixes.append(
                    [
                        *create_call_function(1, False),  # setstate
                        create_instruction("POP_TOP"),
                    ]
                )
            else:
                raise AssertionError(type(var))

        # do all the actual mutations at the very end to handle dependencies
        for suffix in reversed(suffixes):
            cg.extend_output(suffix)

    def is_empty(self):
        return not (
            any(map(self.is_modified, self.id_to_variable.values()))
            or self.tensor_hooks
            or self.save_for_backward
            or self.tensor_hooks
        )

    def clear(self):
        self.keepalive.clear()
        self.id_to_variable.clear()


@contextlib.contextmanager
def allow_side_effects_under_checkpoint(tx: "InstructionTranslator"):  # type: ignore[name-defined]  # noqa: F821
    assert tx.output.current_tracer.under_activation_checkpoint
    orig_val = tx.output.current_tracer.allow_side_effects_under_checkpoint
    try:
        tx.output.current_tracer.allow_side_effects_under_checkpoint = True
        yield
    finally:
        tx.output.current_tracer.allow_side_effects_under_checkpoint = orig_val