1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
# mypy: ignore-errors
import operator
from typing import Dict, List, TYPE_CHECKING
import torch
from torch._dynamo.source import AttrSource, GetItemSource
from .. import variables
from ..exc import unimplemented
from ..utils import common_constant_types, istype, np
from .base import typestr, VariableTracker
if TYPE_CHECKING:
from torch._dynamo.symbolic_convert import InstructionTranslator
class ConstantVariable(VariableTracker):
@staticmethod
def create(value, **kwargs) -> VariableTracker:
"""
Create a `ConstantVariable` based on the given value, and supports
automatic routing for collection types like `tuple` (in which case we'd
create `ConstantVariable` for the leaf items).
NOTE: the caller must install the proper guards if needed; most often
the guard will be `CONSTANT_MATCH`.
"""
source = kwargs.get("source", None)
# Routing for supported collection literals.
if isinstance(value, set):
items = [ConstantVariable.create(x) for x in value]
return variables.SetVariable(items, **kwargs)
elif isinstance(value, frozenset):
items = [ConstantVariable.create(x) for x in value]
return variables.FrozensetVariable(items, **kwargs)
elif isinstance(value, (list, tuple)):
items = []
for i, x in enumerate(value):
item_source = GetItemSource(source, i) if source else None
items.append(
ConstantVariable.create(
x,
source=item_source,
)
)
return variables.BaseListVariable.cls_for(type(value))(items, **kwargs)
return ConstantVariable(value, **kwargs)
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
assert ConstantVariable.is_base_literal(
value
), f"""
Cannot construct `ConstantVariable` for value of type {type(value)}.
This failure likely due to PyTorch-internal use of `ConstantVariable` on
non-literal python values, please try using `VariableTracker.build` instead. If
you believe it's a necessary and legitimate use case (the value is immutable and
can't easily be represented with another `VariableTracker` class), please add
its type to `common_constant_types`.
"""
if np is not None and isinstance(value, np.number):
self.value = value.item()
else:
self.value = value
def as_proxy(self):
return self.value
def __repr__(self) -> str:
return f"ConstantVariable({type(self.value).__name__}: {repr(self.value)})"
def as_python_constant(self):
return self.value
def is_python_constant(self):
return True
@property
def items(self):
"""
Need this when adding a BaseListVariable and a ConstantVariable together.
Happens in detectron2.
"""
return self.unpack_var_sequence(tx=None)
def getitem_const(self, tx: "InstructionTranslator", arg: VariableTracker):
return ConstantVariable.create(
self.value[arg.as_python_constant()],
)
@staticmethod
def is_base_literal(obj):
return type(obj) in common_constant_types
@staticmethod
def is_literal(obj):
if type(obj) in (list, tuple, set, frozenset, torch.Size):
return all(ConstantVariable.is_literal(x) for x in obj)
return ConstantVariable.is_base_literal(obj)
def unpack_var_sequence(self, tx):
try:
return [ConstantVariable.create(x) for x in self.as_python_constant()]
except TypeError as e:
raise NotImplementedError from e
def const_getattr(self, tx: "InstructionTranslator", name):
member = getattr(self.value, name)
if callable(member):
raise NotImplementedError
return member
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from .tensor import SymNodeVariable
if name == "format" and istype(self.value, str):
return variables.BuiltinVariable(str.format).call_function(
tx, [self, *args], kwargs
)
elif name == "join" and istype(self.value, str):
assert len(args) == 1 and len(kwargs) == 0
arg_unpacked = args[0].force_unpack_var_sequence(tx)
try:
arg_const = [x.as_python_constant() for x in arg_unpacked]
return ConstantVariable.create(self.value.join(arg_const))
except NotImplementedError:
return super().call_method(tx, name, args, kwargs)
if any(isinstance(x, SymNodeVariable) for x in args):
# Promote to SymNodeVariable for operations involving dynamic shapes.
return variables.SymNodeVariable(self.as_proxy(), self.value).call_method(
tx, name, args, kwargs
)
try:
const_args = [a.as_python_constant() for a in args]
const_kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
except NotImplementedError:
return super().call_method(tx, name, args, kwargs)
if isinstance(self.value, str) and name in str.__dict__.keys():
method = getattr(self.value, name)
return ConstantVariable.create(method(*const_args, **const_kwargs))
elif isinstance(self.value, (float, int)):
if not (args or kwargs):
return ConstantVariable.create(getattr(self.value, name)())
if (
hasattr(operator, name)
and len(args) == 1
and args[0].is_python_constant()
):
add_target = const_args[0]
op = getattr(operator, name)
if isinstance(
add_target, (torch.SymBool, torch.SymFloat, torch.SymInt)
):
# Addition between a non sym and sym makes a sym
proxy = tx.output.create_proxy(
"call_function", op, (self.value, add_target), {}
)
return SymNodeVariable.create(tx, proxy, add_target)
else:
return ConstantVariable.create(op(self.value, add_target))
elif isinstance(self.value, bytes) and name == "decode":
method = getattr(self.value, name)
return ConstantVariable.create(method(*const_args, **const_kwargs))
if name == "__len__" and not (args or kwargs):
return ConstantVariable.create(len(self.value))
elif name == "__round__" and len(args) == 1 and args[0].is_python_constant():
return ConstantVariable.create(
round(self.value, args[0].is_python_constant())
)
elif name == "__contains__" and len(args) == 1 and args[0].is_python_constant():
assert not kwargs
search = args[0].as_python_constant()
result = search in self.value
return ConstantVariable.create(result)
unimplemented(f"const method call {typestr(self.value)}.{name}")
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
result = hasattr(self.value, name)
return variables.ConstantVariable.create(result)
class EnumVariable(VariableTracker):
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
@classmethod
def create(cls, cls_type, value_vt, options):
if isinstance(value_vt, variables.ConstantVariable):
for member in list(cls_type):
if member.value == value_vt.as_python_constant():
return cls(member, **options)
unimplemented("Enum variable is constructed with non constant values")
def as_proxy(self):
if isinstance(self.value, int):
return int(self.value) # convert IntEnum to a normal int
return self.value
def __repr__(self) -> str:
return f"EnumVariable({type(self.value)})"
def as_python_constant(self):
return self.value
def var_getattr(self, tx: "InstructionTranslator", name):
member = getattr(self.value, name)
source = self.source and AttrSource(self.source, name)
return VariableTracker.build(tx, member, source=source)
|