File: builder.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (3065 lines) | stat: -rw-r--r-- 128,182 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
# mypy: ignore-errors

import abc
import collections
import contextlib
import copy
import dataclasses
import enum
import functools
import inspect
import itertools
import logging
import math
import operator
import random
import re
import sys
import types
import warnings
import weakref
from typing import (
    Any,
    Callable,
    Dict,
    FrozenSet,
    List,
    MutableMapping,
    NamedTuple,
    Optional,
    Set,
    TYPE_CHECKING,
    Union,
)

import sympy

import torch
from torch import SymInt
from torch._guards import GuardSource, TracingContext
from torch._higher_order_ops.torchbind import call_torchbind
from torch._ops import HigherOrderOperator
from torch._subclasses.fake_tensor import FakeTensor, is_fake, maybe_get_fake_mode
from torch._subclasses.meta_utils import is_sparse_any, safe_grad
from torch._utils_internal import justknobs_check
from torch.fx.experimental._backward_state import BackwardState
from torch.fx.experimental.symbolic_shapes import (
    _constrain_range_for_size,
    _nested_int_aware_sort,
    DimDynamic,
    RelaxedUnspecConstraint,
    StatefulSymbolicContext,
    SubclassSymbolicContext,
    SymbolicContext,
)
from torch.fx.immutable_collections import immutable_dict, immutable_list
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
from torch.utils._sympy.value_ranges import ValueRanges
from torch.utils.weak import TensorWeakRef

from .. import config, mutation_guard, replay_record, trace_rules
from ..device_interface import get_registered_device_interfaces
from ..exc import InternalTorchDynamoError, unimplemented
from ..guards import GuardBuilder, install_guard, make_dupe_guard
from ..pgo import (
    auto_dynamic,
    auto_unset,
    FrameStateSizeEntry,
    InferStride,
    process_automatic_dynamic,
)
from ..side_effects import SideEffects
from ..source import (
    AttrProxySource,
    AttrSource,
    CallMethodItemSource,
    ConstantSource,
    ConstDictKeySource,
    ConvertIntSource,
    FloatTensorSource,
    GetItemSource,
    GradSource,
    is_constant_source,
    is_from_defaults,
    is_from_optimizer_source,
    LocalSource,
    NumpyTensorSource,
    OptimizerSource,
    RandomValueSource,
    Source,
    SubclassAttrListSource,
    TupleIteratorGetItemSource,
)
from ..trace_rules import (
    is_callable_allowed,
    is_numpy,
    is_numpy_dtype,
    is_numpy_type_info,
)
from ..utils import (
    _extract_tensor_dict,
    build_checkpoint_variable,
    build_invoke_subgraph_variable,
    clone_input,
    common_constant_types,
    get_fake_value,
    get_locals_to_steal,
    get_static_address_type,
    is_frozen_dataclass,
    is_function_or_wrapper,
    is_invoke_subgraph,
    is_lru_cache_wrapped_function,
    is_namedtuple,
    is_parameter_freezing,
    is_typing,
    is_utils_checkpoint,
    is_wrapper_or_member_descriptor,
    istype,
    namedtuple_fields,
    odict_values,
    proxy_args_kwargs,
    range_iterator,
    set_example_value,
    tensor_always_has_static_shape,
    tuple_iterator,
    tuple_iterator_getitem,
    tuple_iterator_len,
    unwrap_with_attr_name_if_wrapper,
    wrap_fake_exception,
)
from .base import typestr, ValueMutationNew, VariableTracker, VariableTrackerMeta
from .constant import ConstantVariable, EnumVariable
from .ctx_manager import (
    AutocastModeVariable,
    EventVariable,
    NullContextVariable,
    PreserveVersionContextVariable,
    StreamContextVariable,
    StreamVariable,
)
from .dicts import (
    ConstDictVariable,
    CustomizedDictVariable,
    DefaultDictVariable,
    FrozensetVariable,
    HFPretrainedConfigVariable,
    PythonSysModulesVariable,
    SetVariable,
)
from .distributed import (
    DeviceMeshVariable,
    PlacementClassVariable,
    PlacementVariable,
    ProcessGroupVariable,
    WorldMetaClassVariable,
)
from .functions import (
    CollectiveFunctionRewriteVariable,
    CreateTMADescriptorVariable,
    FunctoolsPartialVariable,
    TritonKernelVariable,
    UserFunctionVariable,
    UserMethodVariable,
    WrapperUserFunctionVariable,
)
from .higher_order_ops import TorchHigherOrderOperatorVariable
from .iter import ItertoolsVariable
from .lazy import LazyVariableTracker
from .lists import (
    BaseListVariable,
    ListIteratorVariable,
    ListVariable,
    NamedTupleVariable,
    RangeVariable,
    RestrictedListSubclassVariable,
    SizeVariable,
    SliceVariable,
    TupleIteratorVariable,
    TupleVariable,
)
from .misc import (
    AutogradEngineVariable,
    AutogradFunctionContextVariable,
    AutogradFunctionVariable,
    ComptimeVariable,
    DebuggingVariable,
    DelayGraphBreakVariable,
    GetAttrVariable,
    GetSetDescriptorVariable,
    InspectSignatureVariable,
    LambdaVariable,
    LoggingLoggerVariable,
    MethodWrapperVariable,
    NumpyDTypeVariable,
    NumpyTypeInfoVariable,
    NumpyVariable,
    PythonModuleVariable,
    RandomClassVariable,
    RandomVariable,
    RegexPatternVariable,
    SavedTensorBox,
    TorchVersionVariable,
    TypingVariable,
    WeakRefVariable,
)
from .nn_module import (
    FSDPManagedNNModuleVariable,
    UnspecializedBuiltinNNModuleVariable,
    UnspecializedNNModuleVariable,
)
from .optimizer import OptimizerVariable
from .script_object import TorchScriptObjectVariable
from .sdpa import SDPAParamsVariable
from .tensor import (
    NumpyNdarrayVariable,
    supported_const_comparison_op_values,
    SymNodeVariable,
    TensorSubclassVariable,
    TensorVariable,
    UnspecializedPythonVariable,
)
from .torch import TorchCtxManagerClassVariable, TorchInGraphFunctionVariable
from .torch_function import (
    build_torch_function_fn,
    TensorWithTFOverrideVariable,
    torch_function_mode_stack_state_mgr,
    TorchFunctionModeVariable,
)
from .user_defined import (
    FrozenDataClassVariable,
    KeyedJaggedTensorVariable,
    MutableMappingVariable,
    SourcelessGraphModuleVariable,
    UserDefinedClassVariable,
    UserDefinedObjectVariable,
)


try:
    import numpy as np
except ModuleNotFoundError:
    np = None


if TYPE_CHECKING:
    from torch._dynamo.symbolic_convert import InstructionTranslator


log = logging.getLogger(__name__)
static_inputs_log = torch._logging.getArtifactLogger(
    __name__, "cudagraph_static_inputs"
)


DimList = List


def safe_has_grad(t):
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", "The .grad attribute of a Tensor")
        return hasattr(t, "grad")


class _missing:
    pass


@dataclasses.dataclass
class GraphArg:
    source: Source
    # TODO: storing a SymInt here but not a FakeTensor is a pretty strange
    # thing to do.  Probably should have example (which stores an int) and
    # fake_example
    _example: Union[TensorWeakRef, torch.SymInt]
    # When True, this indicates that this GraphArg is a Python quantity (e.g.,
    # a float or int) which we pass to the FX graph as a Tensor.  This
    # controls how we codegen calls into the Dynamo graph: we will call
    # torch.as_tensor on the quantity before passing it in.
    #
    # Note that we typically do not pass dynamic integers as tensors, because
    # they will most frequently just be used for size computation.  But this
    # is a policy decision that we can change our mind on; in particular, when
    # an int comes from a random number generator (e.g., random.randint), we
    # DO pass it as a tensor.
    #
    # It's also worth noting that our current tracing rules for
    # pass_arg_as_tensor as subtly broken: we just pun the variable as a
    # 0d scalar Tensor and pray that the semantics are the same.  Which they
    # often are, but not necessarily.  ezyang(May 2024) plans to fix this
    # soon.
    pass_arg_as_tensor: bool
    fake_tensor: Optional[torch._subclasses.fake_tensor.FakeTensor]
    # UnspecializedPythonVariable often masquerades as a tensor.
    # We MUST NOT generate shape guard code
    # that actually tries to access tensor properties on these values.
    # is_tensor lets us tell if this graph arg actually is a tensor
    # or not.
    is_tensor: bool = True
    # Sometimes, the Tensor we pass to example is freshly allocated (smh).
    # Then we cannot only keep a weak reference to it.  This lets you
    # stash a strong reference too.
    example_strong_ref: Optional[torch.Tensor] = None

    @property
    def example(self):
        if isinstance(self._example, TensorWeakRef):
            r = self._example()
            assert r is not None
            return r
        else:
            return self._example

    def __post_init__(self):
        if isinstance(self._example, torch.Tensor):
            self._example = TensorWeakRef(self._example)
            assert is_fake(self.fake_tensor)

    def reconstruct(self, codegen):
        self.source.reconstruct(codegen)

    def erase(self):
        self._example = None
        self.example_strong_ref = None

    def __eq__(self, other):
        return self.source.name() == other.source.name()


class BackwardStateGraphArg(GraphArg):
    def __init__(self) -> None:
        super().__init__(
            source=None,
            _example=BackwardState(),
            pass_arg_as_tensor=False,
            fake_tensor=None,
            is_tensor=False,
        )

    def reconstruct(self, codegen):
        assert codegen.tx.output.backward_state_var
        codegen.add_push_null(
            lambda: codegen.load_import_from(BackwardState.__module__, "BackwardState")
        )
        codegen.call_function(0, False)
        codegen.dup_top()
        codegen.store(codegen.tx.output.backward_state_var)


# All class-based iterators in itertools
# NOTE: use id() because some objects are not hashable, it will raise error during lookup
ITERTOOLS_TYPE_IDS: FrozenSet[int] = frozenset(
    id(member)
    for name, member in vars(itertools).items()
    if not name.startswith("_") and inspect.isclass(member)
)
# Will be updated later in substitute_in_graph in torch/_dynamo/polyfills/itertools.py
ITERTOOLS_POLYFILLED_TYPE_IDS: Set[int] = set()


class VariableBuilder:
    """Wrap a python value in a VariableTracker() instance"""

    def __init__(
        self,
        tx,
        source: Source,
    ) -> None:
        assert (
            source is not None
        ), "Consider SourcelessBuilder for ephemeral objects, usually objects created locally."
        assert TracingContext.try_get() is not None, "Expected active TracingContext"
        super().__init__()
        self.tx = tx
        self.source = source
        self.name = source.name()

    def __call__(self, value):
        if value in self.tx.output.side_effects:
            side_effect_result = self.tx.output.side_effects[value]
            dup_guard = make_dupe_guard(self.source, side_effect_result.source)
            if dup_guard:
                self.install_guards(dup_guard)
            return side_effect_result

        cached_vt = self.tx.output.variable_tracker_cache.lookup(value, self.source)
        if cached_vt:
            return cached_vt

        vt = self._wrap(value)
        vt.source = self.source
        if (
            self._can_lift_attrs_to_inputs(vt)
            and value not in self.tx.output.side_effects
            and not is_wrapper_or_member_descriptor(value)
        ):
            vt = self.tx.output.side_effects.track_object_existing(value, vt)

        self.tx.output.variable_tracker_cache.add(value, self.source, vt)
        return vt

    def _can_lift_attrs_to_inputs(self, vt):
        return type(vt) in {
            TensorVariable,
            TensorWithTFOverrideVariable,
            UserDefinedObjectVariable,
            NumpyNdarrayVariable,
        }

    @staticmethod
    @functools.lru_cache(None)
    def _common_constants():
        return {
            # We zero-one specialize shapes, so specialize these constants
            # too
            0,
            1,
            # NB: There used to be more constants here, but honestly it was
            # pretty confusing.  Note we specialize floats by default, and
            # DON'T specialize ints by default.  This all only matters with
            # dynamic_shapes
        }

    def get_source(self):
        return self.source

    def install_guards(self, *guards):
        source = self.get_source()
        if (
            isinstance(source, ConstantSource)
            or source.guard_source() == GuardSource.CONSTANT
        ):
            return None
        install_guard(*[source.make_guard(guard) for guard in guards], skip=1)
        return {}

    @classmethod
    def _type_dispatch(cls):
        return cls._type_dispatch_impl(config.trace_numpy)

    @classmethod
    @functools.lru_cache(None)
    def _type_dispatch_impl(cls, trace_numpy):
        # NB: Careful not to close over self to avoid ref cycle from lru_cache
        entries = [
            (
                (
                    torch.Tensor,
                    torch.nn.Parameter,
                    torch._subclasses.FakeTensor,
                    torch._subclasses.functional_tensor.FunctionalTensor,
                ),
                cls.wrap_tensor,
            ),
            (
                (tuple, list, odict_values, collections.deque, torch.Size),
                cls.wrap_listlike,
            ),
            (tuple_iterator, cls.wrap_tuple_iterator),
            (range_iterator, cls.wrap_range_iterator),
            ((slice, range), cls.wrap_slice_range),
            (tuple(common_constant_types), cls.wrap_literal),
            (re.Pattern, cls.wrap_regex_pattern),
            (weakref.ReferenceType, cls.wrap_weakref),
            (torch.utils.hooks.RemovableHandle, cls.wrap_removable_handle),
            (torch.jit.ScriptFunction, cls.wrap_jit_function),
        ]

        if trace_numpy and np:
            entries.append((np.ndarray, cls.wrap_numpy_ndarray))

        result = {}
        for ts, fn in entries:
            for t in ts if isinstance(ts, tuple) else (ts,):
                assert t not in result
                result[t] = fn

        return result

    def wrap_regex_pattern(self, value: re.Pattern):
        # TODO(jansel): something like a REPR_MATCH might be more robust here
        self.install_guards(GuardBuilder.ID_MATCH)
        return RegexPatternVariable(value)

    def wrap_weakref(self, value: weakref.ReferenceType):
        self.install_guards(GuardBuilder.TYPE_MATCH)
        return WeakRefVariable.build(self.tx, value, source=self.source)

    def wrap_removable_handle(self, value):
        # This means that the removable handle was created in some other frame.
        # Our current infra requires the hook to be registered and removed in
        # the same frame. So graph break.
        # Related test - PYTORCH_TEST_WITH_DYNAMO=1 python test/test_autograd.py -k TestAutograd.test_hooks
        unimplemented("unregistered hook removable handle")

    def wrap_jit_function(self, value):
        self.install_guards(GuardBuilder.TYPE_MATCH)
        return WrapperUserFunctionVariable(
            value, "_torchdynamo_inline", source=self.source
        )

    @classmethod
    @functools.lru_cache(None)
    def _id_dispatch(
        cls,
    ) -> Dict[int, Callable[["VariableBuilder", Any], VariableTracker]]:
        from ..comptime import comptime

        entries = [
            (
                inspect.signature,
                lambda self, value: LambdaVariable(
                    InspectSignatureVariable.create,
                    source=self.source,
                    **self.install_guards(GuardBuilder.CLOSURE_MATCH),
                ),
            ),
            (comptime, lambda self, value: ComptimeVariable()),
            (
                dataclasses.fields,
                lambda self, value: LambdaVariable(
                    _dataclasses_fields_lambda,
                    source=self.source,
                    **self.install_guards(GuardBuilder.FUNCTION_MATCH),
                ),
            ),
            (torch.__version__, lambda self, value: TorchVersionVariable()),
        ]

        result = {}
        for ts, fn in entries:
            for t in ts if isinstance(ts, (tuple, list)) else (ts,):
                assert t not in result
                result[id(t)] = fn

        return result

    def _wrap(self, value):
        # import here to avoid circular dependencies
        from torch.utils._triton import has_triton, has_triton_tma

        if has_triton():
            from triton.runtime.autotuner import Autotuner
            from triton.runtime.jit import JITFunction
        else:

            class JITFunction:
                pass

            class Autotuner:
                pass

        if has_triton_tma():
            from triton.tools.experimental_descriptor import (
                create_1d_tma_descriptor,
                create_2d_tma_descriptor,
            )
        else:

            def create_1d_tma_descriptor():
                pass

            def create_2d_tma_descriptor():
                pass

        # Handle exact type() match
        type_dispatch = self._type_dispatch().get(type(value))
        if type_dispatch is not None:
            return type_dispatch(self, value)

        # Handle exact id() match
        id_dispatch = self._id_dispatch().get(id(value))
        if id_dispatch is not None:
            return id_dispatch(self, value)

        # Everything else (NB: order matters!)
        if is_traceable_wrapper_subclass(value) or istype(
            value, config.traceable_tensor_subclasses
        ):
            return self.wrap_tensor(value)
        elif is_namedtuple(value):
            self.install_guards(GuardBuilder.SEQUENCE_LENGTH)
            output = [
                LazyVariableTracker.create(
                    getattr(value, name),
                    source=AttrSource(self.source, name),
                )
                for name in namedtuple_fields(type(value))
            ]
            result = NamedTupleVariable(
                output, tuple_cls=type(value), source=self.source
            )
            return result
        elif value is torch.utils._pytree.SUPPORTED_NODES:
            # For SUPPORTED_NODES, we guard on the dictionary version (PEP509)
            # under the assumption that the values themselves don't change.
            self.install_guards(GuardBuilder.DICT_VERSION)

            # The keys on the SUPPORTED_NODES can be arbitrary, so save on the
            # key order.
            self.tx.output.guard_on_key_order.add(self.source.name())
            result = {
                TypingVariable(k): UserDefinedObjectVariable(
                    v,
                    source=GetItemSource(
                        self.get_source(), ConstDictKeySource(self.get_source(), i)
                    ),
                )
                for i, (k, v) in enumerate(value.items())
            }
            return ConstDictVariable(result, type(value))
        elif value is sys.modules:
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            return PythonSysModulesVariable(source=self.source)
        elif CustomizedDictVariable.is_matching_cls_hf(type(value)):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            result = CustomizedDictVariable.wrap(self, value)
            return self.tx.output.side_effects.track_object_existing(value, result)
        elif istype(value, (dict, collections.defaultdict, collections.OrderedDict)):
            self.install_guards(GuardBuilder.SEQUENCE_LENGTH)

            # Optimisation for the common case strings, ints, etc
            all_const = all(ConstantVariable.is_literal(k) for k in value.keys())
            if all_const:
                # TODO(anijain2305) - Do we have to guard on all the keys? Can
                # keys be guarded lazily, similar to values?
                self.install_guards(GuardBuilder.DICT_CONST_KEYS)
            else:
                # Guard on the key order
                # This is not ideal, i.e., there is no need to guard on the key
                # order. But we guard on the key order because of the complexity
                #
                # 1) For non-constant objects, we can't save the key in the
                # guard context because it can be memory heavy. We can add
                # weakrefs but this complicates the accesses.
                #
                # 2) For non-constant objects, we also have to guard on the keys
                # (like TENSOR_MATCH on tensor). We might also have guards on
                # the attributes of the keys (like tensor.grad). To make this
                # work in tree strucutre is complicated.
                #
                # So, instead we guard on the key order. While guarding on key
                # order, we just save the indices and use it to access keys and
                # values. Indices are cheap to save.
                self.tx.output.guard_on_key_order.add(self.source.name())

            # We need all the keys to be hashable. We do this within the
            # _HashableTracker class in dicts.py
            def build_key_value(i, k, v):
                if all_const:
                    key = ConstantVariable.create(k)
                    source_key = k
                else:
                    source_key = ConstDictKeySource(self.get_source(), i)
                    key = LazyVariableTracker.create(k, source_key)

                source_value = GetItemSource(self.get_source(), source_key)
                value = LazyVariableTracker.create(v, source_value)

                return key, value

            result = dict(
                build_key_value(i, k, v) for i, (k, v) in enumerate(value.items())
            )

            if istype(value, collections.defaultdict):
                factory_source = AttrSource(self.source, "default_factory")
                result = DefaultDictVariable(
                    result,
                    type(value),
                    default_factory=VariableBuilder(self.tx, factory_source)(
                        value.default_factory
                    ),
                    source=self.source,
                )
            else:
                result = ConstDictVariable(
                    result, user_cls=type(value), source=self.source
                )

            return self.tx.output.side_effects.track_mutable(value, result)
        elif isinstance(value, torch.nn.Module):
            return self.wrap_module(value)
        elif ConstantVariable.is_literal(value):  # non-atomic literals
            return self.wrap_literal(value)
        elif isinstance(value, torch.overrides.TorchFunctionMode):
            var = TorchFunctionModeVariable(value, source=self.source)
            self.tx.output.side_effects.track_object_existing(value, var)
            return var
        elif istype(value, frozenset) and all(
            (
                # For DBR quantization, we could get a frozenset of torch funcs.
                (type(x) is types.BuiltinMethodType and x.__module__ == "torch")
                or
                # Another commonly used frozenset of types.
                x in torch.utils._pytree.BUILTIN_TYPES
            )
            for x in value
        ):
            # For the limited cases of frozenset here, we know the items won't
            # change across runs, so we can safely create sourceless VTs for
            # them and only guard on the frozenset id.
            # TODO support source for sets and remove the special logics here.
            items = [SourcelessBuilder.create(self.tx, v) for v in value]
            self.install_guards(GuardBuilder.ID_MATCH)
            return FrozensetVariable(items, source=self.source)
        elif isinstance(value, enum.Enum):
            self.install_guards(GuardBuilder.ID_MATCH)
            return EnumVariable(value=value, source=self.source)
        elif DebuggingVariable.is_reorderable_logging_function(value):
            # Put this above builtin_callable so that print() can be handled
            # along with other builtin debugging functions
            self.install_guards(GuardBuilder.BUILTIN_MATCH)
            return DebuggingVariable(value, source=self.source)
        elif isinstance(value, logging.Logger):
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            return LoggingLoggerVariable(value, source=self.source)
        elif is_utils_checkpoint(value):
            return build_checkpoint_variable(source=self.source)
        elif is_invoke_subgraph(value):
            return build_invoke_subgraph_variable(source=self.source)
        elif isinstance(value, functools.partial):
            func_src = AttrSource(self.get_source(), "func")
            func_obj = VariableBuilder(self.tx, func_src)(value.func)

            args = []
            args_source = AttrSource(self.get_source(), "args")
            for i, arg in enumerate(value.args):
                args.append(
                    VariableBuilder(self.tx, GetItemSource(args_source, i))(arg)
                )

            keywords = {}
            keywords_source = AttrSource(self.get_source(), "keywords")
            for k, v in value.keywords.items():
                if not ConstantVariable.is_literal(k):
                    unimplemented("functools.partial with non-literal keyword")
                keywords[k] = VariableBuilder(
                    self.tx, GetItemSource(keywords_source, k)
                )(v)

            install_guard(
                self.get_source().make_guard(GuardBuilder.TYPE_MATCH),
                keywords_source.make_guard(GuardBuilder.DICT_KEYS),
                args_source.make_guard(GuardBuilder.SEQUENCE_LENGTH),
            )
            return FunctoolsPartialVariable(func_obj, args, keywords)
        elif is_typing(value):
            # typing.List, typing.Mapping, etc.
            self.install_guards(GuardBuilder.ID_MATCH)
            return TypingVariable(
                value,
                source=self.source,
            )
        elif np is not None and isinstance(value, np.generic):
            # numpy array scalars: convert to 0D arrays
            return self.wrap_numpy_ndarray(np.asarray(value))
        elif is_numpy(value):
            assert np
            self.install_guards(
                GuardBuilder.FUNCTION_MATCH
                if callable(value)
                else GuardBuilder.TYPE_MATCH
            )
            return NumpyVariable(value, source=self.source)
        elif is_numpy_dtype(value):
            self.install_guards(GuardBuilder.ID_MATCH)
            return NumpyDTypeVariable(value, source=self.source)
        elif is_numpy_type_info(value):
            if isinstance(value, np.iinfo):
                self.install_guards(GuardBuilder.TYPE_MATCH)
                dt_source = AttrSource(self.source, "dtype")
                install_guard(dt_source.make_guard(GuardBuilder.ID_MATCH))
            else:
                self.install_guards(GuardBuilder.ID_MATCH)
            return NumpyTypeInfoVariable(value, source=self.source)
        # NB: These can't be put in type_dispatch, they have to run later
        elif CollectiveFunctionRewriteVariable.can_rewrite(value):
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            return CollectiveFunctionRewriteVariable.create(
                self.tx,
                value,
                source=self.source,
            )
        elif istype(value, torch.autograd.function.FunctionMeta):
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            return AutogradFunctionVariable(
                value,
                source=self.source,
            )
        elif isinstance(value, torch.autograd.function.FunctionCtx):
            actual_saved_tensors = None
            try:
                actual_saved_tensors = value.saved_tensors
            except RuntimeError:
                pass

            saved_tensors = []
            guards = [self.source.make_guard(GuardBuilder.TYPE_MATCH)]
            if isinstance(actual_saved_tensors, tuple):
                saved_tensors_source = AttrSource(self.source, "saved_tensors")
                guards.append(
                    saved_tensors_source.make_guard(GuardBuilder.SEQUENCE_LENGTH)
                )
                for i, v in enumerate(actual_saved_tensors):
                    saved_tensors.append(
                        VariableBuilder(
                            self.tx, GetItemSource(saved_tensors_source, i)
                        )(v)
                    )
            install_guard(*guards)

            return self.tx.output.side_effects.track_object_existing(
                value,
                AutogradFunctionContextVariable(
                    value,
                    source=self.source,
                    saved_tensors=SavedTensorBox(saved_tensors),
                ),
            )
        elif (
            isinstance(value, types.MethodType)
            and istype(
                getattr(value, "__self__", None), torch.autograd.function.FunctionMeta
            )
            and getattr(value, "__name__", "") == "apply"
            and value == getattr(value.__self__, "apply", None)
        ):
            # handle aliased autograd function `apply` calls
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            return GetAttrVariable(
                AutogradFunctionVariable(
                    value.__self__, source=AttrSource(self.source, member="__self__")
                ),
                "apply",
            )
        elif isinstance(value, torch._C._ImperativeEngine):
            self.install_guards(GuardBuilder.ID_MATCH)
            return AutogradEngineVariable(value, source=self.source)
        elif (
            value
            is torch._dynamo.external_utils.FakeCompiledAutogradEngine._exec_final_callbacks_stub
        ):
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            return LambdaVariable(
                lambda: UserFunctionVariable(
                    torch._dynamo.external_utils.FakeCompiledAutogradEngine.exec_final_callbacks,
                ).call_function(
                    self.tx,
                    (self.tx.output.side_effects.get_ca_final_callbacks_var(),),
                    {},
                )
            )
        elif callable(value) and trace_rules.lookup_callable(value) is not None:
            if is_callable_allowed(value):
                self.tx.output.has_user_defined_allowed_in_graph = True
            return trace_rules.lookup_callable(value).create_with_source(
                value, source=self.source
            )
        elif np and isinstance(value, np.number):
            return self.wrap_unspecialized_primitive(value)
        elif HFPretrainedConfigVariable.is_matching_object(value):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            return HFPretrainedConfigVariable(value)
        elif isinstance(value, HigherOrderOperator):
            if value is torch._higher_order_ops.invoke_subgraph:
                unimplemented(
                    "Directly using invoke_subgraph is not supported. Use mark_compile_region"
                )
            self.install_guards(GuardBuilder.TYPE_MATCH, GuardBuilder.NAME_MATCH)
            return TorchHigherOrderOperatorVariable.make(value, source=self.source)
        elif isinstance(value, torch.cuda.StreamContext):
            self.install_guards(GuardBuilder.ID_MATCH)
            stream_source = AttrSource(self.source, "stream")
            stream_var = VariableBuilder(self.tx, stream_source)(value.stream)
            return StreamContextVariable.create(self.tx, stream_var)
        elif isinstance(value, torch.Stream):
            self.install_guards(GuardBuilder.ID_MATCH)
            stream_proxy = self.tx.output.create_proxy(
                "call_function",
                type(value),
                (),
                {
                    "stream_id": value.stream_id,
                    "device_index": value.device_index,
                    "device_type": value.device_type,
                },
            )
            set_example_value(stream_proxy.node, value)
            return StreamVariable(
                stream_proxy,
                value,
                value.device,
                source=self.source,
            )
        elif isinstance(value, (torch._C._SDPAParams)):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            return SDPAParamsVariable.create(self.tx, value, self.source)
        elif isinstance(value, torch.Event):
            self.install_guards(GuardBuilder.ID_MATCH)
            torch._dynamo.utils.store_user_object_weakref(value)
            event_proxy = self.tx.output.create_proxy(
                "call_function",
                torch._dynamo.utils.get_user_object_from_id,
                (id(value),),
                {},
            )
            set_example_value(event_proxy.node, value)
            return EventVariable(
                event_proxy,
                value,
                source=self.source,
            )
        elif (
            isinstance(value, torch._C._TensorMeta)
            and value in config.traceable_tensor_subclasses
        ):
            return TensorSubclassVariable(value, source=self.source)
        elif (
            istype(value, contextlib.nullcontext)
            and inspect.getattr_static(value, "enter_result", None) is None
        ):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            return NullContextVariable(source=self.source)
        elif KeyedJaggedTensorVariable.is_matching_object(value):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            result = KeyedJaggedTensorVariable(value, source=self.source)
            # TODO: this doing it manually is bad
            return self.tx.output.side_effects.track_object_existing(value, result)
        elif isinstance(value, torch.optim.Optimizer):
            self.install_guards(GuardBuilder.ID_MATCH)
            self.source = OptimizerSource(self.source)
            return OptimizerVariable(value, source=self.source)
        elif WorldMetaClassVariable.is_group_member_type(value):
            return WorldMetaClassVariable(value, source=self.source)
        elif ProcessGroupVariable.is_process_group(value):
            self.install_guards(GuardBuilder.ID_MATCH)
            return ProcessGroupVariable(value, source=self.source)
        elif DeviceMeshVariable.is_device_mesh(value):
            # TODO: see if we need to add custom guard instead of a simple ID_MATCH
            self.install_guards(GuardBuilder.EQUALS_MATCH)
            return DeviceMeshVariable(value, source=self.source)
        elif PlacementClassVariable.is_placement_type(value):
            # TODO: see if we need to add custom guard instead of a simple ID_MATCH
            self.install_guards(GuardBuilder.ID_MATCH)
            return PlacementClassVariable(value, source=self.source)
        elif PlacementVariable.is_placement(value):
            # TODO: see if we need to add custom guard instead of a simple ID_MATCH
            self.install_guards(GuardBuilder.EQUALS_MATCH)
            return PlacementVariable(
                value,
                source=self.source,
            )
        elif (
            id(value) in ITERTOOLS_TYPE_IDS
            and id(value) not in ITERTOOLS_POLYFILLED_TYPE_IDS
        ):
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            return ItertoolsVariable(value, source=self.source)
        elif isinstance(value, torch.SymBool):
            # Note: the idea here is to re-use the infra we've built for SymInt by simulating the
            # user provided SymBool with a SymInt in dynamo.

            # Concretely,
            # 1. We create a SymInt in dynamo's shape_env, whose source is constructed as ConvertIntSource(self.source).
            # so that guards on the SymInts can be effectively applied on the original SymBool in user program.
            # 2. We create a SymBool based on the SymInt in dynamo's ShapeEnv. Because the original user program
            # depends on the value being a SymBool. This allows dynamo to interpret the user's program correctly.

            new_source = ConvertIntSource(self.source)
            if value.node.has_hint():
                value_hint = value.node.require_hint()

                new_symint = (
                    self.tx.output.shape_env.create_unspecified_symint_and_symbol(
                        int(value_hint),
                        new_source,
                        dynamic_dim=DimDynamic.DYNAMIC,
                    )
                )
            else:
                # We need to create an unbacked symint to replace the unbacked symbool.
                new_symint = self.tx.output.shape_env.create_unbacked_symint()

            sym_node_proxy = self.tx.output.root_tracer.create_graph_input(
                re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
                type(new_symint),
                new_symint,
                source=new_source,
            )

            sym_node_proxy.node.meta["grapharg"] = GraphArg(
                new_source,
                new_symint,
                False,
                None,
                is_tensor=False,
                example_strong_ref=new_symint,
            )
            # We bind the new_symint to graph input.
            sym_expr = new_symint.node.expr
            assert isinstance(
                sym_expr, sympy.Symbol
            ), f"{sym_expr} is not a basic Symbol."
            self.tx.output.tracked_fakes.append(
                TrackedFake(new_symint, new_source, None)
            )
            return SymNodeVariable(
                sym_node_proxy,
                new_symint == 1,
            )
        elif isinstance(value, (JITFunction, Autotuner)):
            self.install_guards(GuardBuilder.ID_MATCH)
            return TritonKernelVariable(
                value,
                None,  # No kernel idx provided
                None,  # No grid provided
                source=self.source,
            )
        elif value is create_1d_tma_descriptor:
            return CreateTMADescriptorVariable(rank=1)
        elif value is create_2d_tma_descriptor:
            return CreateTMADescriptorVariable(rank=2)
        elif isinstance(value, torch.amp.autocast_mode.autocast):
            self.install_guards(GuardBuilder.ID_MATCH)
            return AutocastModeVariable(
                target_values=[
                    value.device,
                    value.fast_dtype,
                    value._enabled,
                    value._cache_enabled,
                ],
                source=self.source,
            )
        elif TorchCtxManagerClassVariable.is_matching_cls(value):
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            return TorchCtxManagerClassVariable(value, source=self.source)
        elif inspect.getattr_static(value, "__script_if_tracing_wrapper", False):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            return WrapperUserFunctionVariable(
                value, "__original_fn", source=self.source
            )
        elif is_lru_cache_wrapped_function(value):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            return WrapperUserFunctionVariable(value, "__wrapped__", source=self.source)
        elif is_function_or_wrapper(value) and inspect.getattr_static(
            value, "_torchdynamo_inline", False
        ):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            return WrapperUserFunctionVariable(
                value, "_torchdynamo_inline", source=self.source
            )
        elif is_function_or_wrapper(value):
            value, attr_name = unwrap_with_attr_name_if_wrapper(value)
            # For these wrappers, Dynamo points to the wrapped function,
            # so source needs to be updated as well.
            if attr_name is not None:
                self.source = AttrSource(self.source, attr_name)
            return trace_rules.lookup(value).create_with_source(
                value, source=self.source
            )
        elif value is random.Random:
            self.install_guards(GuardBuilder.ID_MATCH)
            return RandomClassVariable(source=self.source)
        elif istype(value, random.Random) and RandomVariable.is_supported_random_obj(
            value
        ):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            result = RandomVariable(value, source=self.source)
            self.tx.output.side_effects.track_mutable(value, result)
            return result
        # Don't use istype, since some python modules are not subclasses of types.ModuleType directly.
        # E.g, type(torch.ops) -> <class 'torch._ops._Ops'>,
        # type(torch.backends.cudnn) -> <class 'torch.backends.cudnn.CudnnModule'>
        elif isinstance(value, (types.ModuleType, replay_record.DummyModule)):
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            result = PythonModuleVariable(
                value,
                source=self.source,
            )
            self.tx.output.side_effects.track_object_existing(value, result)
            return result
        elif isinstance(value, types.MethodType) and isinstance(
            value.__self__, (torch.nn.Module, torch.utils._pytree.TreeSpec)
        ):
            # don't let MethodTypes fall through to UserDefinedObject,
            # which doesn't support 'CALL_FUNCTION'

            # TODO(whc): Why do we limit this to methods on NNModules?
            # I don't have a good reason for this, but it preserves the existing behavior
            # for MBartForConditionalGeneration, which generates many graph breaks and OOMs otherwise.
            # I suspect we probably want to relax this check and dig deeper there.

            # In order to construct a MethodVariable in Dynamo, we start with an actual method obj from python,
            # but need to separately wrap its underlying `__func__` and its `self` argument.  We wrap `self` here
            # and then `__func__` gets wrapped inside UserMethodVariable.
            self_obj = VariableBuilder(
                self.tx, source=AttrSource(self.source, "__self__")
            )(value.__self__)
            assert self_obj and isinstance(
                self_obj, VariableTracker
            ), "Failed to produce a valid self obj"
            self.install_guards(GuardBuilder.FUNCTION_MATCH)
            return UserMethodVariable(
                value.__func__,
                self_obj,
                source=self.source,
            )
        elif isinstance(value, types.GetSetDescriptorType):
            # GetSet descriptors are C functions attached to an attribute lookup
            # using PyGetSetDef. Python, on attribute lookup, can decide to
            # create a new object on the fly, and therefore the `id` of the
            # descriptors is not guaranteed to be same for different attribute
            # accesses. Since these are unlikely to change during the program
            # execution, we can skip guarding on them.
            return GetSetDescriptorVariable(value)
        elif isinstance(value, types.MethodWrapperType):
            # Method-wrappers are written in C, and they are not guaranteed to
            # return the same object on attribute lookup. Therefore, we cannot
            # insert a FUNCTION_MATCH guard here. method-wrappers are very
            # unlikely to change, so its ok to skip the guard here.
            return MethodWrapperVariable(value)
        elif issubclass(type(value), type):
            if value in (
                torch.utils.hooks.BackwardHook,
                torch.nn.Parameter,
                torch.nn.Buffer,
            ):
                # TODO(jansel): combine this case with the one above
                return trace_rules.lookup(value).create_with_source(
                    value, source=self.source
                )
            if value is torch.autograd._unsafe_preserve_version_counter:
                self.install_guards(GuardBuilder.FUNCTION_MATCH)
                return PreserveVersionContextVariable.constructor(self.tx)
            # This is a userdefined class, so install an ID_MATCH even if its a
            # global variable.
            self.install_guards(GuardBuilder.ID_MATCH)
            return UserDefinedClassVariable(
                value,
                source=self.source,
            )
        elif RestrictedListSubclassVariable.is_matching_cls(type(value)):
            self.install_guards(GuardBuilder.SEQUENCE_LENGTH)
            return self.tx.output.side_effects.track_mutable(
                value,
                RestrictedListSubclassVariable(
                    [
                        LazyVariableTracker.create(
                            value=value[i], source=GetItemSource(self.source, i)
                        )
                        for i in range(len(value))
                    ],
                    user_cls=type(value),
                    user_cls_source=AttrSource(self.source, "__class__"),
                    source=self.source,
                ),
            )
        elif TorchScriptObjectVariable.is_matching_cls(type(value)):
            from ..source import (
                FlattenScriptObjectSource,
                ScriptObjectQualifiedNameSource,
            )

            if torch._library.fake_class_registry.tracing_with_real(value):
                proxy = self.tx.output.root_tracer.create_graph_input(
                    re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
                    type(value),
                    value,
                    source=self.source,
                )

                # setting is_unspecialized=False to not insert a as_tensor call in reconstruct by default
                # seting example to be real value because these example values will be used
                # as example_inputs for user compiler.
                proxy.node.meta["grapharg"] = GraphArg(
                    self.source, value, False, None, False, value
                )
                return TorchScriptObjectVariable.create(
                    proxy,
                    value,
                    source=self.source,
                )

            # This exists to allow a smoother transition.
            # The implications are:
            # The script objects won't be tracked as proxies.
            # Methods on these objects won't show up in the graph.
            # The original script object might be mutated.
            if not hasattr(value, "__obj_flatten__"):
                return self.wrap_user_defined(value)

            # Install the guards on the fully qualified name of the script object
            LazyVariableTracker.realize_all(
                VariableBuilder(self.tx, ScriptObjectQualifiedNameSource(self.source))(
                    value._type().qualified_name()  # type: ignore[attr-defined]
                )
            )
            # Install the guards on the content of the script object by setting the source
            # to be FlattenScriptObjectSource, which calls __obj_flatten__() to get the contents.
            LazyVariableTracker.realize_all(
                VariableBuilder(self.tx, FlattenScriptObjectSource(self.source))(
                    value.__obj_flatten__()
                )
            )

            fake_script_obj = torch._library.fake_class_registry.maybe_to_fake_obj(
                self.tx.output.fake_mode, value
            )

            proxy = self.tx.output.root_tracer.create_graph_input(
                re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
                type(value),
                fake_script_obj,
                source=self.source,
            )

            # setting is_unspecialized=False to not insert a as_tensor call in reconstruct by default
            # seting example to be real value because these example values will be used
            # as example_inputs for user compiler.
            proxy.node.meta["grapharg"] = GraphArg(
                self.source, value, False, None, False, fake_script_obj
            )
            return TorchScriptObjectVariable.create(
                proxy,
                fake_script_obj,
                source=self.source,
            )
        elif issubclass(type(value), MutableMapping):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            return MutableMappingVariable(value, source=self.source)
        elif is_frozen_dataclass(value):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            result = FrozenDataClassVariable.create(self.tx, value, source=self.source)
            return self.tx.output.side_effects.track_object_existing(value, result)
        else:
            return self.wrap_user_defined(value)

    def wrap_user_defined(self, value: Any):
        self.install_guards(GuardBuilder.TYPE_MATCH)
        result = UserDefinedObjectVariable(value, source=self.source)
        if not SideEffects.cls_supports_mutation_side_effects(type(value)):
            # don't allow STORE_ATTR mutation with custom __setattr__
            return result
        return self.tx.output.side_effects.track_object_existing(value, result)

    def wrap_listlike(self, value: Union[tuple, list, odict_values, NamedTuple]):
        if config.specialize_int and type(value) is torch.Size:
            self.install_guards(GuardBuilder.CONSTANT_MATCH)
            return ConstantVariable.create(value=value)

        # One can index a tensor with a list/tuple. Therefore, we need to
        # have a stricter match.
        self.install_guards(GuardBuilder.SEQUENCE_LENGTH)

        # Tuples are immutable objects, so we should mark its items static. This
        # avoids wrapping of tuple items as symints. This helps for nn module
        # attributes like conv2d strides, dilations.
        if (
            istype(value, tuple)
            and all(ConstantVariable.is_literal(item) for item in value)
            and self.source.guard_source().is_unspecialized_nn_module()
        ):
            self.install_guards(GuardBuilder.CONSTANT_MATCH)
            return TupleVariable([ConstantVariable.create(item) for item in value])

        output = [
            LazyVariableTracker.create(
                item,
                source=GetItemSource(self.get_source(), i),
            )
            for i, item in enumerate(value)
        ]

        maybe_gm = self.tx.output.local_scope.get("self")
        if isinstance(
            self.source, LocalSource
        ) and self.source.local_name in get_locals_to_steal(maybe_gm):
            # The input tensor list to dynamo from compiled autograd may contain activations
            # which are freed as they are used in inductor. Dynamo's default behavior is to
            # lift all tensors to the graph inputs, but this will cause dynamo to hold an
            # extra reference to the activation tensors and increase peak memory usage.
            # To allow freeing ASAP, we keep the list as graph argument to the dynamo output
            # graph, and unpack it locally.
            # e.g. instead of `def forward(self, L_inputs_0_, L_inputs_1_, ...):`, we have
            # `def forward(self, L_inputs_):`
            source = self.source
            assert isinstance(value, list)
            tensor_list_proxy = self.tx.output.root_tracer.create_graph_input(
                re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
                type(value),
                value,
                source=source,
            )
            tensor_list_proxy.node.meta["steal_arg"] = True

            list_variable = wrap_fx_proxy_cls(
                target_cls=TensorVariable,
                tx=self.tx,
                proxy=tensor_list_proxy,
                example_value=value,
                subclass_type=None,
                source=source,
            )

            guards = []
            for i, tensor_variable in enumerate(list_variable.items):
                source_i = GetItemSource(base=source, index=i, index_is_slice=False)
                # access unpacked tensor from this list instead of from a lifted arg
                self.tx.output.input_source_to_var[source_i] = tensor_variable
                tensor_variable.proxy.node.meta["tensor_dict"] = _extract_tensor_dict(
                    value[i]
                )

                guard = functools.partial(
                    GuardBuilder.TENSOR_MATCH, value=TensorWeakRef(value[i])
                )
                guards.append(source_i.make_guard(guard))

            install_guard(*guards, skip=1)

            grapharg = GraphArg(
                source,
                value,
                pass_arg_as_tensor=False,
                fake_tensor=None,
                is_tensor=False,
            )
            tensor_list_proxy.node.meta["grapharg"] = grapharg

        result = BaseListVariable.cls_for_instance(value)(output, source=self.source)
        if istype(value, (list, collections.deque)):
            return self.tx.output.side_effects.track_mutable(value, result)
        return result

    def wrap_tuple_iterator(self, value: tuple_iterator):
        self.install_guards(GuardBuilder.TUPLE_ITERATOR_LEN)
        output = [
            VariableBuilder(self.tx, TupleIteratorGetItemSource(self.get_source(), i))(
                tuple_iterator_getitem(value, i)
            )
            for i in range(tuple_iterator_len(value))
        ]
        result = TupleIteratorVariable(output, source=self.source)
        return self.tx.output.side_effects.track_mutable(value, result)

    def wrap_range_iterator(self, value: range_iterator):
        self.install_guards(GuardBuilder.RANGE_ITERATOR_MATCH)
        # Get all the values from the range iterator; no need to install guards
        # on items since `RANGE_ITERATOR_MATCH` guarantees the same items.
        items = [ConstantVariable.create(v) for v in copy.deepcopy(value)]
        result = ListIteratorVariable(items, source=self.source)
        return self.tx.output.side_effects.track_mutable(value, result)

    def wrap_slice_range(self, value: Union[slice, range]):
        items = [
            VariableBuilder(self.tx, AttrSource(self.get_source(), k))(
                getattr(value, k)
            )
            for k in ("start", "stop", "step")
        ]
        self.install_guards(GuardBuilder.TYPE_MATCH)
        if isinstance(value, slice):
            return SliceVariable(items, source=self.source)
        else:
            return RangeVariable(items, source=self.source)

    def mark_static_input(self, value: torch.Tensor, guard: bool):
        from ..decorators import mark_static_address

        static_inputs_log.debug(
            "Marking static input %s, id: %s)", self.source.name(), id(value)
        )
        mark_static_address(value, guard=guard)

        # Check if we've seen this tensor before and update graph metadata if needed
        # As long as this runs before AOT this is sound
        if value in self.tx.output.side_effects:
            var = self.tx.output.side_effects[value]
            var.proxy.node.meta["tensor_dict"][
                "_dynamo_static_input_type"
            ] = value._dynamo_static_input_type

    def wrap_module(self, value: torch.nn.Module):
        from ..eval_frame import OptimizedModule

        if len(value.__dict__) == 0:
            unimplemented(f"uninitialized nn.Module: {typestr(value)}")
        if istype(value, OptimizedModule):
            # Check if the optimized module was disabled
            if inspect.getattr_static(value.forward, "_torchdynamo_disable", False):
                # This bytecode is mostly of kind LOAD_ATTR or LOAD_METHOD. If
                # we graph break here, Dynamo does not know how to create
                # continuation functions for such bytecodes. So, we delay the
                # graph break to CALL_FUNCTION.
                return DelayGraphBreakVariable(source=self.source)

            self.install_guards(GuardBuilder.TYPE_MATCH)
            self.source = AttrSource(self.source, "_orig_mod")
            return self.wrap_module(value._orig_mod)

        if (
            isinstance(value, (torch.nn.RNN, torch.nn.GRU, torch.nn.LSTM))
            and not config.allow_rnn
        ):
            unimplemented("TorchDynamo purposely graph breaks on RNN, GRU, LSTMs")

        if getattr(value, "_is_fsdp_managed_module", False):
            # See note [Dynamo treats FSDP wrapped modules as UnspecializedNNModule]
            # in fully_sharded_data_parallel.py for more information

            # we can't do this assert inside FSDP constructor,
            # since we don't know yet whether dynamo will be used
            assert getattr(
                value, "_fsdp_use_orig_params", False
            ), "Dynamo only supports FSDP with use_orig_params=True"

            # Note on FSDP guarding
            # Eager FSDP already assumes (requires, but without enforcement)
            # that users don't mutate their model parameters/structure after
            # FSDP wrapping, because FSDP wouldn't notice or update its
            # FlatParams.
            #
            # Therefore, torch.compile can skip guarding on params or submodule
            # structure of fsdp_managed modules, by using FSDPNNModuleSource as
            # the guard source.  This behavior is gated on
            # config.skip_fsdp_guards.
            self.install_guards(GuardBuilder.TYPE_MATCH)
            result = FSDPManagedNNModuleVariable(value, source=self.get_source())
            if not SideEffects.cls_supports_mutation_side_effects(type(value)):
                # don't allow STORE_ATTR mutation with custom __setattr__
                return result
            return self.tx.output.side_effects.track_object_existing(value, result)
        elif mutation_guard.is_dynamic_nn_module(value, self.tx.export):
            # created dynamically, don't specialize on it

            # Note [Tracing a torch.compiled function]
            # when make_fx tracing a compiled function, we need
            if isinstance(value, torch.fx.experimental.proxy_tensor._AttrProxy):
                value = value.get_base()
                self.source = AttrProxySource(self.source)

            self.install_guards(GuardBuilder.TYPE_MATCH)
            if torch._dynamo.config.inline_inbuilt_nn_modules:
                freezing = is_parameter_freezing()
                for p in value.parameters():
                    self.mark_static_input(p, guard=freezing)

                for b in value.buffers():
                    self.mark_static_input(b, guard=freezing)

                if freezing:
                    # we need to add the module to tracing context
                    # in order to allow its params to get invalidated
                    # this will get cleaned up once compile ends
                    self.tx.output.nn_modules[self.name] = value

            if value.__module__.startswith(("torch.nn.", "torch.ao.")) or getattr(
                value.__class__, "_dynamo_marked_static", False
            ):
                result = UnspecializedBuiltinNNModuleVariable(value, source=self.source)
            else:
                result = UnspecializedNNModuleVariable(value, source=self.source)

            if not SideEffects.cls_supports_mutation_side_effects(type(value)):
                # don't allow STORE_ATTR mutation with custom __setattr__
                return result
            return self.tx.output.side_effects.track_object_existing(value, result)
        elif issubclass(
            value.__class__, torch.nn.parallel.distributed.DistributedDataParallel
        ):
            self.install_guards(GuardBuilder.TYPE_MATCH)
            return UnspecializedNNModuleVariable(value, source=self.get_source())
        else:
            return self.tx.output.register_attr_or_module(
                value,
                self.name,
                source=self.get_source(),
                # Guards are added inside register_attr_or_module
            )

    def wrap_literal(self, value):
        if not config.specialize_int and type(value) is int:
            # unspecializing int by default, but still
            # specialize for the following conditions
            if not TracingContext.get().force_unspec_int_unbacked_size_like and (
                # Assume integers from global variables want to be specialized
                not self.source.guard_source().is_local()
                # Assume that integers that came from NN modules want to be
                # specialized (as we don't expect users to be changing the
                # NN modules on the fly)
                or self.source.guard_source().is_specialized_nn_module()
                or self.source.guard_source().is_unspecialized_builtin_nn_module()
                or is_from_defaults(self.source)
                # TODO: Delete this condition when rollout is done.  NB: this
                # condition never evaluates True in open source
                or (
                    not justknobs_check(
                        "pytorch/dynamo:enable_unspecialize_zero_one_plain_int"
                    )
                    and value in self._common_constants()
                )
            ):
                self.install_guards(GuardBuilder.CONSTANT_MATCH)
                return ConstantVariable.create(value=value, source=self.source)
            else:
                return self.wrap_symint(value)
        elif not config.specialize_float and type(value) is float:
            return self.wrap_symfloat(value)
        else:
            self.install_guards(GuardBuilder.CONSTANT_MATCH)
            result = ConstantVariable.create(value=value, source=self.source)
            if isinstance(value, (list, set)):
                return self.tx.output.side_effects.track_mutable(value, result)
            return result

    def assert_not_wrapped_by_this_graph(self, value: torch.Tensor):
        if is_fake(value) and maybe_get_fake_mode(value) is self.tx.fake_mode:
            raise InternalTorchDynamoError(
                "Cannot wrap a Tensor that has already been",
                "wrapped by this instance of Dynamo",
            )

    def wrap_tensor(self, value: torch.Tensor):
        source = self.get_source()

        # We cannot already be tracking the tensor, which implies
        # it would have already been wrapped
        assert value not in self.tx.output.side_effects

        is_static_input = get_static_address_type(value) is not None

        if (
            config.inline_inbuilt_nn_modules
            and not is_static_input
            and (
                isinstance(value, torch.nn.Parameter)
                # mark tensor attributes of nn modules static. This is done to keep inline_inbuilt_nn_modules behavior
                # compatible with previous behavior.
                or (source and source.guard_source().is_unspecialized_nn_module())
            )
        ):
            self.mark_static_input(value, guard=is_parameter_freezing())
            is_static_input = True

        make_graph_attribute = is_static_input and (
            not config.inline_inbuilt_nn_modules or is_parameter_freezing()
        )

        if (
            source.guard_source().is_specialized_nn_module() or make_graph_attribute
        ) and not source.guard_source().is_fsdp_module():
            self.assert_not_wrapped_by_this_graph(value)
            return self.tx.output.register_attr_or_module(
                value, self.name, source=source
            )

        if is_constant_source(source):
            self.assert_not_wrapped_by_this_graph(value)
            return self.tx.output.register_attr_or_module(
                value,
                re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
                source=source,
                # Guards are added inside register_attr_or_module
            )

        if type(value) in config.traceable_tensor_subclasses:
            # Ordinarily, we would fakeify a tensor so that it can get dynamic
            # shapes and be computed on without triggering actual operations.
            # However, how can we fakeify a tensor subclass?  Ordinary
            # inheritance (nor multiple inheritance) won't work work.
            #
            # Instead, our plan is to *manually simulate* the tensor subclass
            # inheriting from a fake tensor with dynamo.  This means our
            # data representation for a tensor subclass will be a fake tensor
            # + tensor subclass type + any extra data the subclass may have
            # been storing on the tensor.  Because all Python accesses are
            # mediated through TensorWithTFOverrideVariable, we can ensure
            # that we dispatch differently, e.g., according to
            # __torch_function__
            #
            # To simplify things for now, the __dict__ tracking bits haven't
            # been implemented yet, but they can be added into this design at
            # a later point in time.
            subclass_type = type(value)
        else:
            assert type(value) in (
                torch.Tensor,
                torch.nn.Parameter,
                torch._subclasses.fake_tensor.FakeTensor,
                torch._subclasses.functional_tensor.FunctionalTensor,
            ) or is_traceable_wrapper_subclass(value), type(value)
            subclass_type = None

        # NB: this just says we accessed a tensor from the same source again
        # (e.g., a tensor lives in a global foo, and we LOAD_GLOBAL it twice).
        # This is distinct from two distinct sources mapping to the same
        # Tensor (per id())!  No guard is necessary here.  See below for the
        # other case.
        is_duplicate_tensor = source in self.tx.output.input_source_to_var
        if is_duplicate_tensor:
            return self.tx.output.input_source_to_var[source]

        if get_static_address_type(value) == "guarded":
            self.install_guards(GuardBuilder.ID_MATCH)

        # By this point, we should have deduplicated all tensors
        self.assert_not_wrapped_by_this_graph(value)

        options = {}
        if type(value) in config.traceable_tensor_subclasses:
            options["torch_function_fn"] = build_torch_function_fn(
                self.tx, value, self.source
            )
            self.install_guards(GuardBuilder.TYPE_MATCH)

        if (
            isinstance(value, torch.Tensor)
            and value.is_nested
            and not isinstance(value, torch.nested._internal.nested_tensor.NestedTensor)
        ):
            unimplemented("torch.compile does not support strided NestedTensor")

        # TODO(pearu,sparse-team) - Add the corresponding SPARSE_TENSOR_MATCH guards
        if (
            isinstance(value, torch.Tensor)
            and is_sparse_any(value)
            and (not self.tx.export or not config.capture_sparse_compute)
        ):
            # A hot fix for sparse tensors + torch.compile. Support for
            # export + sparsity is being added but we need to create
            # SPARSE_TENSOR_GUARDS for guards to work propertly.
            unimplemented("torch.compile does not support sparse Tensors")

        if (
            safe_has_grad(value)
            and safe_grad(value) is not None
            and value.dtype != safe_grad(value).dtype
        ):
            unimplemented(
                "Inconsistent dtype between tensor and its gradient. "
                "This can happen in FSDP and crashes meta tensor creation. "
                "This is potentially a workaround. Fixing it correctly "
                "requires some design around FSDP + torch.compile."
            )

        # tx.output has multiple tracers if we're introspecting HigherOrderOperator.
        # When we've discovered an untracked tensor, then we actually need
        # to get Dynamo to track the tensor (which is what this function does)
        # and put it as a graph input on the root tracer. Later on,
        # if the input is actually used in the body of the HigherOrderOperator,
        # then the relevant SubgraphTracer will lift it to being an input of
        # the subgraph.
        # See NOTE [HigherOrderOperator tracing design] for more details.

        example_value = wrap_to_fake_tensor_and_record(
            value, tx=self.tx, is_tensor=True, source=source
        )
        tensor_proxy = self.tx.output.root_tracer.create_graph_input(
            re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
            type(value),
            example_value,
            source=source,
        )
        cache_real_value_when_export(self.tx, tensor_proxy, value)

        tensor_variable = wrap_fx_proxy(
            tx=self.tx,
            proxy=tensor_proxy,
            example_value=example_value,
            subclass_type=subclass_type,
            source=source,
            **options,
        )

        if value._is_view():
            # If value is a view, add its base tensor to the tracked fakes list.
            # This is so we are able to access the correct source for its symbolic
            # shape values, in case we need them.
            wrap_to_fake_tensor_and_record(
                value._base,
                tx=self.tx,
                source=AttrSource(source, "_base"),
                is_tensor=True,
            )

        guard_type = GuardBuilder.TENSOR_MATCH

        if isinstance(source, GradSource) and is_from_optimizer_source(source):
            guard_type = GuardBuilder.NOT_NONE_MATCH

        self.install_guards(
            functools.partial(
                guard_type,
                value=(
                    value
                    if isinstance(source, NumpyTensorSource)
                    else TensorWeakRef(value)
                ),
            )
        )

        # We install TYPE_MATCH guards for traceable wrapper subclass object,
        # and recursively install corresponding guard for each inner attribute.
        if is_traceable_wrapper_subclass(value):
            self.install_guards(GuardBuilder.TENSOR_SUBCLASS_METADATA_MATCH)
            self.install_guards(GuardBuilder.TYPE_MATCH)
            install_guard(
                SubclassAttrListSource(source).make_guard(GuardBuilder.EQUALS_MATCH)
            )

            attrs, _ = value.__tensor_flatten__()
            for attr in attrs:
                inner_value = getattr(value, attr)
                inner_source = AttrSource(self.source, attr)
                LazyVariableTracker.realize_all(
                    VariableBuilder(self.tx, inner_source)(inner_value)
                )

        self.tx.output.input_source_to_var[source] = tensor_variable
        assert "tensor_dict" not in tensor_proxy.node.meta
        tensor_proxy.node.meta["tensor_dict"] = _extract_tensor_dict(value)

        # Note: this information is conveyed via subclass_type now
        fake_tensor_value = tensor_variable.proxy.node.meta["example_value"]
        if maybe_get_fake_mode(fake_tensor_value) is not self.tx.fake_mode:
            raise InternalTorchDynamoError("Wrapped Tensor must be this graph's fake")

        grapharg = GraphArg(source, value, False, fake_tensor_value)
        tensor_proxy.node.meta["grapharg"] = grapharg
        return tensor_variable

    def wrap_numpy_ndarray(self, value):
        assert np is not None
        assert isinstance(value, np.ndarray)

        source = NumpyTensorSource(self.get_source())

        from torch._numpy import _util

        readonly = not value.flags.writeable
        if readonly:
            try:
                value.flags.writeable = True
            except ValueError:
                # One can not easily make nditer elements writable,
                # but warning is not the end of the world
                assert isinstance(value.base, np.nditer)

        with torch_function_mode_stack_state_mgr.temp_restore_stack():
            try:
                tensor_value = _util._try_convert_to_tensor(value)
                if readonly:
                    from torch._prims_common import clone_preserve_strides

                    tensor_value = clone_preserve_strides(tensor_value)
            except NotImplementedError as e:
                # failed to convert to tensor, graph break
                unimplemented(str(e))

        # We do this because we want the full behavior of guarding the numpy ndarray as if it were
        # a tensor. It's a little annoying to make a VT to throw out, but there's so many side effects here
        # that there's not another great way to do this atm.
        # This creates the right graphargs, as well as registration for guards in tensor names and shape env.
        LazyVariableTracker.realize_all(VariableBuilder(self.tx, source)(tensor_value))
        example_value = wrap_to_fake_tensor_and_record(
            tensor_value,
            tx=self.tx,
            is_tensor=False,
            source=source,
        )
        proxy = self.tx.output.root_tracer.create_graph_input(
            re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
            type(tensor_value),
            example_value,
            source=source,
        )
        cache_real_value_when_export(self.tx, proxy, tensor_value)
        options = {"source": source}
        numpy_ndarray_variable = wrap_fx_proxy_cls(
            target_cls=NumpyNdarrayVariable,
            tx=self.tx,
            proxy=proxy,
            example_value=example_value,
            **options,
        )

        self.tx.output.input_source_to_var[source] = numpy_ndarray_variable
        example_value = numpy_ndarray_variable.proxy.node.meta["example_value"]

        # pass_arg_as_tensor should be true because we are wrapping a np.ndarray as argument input, and it needs to be
        # converted to a tensor.
        grapharg = GraphArg(
            source,
            tensor_value,
            pass_arg_as_tensor=True,
            fake_tensor=example_value,
            is_tensor=True,
            example_strong_ref=tensor_value,
        )
        proxy.node.meta["grapharg"] = grapharg

        return numpy_ndarray_variable

    def wrap_symint(self, value):
        assert type(value) is int

        if self.name in self.tx.output.unspec_variable_map:
            return self.tx.output.unspec_variable_map[self.name]

        shape_env = self.tx.output.shape_env
        if TracingContext.get().force_unspec_int_unbacked_size_like:
            wrapped_value = shape_env.create_unbacked_symint()
            _constrain_range_for_size(wrapped_value)
            self.tx.output.tracked_fakes.append(
                TrackedFake(wrapped_value, self.source, None)
            )

        # NB: We do not do float.  For motivation, see
        # https://docs.google.com/document/d/1INSCdYu1PxXcr43HrD82OudeEuS-qxQe1yZmLg2wy6A/edit
        # but the general idea is that we generate kernels that can
        # take unspecialized floats and use them in sizevar computation
        elif not is_constant_source(self.get_source()):
            if torch._dynamo.config.specialize_int:
                # If specialize_int is False, also return
                # a constant (but this should have been handled
                # in the caller, TBH)
                self.install_guards(GuardBuilder.CONSTANT_MATCH)
                return ConstantVariable.create(value=value, source=self.source)

            name = self.source.name()

            frame_state_entry = process_automatic_dynamic(
                self.tx,
                name,
                FrameStateSizeEntry.make_scalar(value),
                is_unspecialized_nn_module=self.source.guard_source().is_unspecialized_nn_module(),
            )

            # TODO: This should be dynamic, as we in general do not
            # know if bare integers are actually going to be sizevars
            # and it is inappropriate to eagerly duck size them with
            # real sizevars
            if (
                config.automatic_dynamic_shapes
                and frame_state_entry.scalar is auto_dynamic
            ):
                dynamic_dim = get_automatic_dynamic_shapes_mark_as()
            elif not config.assume_static_by_default:
                dynamic_dim = DimDynamic.DYNAMIC
            else:  # assume_static_by_default
                # TODO: dynamic_dim = DimDynamic.STATIC should work but
                # for some reason it doesn't
                self.install_guards(GuardBuilder.CONSTANT_MATCH)
                return ConstantVariable.create(value=value)

            wrapped_value = shape_env.create_unspecified_symint_and_symbol(
                value,
                source=self.source,
                dynamic_dim=dynamic_dim,
            )

            self.tx.output.tracked_fakes.append(
                TrackedFake(wrapped_value, self.source, None)
            )
        else:
            assert is_constant_source(self.get_source())
            # TODO: Do I actually need guard for constant source?
            self.install_guards(GuardBuilder.CONSTANT_MATCH)
            return ConstantVariable.create(value=value, source=self.source)

        assert not isinstance(self.get_source(), RandomValueSource)
        install_guard(self.get_source().make_guard(GuardBuilder.TYPE_MATCH))

        options = {"source": self.get_source()}

        proxy = self.tx.output.root_tracer.create_graph_input(
            re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
            type(wrapped_value),
            wrapped_value,
            source=self.get_source(),
        )

        sym_expr = wrapped_value.node.expr
        assert isinstance(sym_expr, sympy.Symbol), f"{sym_expr} is not a basic Symbol."
        self.tx.output.root_tracer.bound_symbols[sym_expr] = proxy
        unspec_var = SymNodeVariable(proxy, wrapped_value, **options)
        self.tx.output.unspec_variable_map[self.name] = unspec_var

        if not is_constant_source(self.get_source()):
            if self.tx.export and not isinstance(self.get_source(), LocalSource):
                raise AssertionError(
                    f"Dynamo attempts to add additional input during export: value={wrapped_value}, source={self.get_source()}"
                )

            example_value = unspec_var.proxy.node.meta["example_value"]

            proxy.node.meta["grapharg"] = GraphArg(
                self.get_source(),
                wrapped_value,
                pass_arg_as_tensor=False,
                fake_tensor=None,
                is_tensor=False,
                example_strong_ref=wrapped_value,
            )

        return unspec_var

    def wrap_symfloat(self, value):
        # To prevent circular import
        from ..symbolic_convert import TensorifyState

        # SymFloat wrapping is special.  We first wrap it in the same way we
        # do an unspecialized primitive, and then we item() it into a
        # SymFloat.  Removal of the item() call is left to a later FX pass,
        # mostly because that pass is more easily done after we have lowered
        # to ATen ops.  (Dynamo doesn't do decomposition right now).

        if self.name in self.tx.output.unspec_variable_map:
            return self.tx.output.unspec_variable_map[self.name]

        frame_state_entry = process_automatic_dynamic(
            self.tx,
            self.source.name(),
            FrameStateSizeEntry.make_scalar(value),
            is_unspecialized_nn_module=self.source.guard_source().is_unspecialized_nn_module(),
        )

        # NB: we specialize on nan input, because our guard modeling in
        # ShapeEnv cannot deal with nan
        if (
            torch._dynamo.config.specialize_float
            or is_constant_source(self.get_source())
            or math.isnan(value)
            or math.isinf(value)
            # We don't support cudagraphs for now. Without this cudagraphs
            # break because they expect all cuda inputs but our tensorified
            # float will be a f64[] cpu tensor. Fixes the following test
            # when specialize_float=False
            # python test/inductor/test_compiled_optimizers.py CompiledOptimizerTests.test_rmsprop_weight_decay_maximize_capturable_cuda # noqa: B950
            or torch._inductor.config.triton.cudagraphs
            or justknobs_check("pytorch/compiler:unspecialize_float_killswitch", False)
            or frame_state_entry.scalar is not auto_dynamic
            or TensorifyState.should_specialize(self.source)
        ):
            self.install_guards(GuardBuilder.CONSTANT_MATCH)
            return ConstantVariable.create(value=value, source=self.source)

        # NB: At the point we've gotten here, we don't assume static by
        # default.  Since we have a guard mechanism, there isn't really any
        # downside to trying to be dynamic for float all the time.  Unlike
        # ints, this won't make codegen perf worse.  Modest cost to compile
        # time.

        wrapped_value = torch.tensor(value, dtype=torch.float64)

        # We don't support specializing floats for grad checking tensors
        # See https://github.com/pytorch/pytorch/pull/140828 for more
        # context.
        if torch._C._functorch.is_gradtrackingtensor(wrapped_value):
            self.install_guards(GuardBuilder.CONSTANT_MATCH)
            return ConstantVariable.create(value=value, source=self.source)

        # TODO: Switch RandomValueSource over to use this, this is more
        # accurate
        assert not isinstance(self.get_source(), RandomValueSource)
        install_guard(self.get_source().make_guard(GuardBuilder.TYPE_MATCH))

        # The FloatTensorSource here is just for pedantic correctness: if you
        # guard against an UnspecializedPythonVariable, you need to guard
        # against the tensor-ified version of the local, otherwise it's not a
        # Tensor.  However, we never let the UnspecializedPythonVariable escape
        # here, so there should never actually be any guards against this
        # source.
        source = FloatTensorSource(self.get_source())
        options = {"source": source, "raw_value": value}

        # TODO: Maybe the tensor-ification should be built into the source,
        # rather than by special pattern match
        example_value = wrap_to_fake_tensor_and_record(
            wrapped_value, tx=self.tx, is_tensor=False, source=source
        )
        proxy = self.tx.output.root_tracer.create_graph_input(
            re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
            type(wrapped_value),
            example_value,
            source=source,
        )
        cache_real_value_when_export(self.tx, proxy, wrapped_value)

        unspec_var = wrap_fx_proxy_cls(
            UnspecializedPythonVariable,
            tx=self.tx,
            proxy=proxy,
            example_value=example_value,
            **options,
        )
        assert isinstance(unspec_var, UnspecializedPythonVariable)
        self.tx.output.unspec_variable_map[self.name] = unspec_var

        if self.tx.export and not isinstance(self.get_source(), LocalSource):
            raise AssertionError(
                f"Dynamo attempts to add additional input during export: value={wrapped_value}, source={self.get_source()}"
            )
        fake_tensor_value = None
        example_value = unspec_var.proxy.node.meta["example_value"]
        assert is_fake(example_value)

        fake_tensor_value = example_value
        assert fake_tensor_value.fake_mode is self.tx.fake_mode, (
            f"fake mode ({fake_tensor_value.fake_mode}) from fake tensor metadata doesn't match mode"
            "({self.tx.fake_mode}) from InstructionTranslator"
        )

        # There's something a bit incoherent about pass_arg_as_tensor,
        # specifically regarding sources.
        #
        # Specifically, suppose we have "x: float" local argument.  We
        # eventually end up with an UnspecializedPythonVariable denoting
        # torch.as_tensor(x)... but it's source is still L['x'] (which if you
        # accessed it directly is a float!)  So you gotta be careful when
        # setting up your guards, because it's still going to be a float at
        # this point, the conversion happens only precisely at the point we're
        # actually calling the FX graph.  This happens to be what we want for
        # shape guard generation, but it's kind of unintuitive.
        proxy.node.meta["grapharg"] = GraphArg(
            self.get_source(),
            wrapped_value,
            pass_arg_as_tensor=True,
            fake_tensor=fake_tensor_value,
            is_tensor=False,
            example_strong_ref=wrapped_value,
        )

        # Directly do item to bypass capture_scalar_outputs
        r = wrap_fx_proxy(
            self.tx,
            self.tx.output.create_proxy(
                "call_method",
                "item",
                *proxy_args_kwargs([unspec_var], {}),
            ),
        )
        self.tx.output.tracked_fakes.append(TrackedFake(r.sym_num, self.source, None))

        return r

    def wrap_unspecialized_primitive(self, value):
        if self.name in self.tx.output.unspec_variable_map:
            return self.tx.output.unspec_variable_map[self.name]

        wrapped_value = torch.tensor(value)
        if not isinstance(self.get_source(), RandomValueSource):
            install_guard(self.get_source().make_guard(GuardBuilder.TYPE_MATCH))

        options = {"source": self.get_source()}
        options.update({"raw_value": value})

        example_value = wrap_to_fake_tensor_and_record(
            wrapped_value, tx=self.tx, is_tensor=False, source=self.get_source()
        )
        proxy = self.tx.output.root_tracer.create_graph_input(
            re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
            type(wrapped_value),
            example_value,
            source=self.get_source(),
        )
        cache_real_value_when_export(self.tx, proxy, wrapped_value)

        unspec_var = wrap_fx_proxy_cls(
            UnspecializedPythonVariable,
            tx=self.tx,
            proxy=proxy,
            example_value=example_value,
            **options,
        )
        self.tx.output.unspec_variable_map[self.name] = unspec_var
        if not is_constant_source(self.get_source()):
            if self.tx.export and not isinstance(self.get_source(), LocalSource):
                raise AssertionError(
                    f"Dynamo attempts to add additional input during export: value={wrapped_value}, source={self.get_source()}"
                )
            fake_tensor_value = None
            if isinstance(unspec_var, ConstantVariable):
                # TODO: when can this happen?
                example_value = unspec_var.value
            else:
                example_value = unspec_var.proxy.node.meta["example_value"]
            assert is_fake(example_value)

            fake_tensor_value = example_value
            assert fake_tensor_value.fake_mode is self.tx.fake_mode, (
                f"fake mode ({fake_tensor_value.fake_mode}) from fake tensor metadata doesn't match mode"
                "({self.tx.fake_mode}) from InstructionTranslator"
            )

            proxy.node.meta["grapharg"] = GraphArg(
                self.get_source(),
                wrapped_value,
                pass_arg_as_tensor=True,
                fake_tensor=fake_tensor_value,
                is_tensor=False,
                example_strong_ref=wrapped_value,
            )
        return unspec_var


def _dataclasses_fields_lambda(obj):
    if isinstance(obj, UserDefinedObjectVariable):
        value = obj.value
    elif isinstance(obj, CustomizedDictVariable):
        value = obj.user_cls
    else:
        unimplemented(f"Dataclass fields handling fails for type {obj}")
    items = []
    for field in dataclasses.fields(value):
        source = None
        if obj.source:
            source = GetItemSource(
                AttrSource(obj.source, "__dataclass_fields__"), field.name
            )
        items.append(UserDefinedObjectVariable(field, source=source))
    return TupleVariable(items)


def _clone_input(value, fake_mode):
    if isinstance(value, torch.Tensor):
        # tensor subclasses will not be converted to FakeTensors and need to be cloned
        if not (
            isinstance(value, FakeTensor)
            or (
                # Is functional tensor fakeified by this instance of Dynamo
                torch._is_functional_tensor(value)
                and maybe_get_fake_mode(value) is fake_mode
            )
            or value.is_nested
        ):
            # NB: ensure strides are preserved
            value = clone_input(value)

    return value


def wrap_fx_proxy(
    tx, proxy, example_value=None, subclass_type=None, **options
) -> VariableTracker:
    kwargs = {
        "tx": tx,
        "proxy": proxy,
        "example_value": example_value,
        "subclass_type": subclass_type,
        **options,
    }
    if subclass_type is None:
        return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs)
    else:
        result = wrap_fx_proxy_cls(target_cls=TensorWithTFOverrideVariable, **kwargs)
        result.install_global(tx)
        return result


def cache_real_value_when_export(tx, proxy, example_value):
    if tx.export:
        # The legacy behavior for real value cache with subclasses was
        # to perform a clone WITHOUT preserving the subclass.  It's
        # not entirely clear this is what you actually want though.
        with torch._C.DisableTorchFunctionSubclass():
            proxy.tracer.real_value_cache[proxy.node] = _clone_input(
                example_value, tx.fake_mode
            )


# Note: Unfortunate split due to some gross classes existing that subclass TensorVariable
# Should be compositional instead
#
# This is a horribly complicated function that does too many things, to
# explain what it does, let's first talk about the classic usage wrap_fx_proxy
# for a TensorVariable.  There are two primary modes of use:
#
#   1. Wrapping a pre-existing Tensor.  In this case, example_value is set
#      to the pre-existing Tensor.  (Note that this example_value will NOT
#      be the final example_value we put into node.meta['example_value'],
#      instead it is converted into a fake tensor using
#      wrap_to_fake_tensor_and_record and registered as a graph input.)
#
#   2. "Wrapping" the result of some Tensor operation Dynamo traced over. In
#      this case, example_value is None (and we are going to figure it out
#      ourselves using FakeTensors, via get_fake_value, which will run
#      the operation represented by the (singular!) FX node referenced by
#      the passed in proxy.)
#
# The expectation is you end up with a Tensor output, and everything is
# straightforwardly traced into the graph.
#
# In all cases, the returned `TensorVariable` subclass will have an `example_value`
# and that `example_value` must be a `FakeTensor` produced by the currently running
# instance of Dynamo.
#
# Upon closer inspection, you may notice that there are a slurry of non-Tensor
# output cases in handle_traced_output.  What gives?  Well, we sometimes trace operations into the
# graph that don't involve tensors.
#
#   * Some operators return tuples; we need to recursively handle their
#     contents
#
#   * Some operators have side effects that will affect subsequent AOTAutograd
#     tracing but don't otherwise return anything.
#
#   * Some operators return symbolic ints/floats/bools which can go in the
#     graph and be traced (but only if they're actually symbolic!  If they're
#     static you don't want to put them in the graph, which means you
#     shouldn't call this function.)
#
# The common theme is that you only use this function WHEN YOU ARE TRACING
# SOMETHING INTO THE GRAPH.  This is sort of obvious, because you can't call
# this function without a proxy.
def wrap_fx_proxy_cls(
    target_cls, tx, proxy, example_value=None, subclass_type=None, **options
):
    if example_value is None:
        return _wrap_fx_proxy(
            target_cls, tx, proxy, example_value, subclass_type, **options
        )
    elif isinstance(example_value, torch.Tensor):
        return _wrap_fx_preexisting_tensor(
            target_cls, tx, proxy, example_value, subclass_type, **options
        )
    else:
        # This will skip tracing an op and recursively reinvoke wrap_fx_proxy_cls on supported
        # data structures. In essence this just handles tracing some other value which may
        # contain Fake Tensors or is otherwise proxyable.
        return handle_traced_output(
            example_value, tx, proxy, options, subclass_type, target_cls
        )


# This is 1 above (wrapping a preexisting tensor)
def _wrap_fx_preexisting_tensor(
    target_cls, tx, proxy, tensor, subclass_type=None, **options
):
    from ..symbolic_convert import InstructionTranslatorBase

    assert isinstance(
        tensor, torch.Tensor
    ), f"_wrap_fx_preexisting_tensor expected tensor, got {type(tensor)}"

    assert isinstance(tx, InstructionTranslatorBase)
    if "guards" in options and options["guards"] is not None:
        tx.output.guards.update(options["guards"])

    # Placeholders always carry example_value in node.meta.
    # non-placeholders always have no example_value in node.meta
    if proxy.node.op == "placeholder":
        assert (
            "example_value" in proxy.node.meta
        ), f"placeholder {proxy} doesn't have 'example_value' in node.meta"
    else:
        assert (
            "example_value" not in proxy.node.meta
        ), f"{proxy.node.meta['example_value']}"

    # See NOTE: [Deferring tensor pack/unpack hooks until runtime]
    with torch._dynamo.utils._disable_saved_tensors_hooks_during_tracing():
        # Handle recursive calls here
        if maybe_get_fake_mode(tensor) is tx.fake_mode:
            pass
        else:
            cache_real_value_when_export(tx, proxy, tensor)
            if tx.export:
                # The legacy behavior for real value cache with subclasses was
                # to perform a clone WITHOUT preserving the subclass.  It's
                # not entirely clear this is what you actually want though.
                with torch._C.DisableTorchFunctionSubclass():
                    proxy.tracer.real_value_cache[proxy.node] = _clone_input(
                        tensor, tx.fake_mode
                    )
            # NB: If we're ignoring subclass, then the expectation is you will
            # take the returned TensorVariable and wrap it into a more
            # accurate TensorVariable that is able to track subclass-ness;
            # otherwise this is wrong!
            kwargs = {
                "is_tensor": target_cls
                in (TensorVariable, TensorWithTFOverrideVariable),
            }
            assert "source" in options and options["source"] is not None
            kwargs["source"] = options["source"]
            tensor = wrap_to_fake_tensor_and_record(tensor, tx=tx, **kwargs)

        if tensor.device.type != "meta" and (
            maybe_get_fake_mode(tensor) is not tx.fake_mode
        ):
            raise InternalTorchDynamoError(
                "`tensor` needs to be a `FakeTensor`"
                f"wrapped by this instance of Dynamo. Found: {tensor}"
            )

    return handle_traced_output(tensor, tx, proxy, options, subclass_type, target_cls)


# This is 2 in the above comment (wrapping the output of a traced op)
def _wrap_fx_proxy(
    target_cls, tx, proxy, example_value=None, subclass_type=None, **options
):
    from ..symbolic_convert import InstructionTranslatorBase

    assert isinstance(tx, InstructionTranslatorBase)
    if "guards" in options and options["guards"] is not None:
        tx.output.guards.update(options["guards"])

    assert "example_value" not in proxy.node.meta, f"{proxy.node.meta['example_value']}"

    # See NOTE: [Deferring tensor pack/unpack hooks until runtime]
    with torch._dynamo.utils._disable_saved_tensors_hooks_during_tracing():
        # with preserve_rng_state():
        # only allow_non_graph_fake in this instance because we handle the non-fake
        # cases properly below.
        example_value = get_fake_value(proxy.node, tx, allow_non_graph_fake=True)

    return handle_traced_output(
        example_value, tx, proxy, options, subclass_type, target_cls
    )


# This handles wrapping of the output of an op traced into the graph
def handle_traced_output(example_value, tx, proxy, options, subclass_type, target_cls):
    import torch._functorch.vmap
    import torch._subclasses.fake_tensor
    import torch._utils

    if isinstance(example_value, torch.Tensor):
        is_parameter = isinstance(example_value, torch.nn.Parameter)
        is_buffer = isinstance(example_value, torch.nn.Buffer)

        # NB: In most (all?) cases, this does not actually do a clone.
        # (WARNING: this means that if we mutate metadata on the fake
        # tensor, the stored example value will update too!)
        example_value = _clone_input(example_value, tx.fake_mode)
        set_example_value(proxy.node, example_value)
        # We bind the unbacked symints in sizes/trdies of tensor lazily.
        # So that subgraphs can access the unbacked symbol's proxy in parent graph
        # when lifting unbacked symbols of input tensors to subgraph inputs.
        # We do it lazily because the tensor may not be used in subgraphs.
        tx.output.current_tracer.track_unbacked_symbols(example_value, proxy)
        specialized_props = target_cls.specialize(example_value)
        # TODO: not sure about this fake mode test
        if (
            isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor)
            and example_value.fake_mode is tx.fake_mode
        ):
            tensor_type = subclass_type if subclass_type else torch.Tensor
            specialized_props["class_type"] = (
                torch.nn.Parameter
                if is_parameter
                else torch.nn.Buffer
                if is_buffer
                else tensor_type
            )

        options.update(specialized_props)
        return target_cls(proxy, **options)
    elif (
        hasattr(proxy.node.target, "__name__")
        and proxy.node.target.__name__ == "set_state"
        and isinstance(proxy.node.target.__self__, torch._C.Generator)
        or proxy.node.target == torch.random.set_rng_state
    ):
        return TorchInGraphFunctionVariable(proxy.node.target)
    elif (
        proxy.node.target == torch._C._DisableFuncTorch
        or proxy.node.target == torch.cuda._is_in_bad_fork
    ):
        return UserDefinedObjectVariable(example_value)
    elif istype(example_value, torch.Size) and all(
        isinstance(x, int) for x in example_value
    ):
        sizes = [ConstantVariable.create(x) for x in example_value]
        return SizeVariable(sizes, **options)
    elif isinstance(example_value, (tuple, list)):
        set_example_value(proxy.node, example_value)
        unpacked = []
        for i, val in enumerate(example_value):
            if val is None:
                # nn.MultiheadAttention() can return None, see issue #175
                unpacked.append(
                    ConstantVariable.create(None, **options),
                )
            else:
                proxy_i = proxy.tracer.create_proxy(
                    kind="call_function",
                    target=operator.getitem,
                    args=(proxy, i),
                    kwargs={},
                )

                if "source" in options:
                    # This path should only trigger for list stealing, so it's
                    # safe to use `GetItemSource`.
                    assert isinstance(example_value, list)
                    source = options["source"]
                    options_i = options.copy()
                    options_i["source"] = GetItemSource(
                        base=source, index=i, index_is_slice=False
                    )
                else:
                    # use the same options object as parent
                    options_i = options

                # WARNING: this assumes the same target_cls as this tuple/list call
                unpacked.append(
                    wrap_fx_proxy_cls(
                        target_cls=target_cls,
                        tx=tx,
                        proxy=proxy_i,
                        example_value=val,
                        **options_i,
                    )
                )
        if isinstance(example_value, torch.Size):
            # NB: Keep the old proxy around.  See SizeVariable for an
            # explanation why
            return SizeVariable(unpacked, proxy, **options)
        elif istype(example_value, tuple):
            return TupleVariable(unpacked, **options)
        elif istype(example_value, (list, immutable_list)):
            return ListVariable(unpacked, **options)
        else:
            assert example_value.__class__.__module__ == "torch.return_types" or hasattr(
                example_value, "_fields"
            ), f"expected {example_value.__class__.__module__} == torch.return_types or named tuple but got {type(example_value)}"
            return NamedTupleVariable(unpacked, example_value.__class__, **options)
    elif example_value is None or proxy.node.target is torch.manual_seed:
        return ConstantVariable.create(None, **options)
    elif isinstance(example_value, (torch.SymInt, torch.SymFloat, torch.SymBool)):
        tx.output.current_tracer.track_unbacked_symbols(example_value, proxy)
        set_example_value(proxy.node, example_value)
        return SymNodeVariable(proxy, example_value, **options)
    elif (
        inspect.isclass(proxy.node.target)
        and issubclass(proxy.node.target, torch.Stream)
    ) or proxy.node.target in [
        device_interface.current_stream
        for _, device_interface in get_registered_device_interfaces()
    ]:
        set_example_value(proxy.node, example_value)
        return StreamVariable(proxy, example_value, example_value.device, **options)
    elif (
        inspect.isclass(proxy.node.target)
        and issubclass(proxy.node.target, torch.Event)
    ) or proxy.node.target in [
        device_interface.Event
        for _, device_interface in get_registered_device_interfaces()
    ]:
        set_example_value(proxy.node, example_value)
        return EventVariable(proxy, example_value, **options)
    elif proxy.node.target == "query" and proxy.node.op == "call_method":
        set_example_value(proxy.node, example_value)
        return ConstantVariable(example_value, **options)
    elif (
        example_value is not None
        and isinstance(example_value, torch.Event)
        and proxy.node.target == "record_event"
        and proxy.node.op == "call_method"
    ):
        set_example_value(proxy.node, example_value)
        return EventVariable(proxy, example_value, **options)
    elif isinstance(example_value, int) and (
        proxy.node.target
        in [
            torch.sym_int,
            getattr,
            operator.getitem,
            torch._utils._element_size,
            torch.seed,
            operator.mod,
            torch._functorch.vmap._validate_and_get_batch_size,
            # some mac builds are missing torch.distributed.get_rank()
            getattr(torch.distributed, "get_rank", _missing),
            getattr(torch.distributed, "get_world_size", _missing),
            # This always wants to be in the graph, even if the constraint
            # results in a constant int
            torch._constrain_as_size,
        ]
        or (
            # TODO: this is a little sus, because we didn't check what the self is
            proxy.node.op == "call_method"
            and proxy.node.target in ["bit_length"]
        )
    ):
        set_example_value(proxy.node, example_value)
        return ConstantVariable.create(example_value, **options)
    elif isinstance(example_value, torch.backends.cuda.SDPAParams):
        from .sdpa import SDPAParamsVariable

        set_example_value(proxy.node, example_value)
        return SDPAParamsVariable(proxy, **options)
    elif isinstance(example_value, bool) and (
        proxy.node.target
        in [
            torch._C._are_functorch_transforms_active,
            torch.backends.cuda.is_flash_attention_available,
            torch.backends.cuda.can_use_flash_attention,
            torch.backends.cuda.can_use_efficient_attention,
            "is_integer",
        ]
        + list(supported_const_comparison_op_values.keys())
    ):
        set_example_value(proxy.node, example_value)
        return ConstantVariable.create(example_value, **options)
    elif (
        isinstance(example_value, (int, float, bool))
        and proxy.node.target is call_torchbind
    ):
        set_example_value(proxy.node, example_value)
        return ConstantVariable.create(example_value, **options)
    elif isinstance(example_value, float) or proxy.node.target in ["hex", "__round__"]:
        set_example_value(proxy.node, example_value)
        return ConstantVariable.create(example_value, **options)
    else:
        unimplemented(
            "torch.* op returned non-Tensor "
            + f"{typestr(example_value)} {proxy.node.op} {proxy.node.target}",
            case_name="unsupported_operator",
        )


def get_automatic_dynamic_shapes_mark_as():
    if config.automatic_dynamic_shapes_mark_as == "dynamic":
        return DimDynamic.DYNAMIC
    elif config.automatic_dynamic_shapes_mark_as == "unbacked":
        return DimDynamic.SIZE_LIKE_UNBACKED
    elif config.automatic_dynamic_shapes_mark_as == "oblivious":
        return DimDynamic.OBLIVIOUS_SIZE
    else:
        raise ValueError(
            f"invalid automatic_dynamic_shapes_mark_as = {config.automatic_dynamic_shapes_mark_as}"
        )


# Tracks the sources of all fake tensors we wrap in Dynamo.
# Used by shape guard computation.
@dataclasses.dataclass
class TrackedFake:
    fake: Union[FakeTensor, SymInt]
    source: Source
    # Is None when fake is SymInt
    symbolic_context: Optional[SymbolicContext]

    def __hash__(self) -> int:
        return hash((self.fake, self.source.name()))

    def __eq__(self, other: object) -> bool:
        if isinstance(other, TrackedFake):
            return self.fake is other.fake and self.source.name() == other.source.name()
        return False


# Performs automatic dynamic dim determination.
# Returns a SymbolicContext
def _automatic_dynamic(
    e, tx, source, static_shapes, outer_only=False
) -> SymbolicContext:
    # strided NT not supported
    if e.is_nested and not isinstance(
        e, torch.nested._internal.nested_tensor.NestedTensor
    ):
        unimplemented("torch.compile does not support strided NestedTensor")

    name = source.name()
    prior_policy = tx.output.tracing_context.tensor_to_context.get(e, None)
    shape_env_to_source_to_symbol_cache = (
        prior_policy.shape_env_to_source_to_symbol_cache if prior_policy else None
    )

    # Get base context if the tensor is a view
    view_base_context: Optional[SymbolicContext] = None
    if e._is_view():
        base_source = AttrSource(source, "_base")
        view_base_context = _automatic_dynamic(e._base, tx, base_source, static_shapes)

    if is_traceable_wrapper_subclass(e) and not outer_only:
        # Get symbolic context for outer tensor
        outer_context = _automatic_dynamic(
            e, tx, source, static_shapes, outer_only=True
        )

        # Get symbolic contexts for inner tensors
        inner_contexts = {}  # mapping from attr -> symbolic context
        attrs, _ = type(e).__tensor_flatten__(e)
        for attr in attrs:
            inner_tensor = getattr(e, attr)
            inner_source = AttrSource(source, attr)
            inner_contexts[attr] = _automatic_dynamic(
                inner_tensor, tx, inner_source, static_shapes
            )

        return SubclassSymbolicContext(
            dynamic_sizes=outer_context.dynamic_sizes,
            dynamic_strides=outer_context.dynamic_strides,
            constraint_sizes=outer_context.constraint_sizes,
            constraint_strides=outer_context.constraint_strides,
            view_base_context=view_base_context,
            tensor_source=outer_context.tensor_source,
            shape_env_to_source_to_symbol_cache=outer_context.shape_env_to_source_to_symbol_cache,
            inner_contexts=inner_contexts,
        )

    if static_shapes:
        return StatefulSymbolicContext(
            dynamic_sizes=[DimDynamic.STATIC] * e.dim(),
            dynamic_strides=[DimDynamic.INFER_STRIDE] * e.dim(),
            constraint_sizes=[None] * e.dim(),
            constraint_strides=[None] * e.dim(),
            view_base_context=view_base_context,
            tensor_source=source,
            shape_env_to_source_to_symbol_cache=shape_env_to_source_to_symbol_cache,
        )

    # We preserve the dynamism of inputs. For example, when users call
    # make_fx(torch.cond, tracing_mode="symbolic")(*args), inputs have SymInt sizes.
    from torch.fx.experimental.symbolic_shapes import is_nested_int

    if any(isinstance(s, SymInt) and not is_nested_int(s) for s in e.size()):
        return StatefulSymbolicContext(
            dynamic_sizes=[
                DimDynamic.DYNAMIC if isinstance(s, SymInt) else DimDynamic.STATIC
                for s in e.size()
            ],
            dynamic_strides=[DimDynamic.INFER_STRIDE] * e.dim(),
            constraint_sizes=[None] * e.dim(),
            constraint_strides=[None] * e.dim(),
            view_base_context=view_base_context,
            tensor_source=source,
            shape_env_to_source_to_symbol_cache=shape_env_to_source_to_symbol_cache,
        )

    # Prep for automatic dynamic

    # This mimics stride inference algorithm in _create_symbolic_sizes_strides_storage_offset
    ex_size = e.size()
    if not is_sparse_any(e):
        ex_stride = e.stride()
        dim = e.dim()

        stride = [None] * dim
        while any(x is None for x in stride):
            candidates = {
                ex_size[i] * ex_stride[i]: InferStride(i)
                for i in range(dim)
                if stride[i] is not None and ex_stride[i] >= 0
            }
            val_list = sorted(
                [(ex_stride[i], i) for i in range(dim) if stride[i] is None],
                key=_nested_int_aware_sort,
            )
            for _, i in val_list:
                if stride[i] is None and ex_stride[i] in candidates:
                    stride[i] = candidates[ex_stride[i]]
                    candidates[ex_stride[i] * ex_size[i]] = InferStride(i)

            if any(x is None for x in stride):
                # bind the smallest unbound stride to a new variable
                val, i = min(
                    [(ex_stride[i], i) for i in range(dim) if stride[i] is None],
                    key=_nested_int_aware_sort,
                )
                stride[i] = val
    else:
        stride = []

    frame_state_entry = process_automatic_dynamic(
        tx, name, FrameStateSizeEntry.make_tensor(tuple(ex_size), tuple(stride))
    )

    # TODO: index export_constraints ahead of time so we don't have to
    # do a linear scan every time here
    t_id = id(e)
    dim2constraint = {}

    def update_dim2constraint(dim, constraint_range, name):
        if dim in dim2constraint:
            from torch.fx.experimental.symbolic_shapes import StrictMinMaxConstraint

            old_constraint_range, old_name = dim2constraint[dim]
            new_constraint_range = StrictMinMaxConstraint(
                vr=constraint_range.vr & old_constraint_range.vr,
                warn_only=False,
            )
            # It is possible for (non-None) old_name and name to be different
            # but this will only happen the corresponding Dims can be derived equal.
            new_name = old_name or name
            dim2constraint[dim] = new_constraint_range, new_name
        else:
            dim2constraint[dim] = constraint_range, name

    from torch.export.dynamic_shapes import _RelaxedConstraint

    if tx.output.export_constraints:
        for constraint in tx.output.export_constraints:
            if isinstance(constraint, _RelaxedConstraint):
                continue
            if constraint.t_id == t_id:
                update_dim2constraint(
                    constraint.dim, constraint.constraint_range, constraint.name
                )

    dynamic_sizes = []
    dynamic_strides = []
    constraint_sizes = []
    constraint_strides = []
    for i in range(e.dim()):
        # NB: mark dynamic has precedence over static
        marked_unbacked = i in getattr(e, "_dynamo_unbacked_indices", set())
        marked_dynamic = i in getattr(e, "_dynamo_dynamic_indices", set())
        marked_weak_dynamic = i in getattr(e, "_dynamo_weak_dynamic_indices", set())
        marked_static = i in getattr(e, "_dynamo_static_indices", set())

        # Reflect the user directive in the frame_state
        # For dynamic, apply None always
        if marked_dynamic:
            # TODO: This can be batched
            # TODO: Doing this here is kind of sus, maybe better to set this
            # up when we initially created the FrameStateSizeEntry to bong
            # into the mutable state
            log.debug("automatic dynamic %s marked dynamic", name)
            mark_size = [auto_unset] * e.dim()
            mark_size[i] = auto_dynamic
            frame_state_entry |= FrameStateSizeEntry.make_size(size=mark_size)

        # NB: both static and dynamic have precedence over
        automatic_dynamic_size = (
            config.automatic_dynamic_shapes and frame_state_entry.is_size_dynamic(i)
        )
        # NB: previously, if size was dynamic, we wouldn't make its stride
        # dynamic.  But now, because of InferStride concept, we will properly
        # not make stride dynamic even if it's wobbling
        automatic_dynamic_stride = (
            config.automatic_dynamic_shapes and frame_state_entry.is_stride_dynamic(i)
        )

        automatic_dynamic = automatic_dynamic_size or automatic_dynamic_stride

        # We will process constraints first, as they will imply that we
        # have a dynamic dimension
        # Precedence: export constraints > eager constraints
        constraint = dim2constraint.get(i)
        if constraint is None:
            constraint_size = None
            constraint_stride = None
            if marked_dynamic and not config.allow_ignore_mark_dynamic:
                # constraint_stride is deliberaly kept None because no easy way to provide value ranges for mark dynamic
                constraint_stride = None
                if hasattr(e, "_dynamo_dynamic_range"):
                    dim_range = [
                        dr for dr in e._dynamo_dynamic_range if dr.dim == i
                    ].pop()
                    if dim_range.min is None and dim_range.max is None:
                        constraint_size = RelaxedUnspecConstraint(warn_only=False)
                    else:
                        from torch.fx.experimental.symbolic_shapes import (
                            StrictMinMaxConstraint,
                        )

                        constraint_size = StrictMinMaxConstraint(
                            vr=ValueRanges(lower=dim_range.min, upper=dim_range.max),
                            warn_only=False,
                        )
                else:
                    constraint_size = RelaxedUnspecConstraint(warn_only=False)
            elif not marked_static and automatic_dynamic:
                if automatic_dynamic_size:
                    constraint_size = RelaxedUnspecConstraint(warn_only=True)
                if automatic_dynamic_stride:
                    constraint_stride = RelaxedUnspecConstraint(warn_only=True)
            else:
                constraint_size = None
                constraint_stride = None
        else:
            constraint_size, name_ = constraint
            constraint_stride = None
            dim_name = f"{name}.size()[{i}]"
            tx.output.shape_env.source_name_to_debug_name[dim_name] = name_
        constraint_sizes.append(constraint_size)
        constraint_strides.append(constraint_stride)

        if marked_unbacked:
            dynamic_size = DimDynamic.SIZE_LIKE_UNBACKED
        elif (
            constraint_size is not None
            or marked_dynamic
            or marked_weak_dynamic
            or is_nested_int(e.size()[i])
        ):
            # NB: We could assert static_shapes is False here, but it
            # seems better to allow the user to override symbolic_context in this
            # case
            if automatic_dynamic:
                dynamic_size = get_automatic_dynamic_shapes_mark_as()
            else:
                dynamic_size = DimDynamic.DYNAMIC
        elif static_shapes or config.assume_static_by_default or marked_static:
            dynamic_size = DimDynamic.STATIC
        else:
            # TODO: When does this show up?
            dynamic_size = DimDynamic.DUCK

        if constraint_stride is not None:
            dynamic_stride = DimDynamic.DYNAMIC
        else:
            dynamic_stride = DimDynamic.INFER_STRIDE

        dynamic_sizes.append(dynamic_size)
        dynamic_strides.append(dynamic_stride)

    return StatefulSymbolicContext(
        dynamic_sizes=dynamic_sizes,
        dynamic_strides=dynamic_strides,
        constraint_sizes=constraint_sizes,
        constraint_strides=constraint_strides,
        view_base_context=view_base_context,
        tensor_source=source,
        shape_env_to_source_to_symbol_cache=shape_env_to_source_to_symbol_cache,
    )


# See note [Tensor Fakification and Symbol Caching]
def wrap_to_fake_tensor_and_record(
    e, tx, *, source: Optional[Source], is_tensor: bool, parent_context=None
):
    if (
        type(e) in (torch.Tensor, torch.nn.Parameter, FakeTensor)
        or isinstance(e, torch.Tensor)
        or is_traceable_wrapper_subclass(e)
    ):
        assert source is not None
        static_shapes, reason = tensor_always_has_static_shape(
            e,
            is_tensor,
            tensor_source=source,
        )

        if not parent_context:
            symbolic_context = _automatic_dynamic(e, tx, source, static_shapes)
        else:
            # Parent contexts are passed in when we are recursively creating
            # fake tensors for subclasses. A better design would be not to create a
            # parent/child relationship, but to recursively call _automatic_dynamic
            # as we recursively call wrap_to_fake_tensor_and_record. This runs
            # into bugs around how meta_utils knows and works to create fake tensors
            # with tensor subclasses. Ideally, dynamo would drive both the recursive
            # wrap_to_fake_tensor_and_record and _automatic_dynamic policy creation.
            assert isinstance(source, AttrSource)
            inner_context_name = source.member
            symbolic_context = parent_context.inner_contexts[inner_context_name]

        log.debug(
            "wrap_to_fake %s %s %s %s",
            source.name(),
            tuple(e.shape),
            symbolic_context,
            type(e),
        )
        fake_e = wrap_fake_exception(
            lambda: tx.fake_mode.from_tensor(
                e,
                source=source,
                symbolic_context=symbolic_context,
            )
        )
        if (
            source is not None
            and isinstance(fake_e, FakeTensor)
            and (sym_val := fake_e.item_memo) is not None
        ):
            tx.output.tracked_fakes.append(
                TrackedFake(sym_val, CallMethodItemSource(source), symbolic_context)
            )

        if is_traceable_wrapper_subclass(fake_e):
            attrs, _ = fake_e.__tensor_flatten__()
            for attr in attrs:
                fake_inner = getattr(fake_e, attr)
                inner = getattr(e, attr)
                inner_source = AttrSource(source, attr)
                wrap_to_fake_tensor_and_record(
                    inner,
                    tx,
                    source=inner_source,
                    is_tensor=isinstance(fake_inner, torch.Tensor),
                    parent_context=symbolic_context,
                )

        tx.output.tracing_context.tensor_to_context[e] = symbolic_context
        if is_sparse_any(fake_e):
            # TODO: for TensorGuards, this eventually may need more
            #       fields for the size/stride of any other constituents
            values = fake_e._values() if fake_e.is_sparse else fake_e.values()
            tx.output.input_source_to_sizes_strides[source] = {
                "size": fake_e.size(),
                # TODO: revise this, but for now this stride instead of ()
                #       avoids SegFault with PYTORCH_TEST_WITH_DYNAMO=1
                "stride": (1,) * fake_e.ndim,
                "values_size": values.size(),
                "values_stride": values.stride(),
            }
        else:
            tx.output.input_source_to_sizes_strides[source] = {
                "size": fake_e.size(),
                "stride": fake_e.stride(),
            }

        if (
            is_tensor
            and not (static_shapes and source.is_specialized_nn_module())
            and not is_constant_source(source)
        ):
            tx.output.tracked_fakes.append(
                TrackedFake(fake_e, source, symbolic_context)
            )
            tx.output.tracked_fakes_id_to_source[id(e)].append(source)

        return fake_e
    else:
        return e


class SourcelessBuilder:
    """
    Like builder, but stateless and does not require a source. Useful for simple type->VT objects, or objects
    that are being created/evaporated during inlining (ex: consider a locally made list of tensors we then iterate over
    .), such a list should not show up as an artifact from inputs, nor in reconstruction, nor in the graph. However,
    there may be reasons to represent it as a ListVariable internally.

    NOTE - Objects produced here are born UNGUARDED due to the nature of sources!

    NOTE - This class is very new! It will have some rough edges, but it was created to stem the bleeding of giant
    if/else type->VariableTracker trees that were cropping up all over dynamo.
    """

    def __init__(self) -> None:
        raise AssertionError("Use SourcelessBuilder.create()")

    @staticmethod
    def create(tx: "InstructionTranslator", value) -> VariableTracker:
        value_type = type(value)
        fast_handler = SourcelessBuilder._type_handlers.get(value_type)
        if fast_handler:
            return fast_handler(tx, value)

        if isinstance(value, VariableTracker):
            # This is always valid to call, and useful for recursive calls.
            return value
        elif isinstance(value, dataclasses._HAS_DEFAULT_FACTORY_CLASS):
            return UserDefinedObjectVariable(value)
        elif ConstantVariable.is_literal(value):
            return ConstantVariable.create(value)
        elif callable(value) and trace_rules.lookup_callable(value) is not None:
            if is_callable_allowed(value):
                tx.output.has_user_defined_allowed_in_graph = True
            return trace_rules.lookup_callable(value)(value)
        elif is_function_or_wrapper(value):
            return trace_rules.lookup(value)(value)
        elif isinstance(value, enum.Enum):
            return EnumVariable(value)
        elif isinstance(value, (type, abc.ABCMeta)):
            return UserDefinedClassVariable(value)
        elif isinstance(value, types.MethodWrapperType):
            return MethodWrapperVariable(value)
        elif isinstance(value, torch.fx.graph_module.GraphModule):
            return SourcelessGraphModuleVariable(value)
        elif isinstance(
            value, (torch.utils._pytree.TreeSpec, torch.utils._pytree.LeafSpec)
        ):
            return UserDefinedObjectVariable(value)
        elif PlacementVariable.is_placement(value):
            return PlacementVariable(value)
        elif DeviceMeshVariable.is_device_mesh(value):
            return DeviceMeshVariable(value)
        elif isinstance(value, re.Pattern):
            return RegexPatternVariable(value)
        elif isinstance(value, torch._dynamo.variables.lazy.LazySymNodeFormatString):
            return ConstantVariable.create(str(value))
        unimplemented(
            f"Unexpected type in sourceless builder {value_type.__module__}.{value_type.__qualname__}"
        )

    @staticmethod
    def wrap_constant_literal(value):
        assert ConstantVariable.is_literal(value)
        return ConstantVariable.create(value=value)

    @staticmethod
    def make_type_handlers():
        create = SourcelessBuilder.create
        handlers = {}
        for t in common_constant_types:
            handlers[t] = lambda tx, value: ConstantVariable(value)
        handlers[set] = lambda tx, value: SetVariable(
            [create(tx, x) for x in value], mutation_type=ValueMutationNew()
        )
        handlers[dict] = lambda tx, value: ConstDictVariable(
            {create(tx, k): create(tx, v) for k, v in value.items()},
            type(value),
            mutation_type=ValueMutationNew(),
        )
        handlers[list] = lambda tx, value: ListVariable(
            [create(tx, x) for x in value], mutation_type=ValueMutationNew()
        )
        handlers[tuple] = lambda tx, value: TupleVariable(
            [create(tx, x) for x in value]
        )
        handlers[torch.Size] = lambda tx, value: SizeVariable(
            [create(tx, x) for x in value]
        )
        handlers[collections.OrderedDict] = handlers[dict]
        handlers[immutable_dict] = handlers[dict]
        handlers[immutable_list] = handlers[list]
        handlers[random.Random] = lambda tx, value: RandomClassVariable()
        handlers[types.ModuleType] = lambda tx, value: PythonModuleVariable(value)

        handlers[
            torch.distributions.constraints._Real
        ] = lambda tx, value: UserDefinedObjectVariable(
            value, mutation_type=ValueMutationNew()
        )
        handlers[
            torch.distributions.constraints._Interval
        ] = lambda tx, value: UserDefinedObjectVariable(
            value, mutation_type=ValueMutationNew()
        )
        handlers[
            torch.distributions.constraints.Constraint
        ] = lambda tx, value: UserDefinedObjectVariable(
            value, mutation_type=ValueMutationNew()
        )

        def passthrough(tx: "InstructionTranslator", value):
            return value

        for cls in VariableTrackerMeta.all_subclasses:
            handlers[cls] = passthrough
        return handlers


SourcelessBuilder._type_handlers = SourcelessBuilder.make_type_handlers()


class SourcelessUserDefinedObjectBuilder:
    """
    SourceLessBuilder does not return a UserDefinedObjectVariable, but in some
    cases it might be ok to return UserDefinedObjects. In such case, use this
    builder.
    """

    def __init__(self) -> None:
        raise AssertionError("Use SourcelessUserDefinedObjectBuilder.create()")

    @staticmethod
    def create(tx: "InstructionTranslator", value) -> VariableTracker:
        value_type = type(value)
        if issubclass(value_type, MutableMapping):
            return MutableMappingVariable(value, mutation_type=ValueMutationNew())
        elif isinstance(value, torch.nn.Module):
            return UnspecializedNNModuleVariable(
                value, mutation_type=ValueMutationNew()
            )
        else:
            return UserDefinedObjectVariable(value, mutation_type=ValueMutationNew())