1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
# mypy: ignore-errors
import collections
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING
from .. import variables
from ..current_scope_id import current_scope_id
from ..exc import unimplemented
from ..guards import GuardBuilder, install_guard
from ..source import AttrSource, Source
from ..utils import istype
if TYPE_CHECKING:
from .symbolic_convert import InstructionTranslator, InstructionTranslatorBase
class SourceType(Enum):
"""
This Enum divides VariableTracker into 2 cases, depending on the variable
it represents:
- already existed that Dynamo began tracking while introspection (Existing)
- is a new variable that is created during Dynamo introspection (New)
In general, we have these invariants:
1. for `VariableTracker` associated with `Existing`, its `source` field must not be None.
2. for `VariableTracker` associated with `New`, most of the time its
`source` field is None, except for cases like side effect codegen for
`AttributeMutationNew`, during which we generate a
`LocalSource('tmp...')` for such variable, to facilitate codegen.
"""
Existing = 0
New = 1
class MutationType:
"""
Base class for Variable.mutation_type. It encodes information about
1. The type of mutation Dynamo allows on the variable.
2. Whether the value represented by this variable already existed before
Dynamo tracing.
"""
def __init__(self, typ: SourceType) -> None:
# In HigherOrderOperator tracing, we need to distinguish
# between MutationTypes inside the HigherOrderOperator and
# ones outside it. For example, it is not safe to mutate
# `a` in the following example because it was constructed
# in a different scope.
#
# def f(x):
# a = 1
# def g(x):
# nonlocal a
# a = 2
# return x
# return wrap(g, x) + a
#
# We use self.scope to distinguish this.
# scope == 0: The object was an existing variable
# scope == 1: The object was created while Dynamo
# was introspecting a function
# (and no HigherOrderOps were involved)
# scope >= 2: The object was created through
# Dynamo introspection of a HigherOrderOp.
# The exact number corresponds to the level
# of nested HigherOrderOps.
if typ is SourceType.Existing:
self.scope = 0
elif typ is SourceType.New:
self.scope = current_scope_id()
else:
unimplemented(f"Unsupported SourceType: {typ}")
class ValueMutationNew(MutationType):
"""
This case of VariableTracker.mutation_type marker indicates
1. Dynamo allows mutation on the value itself (rather than its attributes).
2. The value is created by the bytecode Dynamo is tracing through.
For instance, Dynamo could model a newly created list with this marker,
indicating that while we need to model mutations to this list, we don't have
to emit bytecode for these mutations if the list doesn't escape into the
Python world.
"""
def __init__(self) -> None:
super().__init__(SourceType.New)
def __hash__(self):
return id(self)
def __eq__(self, other):
return self is other
class ValueMutationExisting(MutationType):
"""
This case of VariableTracker.mutation_type marker indicates
1. Dynamo allows mutation on the value itself (rather than its attributes).
2. The value exists before Dynamo tracing started.
For instance, Dynamo could model a pre-existing list with this marker,
indicating that if we encounter mutations to this list, we need to buffer
and re-apply those mutations after the graph runs, since the list might be
used afterwards in Python.
"""
# A flag to indicate whether mutation happened on the associated
# `VariableTracker`. This enables SideEffects to accurately and quickly
# filter out which pre-existing values it needs to generate mutation for.
is_modified: bool
def __init__(self, is_modified: bool = False):
super().__init__(SourceType.Existing)
self.is_modified = is_modified
class AttributeMutation(MutationType):
"""
This case of VariableTracker.mutation_type marker indicates that Dynamo
allows mutation on the value's attributes.
"""
def __init__(self, typ: SourceType):
super().__init__(typ)
class AttributeMutationExisting(AttributeMutation):
"""
This case of VariableTracker.mutation_type marker indicates
1. Dynamo allows mutation on the value's attributes.
2. The value exists before Dynamo tracing started.
For instance, Dynamo could model a pre-existing object with this marker,
indicating that if we encounter mutations to this object, we need to buffer
then re-apply those mutations after the graph runs, since the object might
be used afterwards in Python.
"""
def __init__(self):
super().__init__(SourceType.Existing)
class AttributeMutationNew(AttributeMutation):
"""
This case of VariableTracker.mutation_type marker indicates
1. Dynamo allows mutation on the value's attributes.
2. The value is created by the bytecode Dynamo is tracing through.
For instance, Dynamo could model a newly created object with this marker,
indicating that while we need to model mutations to this object, we don't
have to emit bytecode for these mutations if the object doesn't escape into
the Python world.
"""
def __init__(self, cls_source: Optional[Source] = None):
super().__init__(SourceType.New)
self.cls_source = cls_source
def _is_top_level_scope(scope_id):
return scope_id == 1
def is_side_effect_safe(m: MutationType):
scope_id = current_scope_id()
# In the top-level scope (if no HigherOrderOperators are involved),
# we are allowed to modify variables created in this scope as well
# as existing variables.
if _is_top_level_scope(scope_id):
return True
# Otherwise, only allow local mutation of variables created in the current scope
return m.scope == scope_id
class VariableTrackerMeta(type):
all_subclasses = []
def __instancecheck__(cls, instance) -> bool:
"""Make isinstance work with LazyVariableTracker"""
if type.__instancecheck__(
variables.LazyVariableTracker, instance
) and cls not in (
VariableTracker,
variables.LazyVariableTracker,
):
instance = instance.realize()
return type.__instancecheck__(cls, instance)
def __init__(cls, name, bases, attrs) -> None:
super().__init__(name, bases, attrs)
VariableTrackerMeta.all_subclasses.append(cls)
class VariableTracker(metaclass=VariableTrackerMeta):
"""
Base class for tracked locals and stack values
VariableTracker instances are immutable and should be copied in
order to change them.
Prefer the factory function VariableTracker.build() over VariableTracker.__init__().
"""
# fields to leave unmodified in apply()
_nonvar_fields = {
"value",
"guards",
"source",
"mutation_type",
"parents_tracker",
"user_code_variable_name",
}
def clone(self, **kwargs):
"""Shallow copy with some (optional) changes"""
args = dict(self.__dict__)
args.update(kwargs)
return self.__class__(**args)
@classmethod
def visit(
cls,
fn: Callable[["VariableTracker"], None],
value: Any,
cache: Optional[Dict[int, Any]] = None,
) -> None:
"""
Walk value and call fn on all the VariableTracker instances
"""
if cache is None:
cache = {}
idx = id(value)
if idx in cache:
return
# save `value` to keep it alive and ensure id() isn't reused
cache[idx] = value
if isinstance(value, VariableTracker):
value = value.unwrap()
fn(value)
value = value.unwrap() # calling fn() might have realized it
nonvars = value._nonvar_fields
for key, subvalue in value.__dict__.items():
if key not in nonvars:
cls.visit(fn, subvalue, cache)
elif istype(value, (list, tuple)):
for subvalue in value:
cls.visit(fn, subvalue, cache)
elif istype(value, (dict, collections.OrderedDict)):
for subvalue in value.values():
cls.visit(fn, subvalue, cache)
def __repr__(self) -> str:
return f"{self.__class__.__name__}()"
def debug_repr(self):
# Intended to be overridden to provide more info
try:
return repr(self.as_python_constant())
except NotImplementedError:
return repr(self)
def python_type(self):
"""
Abstract method to be implemented by subclasses of VariableTracker.
This method should return the type represented by the instance of the subclass.
The purpose is to provide a standardized way to retrieve the Python type information
of the variable being tracked.
Returns:
type: The Python type (such as int, str, list, etc.) of the variable tracked by
the subclass. If the type cannot be determined or is not relevant,
leaving it undefined or invoking super() is always sound.
Note:
This is an abstract method and may be overridden in subclasses.
Example:
class SetVariable(VariableTracker):
def python_type(self):
return set
Raises:
NotImplementedError: If the method is not implemented in a subclass.
"""
try:
return type(self.as_python_constant())
except NotImplementedError:
raise NotImplementedError(f"{self} has no type") from None
def as_python_constant(self):
"""For constants"""
raise NotImplementedError(f"{self} is not a constant")
def guard_as_python_constant(self):
"""Similar to as_python_constant(), but add ID_MATCH guards to try to force things to become constants"""
try:
return self.as_python_constant()
except NotImplementedError as e:
unimplemented(str(e))
def is_python_constant(self):
try:
self.as_python_constant()
return True
except NotImplementedError:
return False
def make_guard(self, fn):
if self.source:
return self.source.make_guard(fn)
raise NotImplementedError
def const_getattr(self, tx: "InstructionTranslator", name: str) -> Any:
"""getattr(self, name) returning a python constant"""
raise NotImplementedError
def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
"""getattr(self, name) returning a new variable"""
value = self.const_getattr(tx, name)
if not variables.ConstantVariable.is_literal(value):
raise NotImplementedError
source = self.source and AttrSource(self.source, name)
if source:
install_guard(source.make_guard(GuardBuilder.CONSTANT_MATCH))
return variables.ConstantVariable.create(value, source=source)
def is_proxy(self):
try:
self.as_proxy()
return True
except NotImplementedError:
return False
def as_proxy(self):
raise NotImplementedError(str(self))
def maybe_fx_node(self):
try:
proxy = self.as_proxy()
import torch.fx
if isinstance(proxy, torch.fx.Proxy):
return proxy.node
return None
except NotImplementedError:
return None
def reconstruct(self, codegen):
raise NotImplementedError
def unpack_var_sequence(self, tx) -> List["VariableTracker"]:
raise NotImplementedError
def force_unpack_var_sequence(self, tx) -> List["VariableTracker"]:
# like unpack_var_sequence, but should only be used when it is
# safe to eagerly (vs. lazily) unpack this variable.
# e.g. map(f, x) is normally evaluated lazily but sometimes
# we want to force eager unpacking, e.g. when converting to a list.
# NOTE: this method is allowed to mutate the VariableTracker, so
# it should only be called once.
return self.unpack_var_sequence(tx)
def has_unpack_var_sequence(self, tx) -> bool:
try:
self.unpack_var_sequence(tx)
return True
except NotImplementedError:
return False
# NB: don't call force_unpack_var_sequence, especially if it mutates!
def has_force_unpack_var_sequence(self, tx) -> bool:
return self.has_unpack_var_sequence(tx)
def inspect_parameter_names(self) -> List[str]:
unimplemented(f"inspect_parameter_names: {self}")
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
unimplemented(f"hasattr {self.__class__.__name__} {name}")
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
unimplemented(f"call_function {self} {args} {kwargs}")
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__len__" and self.has_unpack_var_sequence(tx):
assert not (args or kwargs)
return variables.ConstantVariable.create(len(self.unpack_var_sequence(tx)))
elif (
name == "__getattr__"
and len(args) == 1
and args[0].is_python_constant()
and not kwargs
):
return self.var_getattr(tx, args[0].as_python_constant())
unimplemented(f"call_method {self} {name} {args} {kwargs}")
def set_name_hint(self, name):
pass
def realize(self) -> "VariableTracker":
"""Used by LazyVariableTracker to build the real VariableTracker"""
return self
def unwrap(self) -> "VariableTracker":
"""Used by LazyVariableTracker to return the real VariableTracker if it already exists"""
return self
def is_realized(self):
"""Used by LazyVariableTracker to indicate an unrealized node"""
return True
def next_variable(self, tx):
unimplemented(f"next({self})")
def is_strict_mode(self, tx):
return tx.strict_checks_fn and tx.strict_checks_fn(self)
def is_mutable(self):
"""Whether Dynamo allows mutation on this variable."""
return not self.is_immutable()
def is_immutable(self):
"""Whether Dynamo bans mutation on this variable."""
return self.mutation_type is None
@staticmethod
def build(
tx: "InstructionTranslatorBase",
value: Any,
source: Optional[Source] = None,
) -> Any:
"""Create a new VariableTracker from a value and optional Source"""
from . import builder
if source is None:
return builder.SourcelessBuilder.create(tx, value)
else:
return builder.VariableBuilder(tx, source)(value)
def __init__(
self,
*,
source: Source = None,
mutation_type: MutationType = None,
) -> None:
super().__init__()
self.source = source
self.mutation_type = mutation_type
# NOTE sometimes mutation_type is set afterwards for implementation
# convenience, we don't validate those cases at the moment.
if mutation_type is not None:
if isinstance(mutation_type, (ValueMutationNew, AttributeMutationNew)):
# If this fails, it's either
# 1. one mistakenly passed in a source
# 2. `mutation_type` is incorrect
assert source is None
else:
assert isinstance(
mutation_type, (ValueMutationExisting, AttributeMutationExisting)
)
# If this fails, it's either
# 1. one forgot to pass in a source
# 2. `mutation_type` is incorrect
assert source is not None
def typestr(*objs):
if len(objs) == 1:
(obj,) = objs
if isinstance(obj, VariableTracker):
return str(obj)
else:
return type(obj).__name__
else:
return " ".join(map(typestr, objs))
|