1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
|
# mypy: ignore-errors
import builtins
import collections
import functools
import inspect
import itertools
import types
from typing import Any, Callable, Dict, List, Optional, Tuple, TYPE_CHECKING, TypeVar
from typing_extensions import Never
import torch
from .. import polyfills, variables
from ..bytecode_transformation import create_call_function, create_rot_n
from ..exc import unimplemented, Unsupported
from ..guards import GuardBuilder, install_guard
from ..source import AttrSource, ConstantSource, DefaultsSource, GetItemSource
from ..utils import (
check_constant_args,
check_unspec_or_constant_args,
identity,
is_function,
is_wrapper_or_member_descriptor,
istype,
make_cell,
)
from .base import typestr, ValueMutationNew, VariableTracker
from .constant import ConstantVariable
try:
from torch.distributed.fsdp._fully_shard import _fsdp_param_group
except ModuleNotFoundError:
_fsdp_param_group = None
if TYPE_CHECKING:
from torch._dynamo.symbolic_convert import InstructionTranslator
from torch._higher_order_ops.triton_kernel_wrap import (
TritonGridType,
TritonKernelType,
)
_F = TypeVar("_F", bound=Callable)
def wrap_bound_arg(tx: "InstructionTranslator", val, source=None):
# Source propagation is best effort since not every object we encounter has a source to begin with.
if isinstance(val, VariableTracker):
return val
elif not source:
return VariableTracker.build(tx, val)
else:
# Create a lazy variable to avoid guarding on __defaults__ unless really
# needed.
return variables.LazyVariableTracker.create(val, source)
def wrap_args_kwargs(tx: "InstructionTranslator", result):
for k, v in list(result.items()):
if isinstance(v, (tuple, dict)):
# args/kwargs
result[k] = wrap_bound_arg(tx, v)
def init_cellvars(parent, result: Dict[str, VariableTracker], code):
"""
Update `result` to add mapping from local name to new cells created
directly by `code`, or update SideEffects in `parent` if the a local cell is
already in `result` (cell argument).
"""
side_effects = parent.output.side_effects
for name in code.co_cellvars:
new_cell = side_effects.track_cell_new()
if name in result:
# This handles when a function argument is a cell (e.g., captured by
# a nested func). See `MAKE_CELL` bytecode for more info.
side_effects.store_cell(new_cell, result.pop(name))
result[name] = new_cell
def _create_nested_fn(
code, f_globals, name, defaults, closure, kwdefaults, annotations
):
from types import FunctionType
func = FunctionType(code, f_globals, name, defaults, closure)
func.__kwdefaults__ = kwdefaults
if isinstance(annotations, tuple):
from itertools import pairwise
annotations = dict(pairwise(annotations))
# TypeError: __annotations__ must be set to a dict object
assert annotations is None or isinstance(annotations, dict)
func.__annotations__ = annotations
return func
class BaseUserFunctionVariable(VariableTracker):
def get_filename(self):
return self.get_code().co_filename
def get_name(self):
return self.get_code().co_name
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs)
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> VariableTracker:
result = False
try:
result = hasattr(self.get_function(), name)
except NotImplementedError:
if name == "__name__" and isinstance(self, NestedUserFunctionVariable):
result = True
return variables.ConstantVariable.create(result)
def inspect_parameter_names(self):
return list(inspect.signature(self.get_function()).parameters)
def closure_vars(self, tx):
return {}
class UserFunctionVariable(BaseUserFunctionVariable):
"""Some unsupported user-defined global function"""
_nonvar_fields = {
"fn",
"is_constant",
*BaseUserFunctionVariable._nonvar_fields,
}
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.CLOSURE_MATCH))
return cls(value, source=source)
def __init__(self, fn, is_constant=False, **kwargs) -> None:
super().__init__(**kwargs)
if getattr(fn, "_dynamo_marked_constant", False):
# This method should be treated as a constant for the purposes of compilation
self.is_constant = True
else:
self.is_constant = False
assert isinstance(
fn, (types.FunctionType, torch.jit.ScriptFunction)
), f"expected FunctionType found {typestr(fn)} {fn}"
# TODO(anijain2305) - Replace directly calling UserFunctionVariable with
# VariableBuilder, which handles the wrapping of _torchdynamo_inline.
# unpack @torch._dynamo.optimize()(fn) wrapped function
fn = inspect.getattr_static(fn, "_torchdynamo_inline", fn)
self.fn: types.FunctionType = fn
def as_python_constant(self):
if istype(self, UserFunctionVariable):
return self.fn
# subclasses (such as methods) usually aren't a constant
return super().as_python_constant()
def self_args(self):
return []
def get_function(self):
return self.fn
def get_code(self):
return self.fn.__code__
def python_type(self):
return types.FunctionType
def has_self(self):
return getattr(self.fn, "__self__", None) is not None
def get_globals(self):
return self.fn.__globals__
def bind_args(self, parent, args, kwargs) -> Dict[str, VariableTracker]:
"""
Assume `args` and `kwargs` are VariableTracker arguments for a call to
this function, create new bindings for initial locals.
"""
assert not self.is_constant
root_tx = parent.output.root_tx
wrap = functools.partial(wrap_bound_arg, tx=root_tx)
fn: types.FunctionType = self.fn
defaults = fn.__defaults__ or []
defaults_sources = [
None if self.source is None else DefaultsSource(self.source, idx)
for idx, _ in enumerate(defaults)
]
fake_func = types.FunctionType(
fn.__code__,
fn.__globals__,
fn.__name__,
tuple(
[
wrap(val=arg, source=source)
for arg, source in zip(defaults, defaults_sources)
]
),
fn.__closure__,
)
if fn.__kwdefaults__:
kwdefaults_sources = {
k: (
None
if self.source is None
else DefaultsSource(self.source, k, is_kw=True)
)
for k in fn.__kwdefaults__
}
fake_func.__kwdefaults__ = {
k: wrap(val=v, source=kwdefaults_sources[k])
for k, v in fn.__kwdefaults__.items()
}
bound = inspect.signature(fake_func).bind(*args, **kwargs)
bound.apply_defaults()
result = dict(bound.arguments.items())
wrap_args_kwargs(root_tx, result)
init_cellvars(parent, result, fn.__code__)
closure = self.fn.__closure__ or ()
assert len(closure) == len(self.fn.__code__.co_freevars)
for idx, name, cell in zip(
itertools.count(), self.fn.__code__.co_freevars, closure
):
# TODO refactor these 3 branches.
side_effects = parent.output.side_effects
if cell in side_effects:
cell_var = side_effects[cell]
elif self.source:
closure_cell = GetItemSource(
AttrSource(self.source, "__closure__"), idx
)
closure_cell_contents = AttrSource(closure_cell, "cell_contents")
try:
contents_var = VariableTracker.build(
parent, cell.cell_contents, closure_cell_contents
)
except ValueError:
# Cell has not yet been assigned
contents_var = variables.DeletedVariable()
cell_var = side_effects.track_cell_existing(
closure_cell, cell, contents_var
)
else:
# TODO figure out why source isn't available here, and whether
# we can fix that and remove this branch.
try:
contents_var = VariableTracker.build(parent, cell.cell_contents)
except ValueError:
# Cell has not yet been assigned
contents_var = variables.DeletedVariable()
cell_var = side_effects.track_cell_existing(None, cell, contents_var)
result[name] = cell_var
return result
def var_getattr(self, tx: "InstructionTranslator", name: str):
source = self.source and AttrSource(self.source, name)
try:
subobj = inspect.getattr_static(self.fn, name)
except AttributeError:
return variables.GetAttrVariable(self, name, source=source)
if source:
return variables.LazyVariableTracker.create(subobj, source)
return VariableTracker.build(tx, subobj)
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> VariableTracker:
result = hasattr(self.fn, name)
return variables.ConstantVariable.create(result)
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if self.is_constant:
return invoke_and_store_as_constant(
tx, self.fn, self.get_name(), args, kwargs
)
if (
tx.output.current_tracer.under_activation_checkpoint
and not tx.output.current_tracer.allow_side_effects_under_checkpoint
):
try:
from torch.distributed.fsdp._fully_shard._fsdp_state import FSDPState
except Exception:
FSDPState = None
if FSDPState is not None and self.fn in [
FSDPState._pre_forward,
FSDPState._post_forward,
]:
with torch._dynamo.side_effects.allow_side_effects_under_checkpoint(tx):
return super().call_function(tx, args, kwargs)
return super().call_function(tx, args, kwargs)
class UserMethodVariable(UserFunctionVariable):
"""Some unsupported user-defined method"""
def __init__(self, fn, obj, **kwargs) -> None:
super().__init__(fn=fn, **kwargs)
self.obj = obj
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.fn}, {self.obj})"
def self_args(self):
return [self.obj]
def python_type(self):
return types.MethodType
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
# For nn.Module methods, redirecting to NNModuleVariable.call_method for optimized solution
# rather than simple inlining. E.g, putting `call_method` op in FX graph for `forward` method
# since we ensure `forward` of allowed modules can be traced by AOT safely.
# Note this is not only for allowed modules, as user customized modules can extend from
# allowed modules but using parent's `forward` method, which is also covered by this branch.
# If we are tracing the higher order op, we want Dynamo to step inside
# the module call so that Dynamo can see the underlying parameters and
# buffers and raise them as inputs to the graph. The is_root_tracer
# check bypasses the if condition for non-root tracers and directly
# calls the super().call_function at the end, which is basically
# equivalent of inlining the method.
if tx.output.is_root_tracer() and isinstance(
self.obj, variables.NNModuleVariable
):
module_attr = getattr(self.fn, "__module__", "")
# inline torch.nn.utils.parametrize
if (
module_attr is not None
and module_attr.startswith("torch.nn.")
and module_attr != "torch.nn.utils.parametrize"
or self.is_constant
):
return self.obj.call_method(
tx, self.fn.__name__, args, kwargs, constant=self.is_constant
)
elif (
_fsdp_param_group is not None
and self.fn is _fsdp_param_group.FSDPParamGroup.use_training_state
):
return variables.TorchCtxManagerClassVariable(self.fn).call_function(
tx, (self.obj, *args), kwargs
)
if self.is_constant:
fn = getattr(self.obj.value, self.fn.__name__)
return invoke_and_store_as_constant(tx, fn, self.get_name(), args, kwargs)
return super().call_function(tx, args, kwargs)
def inspect_parameter_names(self):
return super().inspect_parameter_names()[1:]
class WrappedUserMethodVariable(UserMethodVariable):
def __init__(self, wrapped, context, **kwargs) -> None:
kwargs.pop("fn", None)
kwargs.pop("obj", None)
super().__init__(wrapped.fn, wrapped.obj, **kwargs)
self.wrapped = wrapped
self.context = context
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
self.context.enter(tx)
result = super().call_function(tx, args, kwargs)
self.context.exit(tx)
return result
class WrappedUserFunctionVariable(UserFunctionVariable):
def __init__(self, wrapped, context, **kwargs) -> None:
kwargs.pop("fn", None)
kwargs.pop("obj", None)
super().__init__(wrapped.fn, **kwargs)
self.wrapped = wrapped
self.context = context
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
self.context.enter(tx)
result = super().call_function(tx, args, kwargs)
self.context.exit(tx)
return result
def invoke_and_store_as_constant(tx: "InstructionTranslator", fn, name, args, kwargs):
def convert(x):
if isinstance(x, variables.TensorVariable):
return x.get_real_value()
return x.as_python_constant()
args = [convert(x) for x in args]
kwargs = {k: convert(v) for k, v in kwargs.items()}
res = fn(*args, **kwargs)
return tx.output.register_attr_or_module(
res,
name,
source=ConstantSource(name),
)
class NestedUserFunctionVariable(BaseUserFunctionVariable):
_nonvar_fields = {
"f_globals",
*BaseUserFunctionVariable._nonvar_fields,
}
def __init__(
self,
fn_name,
code,
f_globals,
defaults,
kwdefaults,
annotations,
closure,
# This is present when this function is created by
# `functools.wrap(wrapped_fn)(this_fn)`.
wrapped_fn=None,
**kwargs,
) -> None:
super().__init__(**kwargs)
assert isinstance(fn_name.as_python_constant(), str)
assert isinstance(code.as_python_constant(), types.CodeType)
assert isinstance(f_globals, dict)
self.fn_name = fn_name
self.code = code
self.f_globals = f_globals
self.defaults = defaults
self.kwdefaults = kwdefaults
self.annotations = annotations
self.closure = closure
self.wrapped_fn: Optional[VariableTracker] = wrapped_fn
def self_args(self):
return []
def get_code(self):
return self.code.as_python_constant()
def get_function(self):
if self.closure:
raise NotImplementedError
func = types.FunctionType(
self.code.as_python_constant(),
self.f_globals,
self.fn_name.as_python_constant(),
)
if self.defaults:
func.__defaults__ = self.defaults.as_python_constant()
if self.kwdefaults:
func.__kwdefaults__ = self.kwdefaults.as_python_constant()
if self.annotations:
annotations = self.annotations.as_python_constant()
if isinstance(annotations, tuple):
from itertools import pairwise
annotations = dict(pairwise(annotations))
# TypeError: __annotations__ must be set to a dict object
assert isinstance(annotations, dict)
func.__annotations__ = annotations
return func
def has_closure(self):
return self.closure is not None
def has_self(self):
return False
def get_globals(self):
return self.f_globals
def bind_args(self, parent, args, kwargs):
code = self.get_code()
func = types.FunctionType(
code,
self.f_globals,
self.fn_name.as_python_constant(),
tuple(self.defaults.items) if self.defaults else None,
tuple(make_cell(None) for _ in range(len(self.get_code().co_freevars))),
)
if self.kwdefaults:
func.__kwdefaults__ = self.kwdefaults.keys_as_python_constant()
bound = inspect.signature(func).bind(*args, **kwargs)
bound.apply_defaults()
result = dict(bound.arguments.items())
wrap_args_kwargs(parent.output.root_tx, result)
init_cellvars(parent, result, code)
for idx, name in enumerate(code.co_freevars):
assert name not in result
cell = self.closure.items[idx]
result[name] = cell
return result
def reconstruct(self, codegen):
codegen.add_push_null(
lambda: codegen.load_import_from(__name__, "_create_nested_fn")
)
codegen(self.code)
codegen.extend_output([codegen.create_load_const_unchecked(self.f_globals)])
codegen(ConstantVariable.create(self.code.value.co_name))
if self.defaults:
codegen(self.defaults)
else:
codegen.extend_output([codegen.create_load_const(None)])
if self.closure:
codegen(self.closure)
else:
codegen.extend_output([codegen.create_load_const(None)])
if self.kwdefaults:
codegen(self.kwdefaults)
else:
codegen.extend_output([codegen.create_load_const(None)])
if self.annotations:
try:
annotations = self.annotations.as_python_constant()
codegen.extend_output(
[codegen.create_load_const_unchecked(annotations)]
)
except NotImplementedError:
codegen(self.annotations)
else:
codegen.extend_output([codegen.create_load_const(None)])
codegen.extend_output(create_call_function(7, False))
if self.wrapped_fn:
codegen.add_push_null(
lambda: codegen.load_import_from("functools", "wraps")
)
codegen(self.wrapped_fn)
codegen.extend_output(create_call_function(1, False))
codegen.extend_output(create_rot_n(2))
codegen.extend_output(create_call_function(1, True))
class SkipFunctionVariable(VariableTracker):
_nonvar_fields = {
"value",
"reason",
*VariableTracker._nonvar_fields,
}
def __init__(self, value, reason=None, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
self.reason = reason
def as_python_constant(self):
return self.value
@classmethod
def create_with_source(cls, value, source):
if not is_wrapper_or_member_descriptor(value):
# These descriptors are not guaranteed to return the same object on
# attribute lookup. They are unlikely to be changed, so we can skip
# guarding them.
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
return cls(value, source=source)
@staticmethod
@functools.lru_cache(None)
def fold_through_function_to_wrapper():
return {
collections.namedtuple: variables.UserDefinedClassVariable,
}
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if inspect.getattr_static(self.value, "_torchdynamo_disable", False):
unimplemented(f"call torch._dynamo.disable() wrapped function {self.value}")
# Fold through the functions(e.g, collections.namedtuple)
# that inputs & outputs are all python constants
elif (
self.value in self.fold_through_function_to_wrapper().keys()
and check_constant_args(args, kwargs)
):
value = self.value(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
)
return self.fold_through_function_to_wrapper().get(self.value)(
value, mutation_type=ValueMutationNew()
)
elif self.value is functools.wraps and not kwargs and len(args) == 1:
def wraps(fn):
if isinstance(fn, variables.NestedUserFunctionVariable):
return fn.clone(wrapped_fn=args[0])
unimplemented(f"functools.wraps({fn})")
return variables.LambdaVariable(wraps)
else:
try:
path = inspect.getfile(self.value)
msg = f"'skip function {self.value.__qualname__} in file {path}'"
except TypeError:
known_python_builtin_modules = {"_abc", "_warnings"}
if self.value.__module__ in known_python_builtin_modules:
msg = (
f"Graph break due to unsupported Python builtin {self.value.__module__}.{self.value.__qualname__}. "
f"Please file an issue on GitHub "
f"so the PyTorch team can add support for it. "
)
elif (
self.value.__module__ is not None
and self.value.__module__.startswith("optree")
):
msg = (
f"Graph break for an optree C/C++ function {self.value.__module__}.{self.value.__qualname__}."
f" Consider using torch.utils._pytree - "
f"https://github.com/pytorch/pytorch/blob/main/torch/utils/_pytree.py"
)
# also warn on it because most users won't see the graph break message
torch._dynamo.utils.warn_once(msg)
else:
msg = (
f"Graph break due to unsupported builtin {self.value.__module__}.{self.value.__qualname__}. "
f"This function is either a Python builtin (e.g. _warnings.warn) "
f"or a third-party C/C++ Python extension (perhaps created with pybind). "
f"If it is a Python builtin, please file an issue on GitHub "
f"so the PyTorch team can add support for it and see the next case for a workaround. "
f"If it is a third-party C/C++ Python extension, please "
f"either wrap it into a PyTorch-understood custom operator "
f"(see https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html "
f"for more details) or, if it is traceable, use "
f"torch.compiler.allow_in_graph."
)
# also warn on it because most users won't see the graph break message
torch._dynamo.utils.warn_once(msg)
if self.value.__qualname__ == "allow_in_graph":
msg = (
"Found an allow_in_graph decorator to a function which "
"is created inside the parent function that is getting "
"compiled. This is not supported for now."
)
msg += f"', {self.reason}'" if self.reason else ""
unimplemented(msg)
class WrapperUserFunctionVariable(VariableTracker):
"""
Used to represent a wrapper object that contains the actual callable as an
attribute. For example, torch.jit.script/trace have the original function at
their _torchdynamo_inline attribute. Similarly, functions with
__script_if_tracing_wrapper have the original attr at "__original_fn".
"""
def __init__(self, wrapper_obj, attr_to_trace, **kwargs) -> None:
super().__init__(**kwargs)
self.wrapper_obj = wrapper_obj
self.attr_to_trace = attr_to_trace
def var_getattr(self, tx: "InstructionTranslator", name):
if name == self.attr_to_trace:
val = getattr(self.wrapper_obj, self.attr_to_trace)
source = self.source and AttrSource(self.source, name)
return VariableTracker.build(tx, val, source)
return super().var_getattr(tx, name)
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
return variables.UserFunctionVariable(
polyfills.getattr_and_trace
).call_function(
tx, [self, variables.ConstantVariable(self.attr_to_trace), *args], kwargs
)
def _traceable_collective_remaps():
# We can't rely on importing from distributed, since it's not always built
if torch.distributed.is_available():
from torch.distributed._functional_collectives import (
traceable_collective_remaps,
)
return traceable_collective_remaps
return {}
def _traceable_collectives_source(tx: "InstructionTranslator", fn):
assert torch.distributed.is_available(), "Illegal invocation."
assert fn in _traceable_collective_remaps().values()
inner_name = fn.__name__
path_source = tx.import_source("torch.distributed._functional_collectives")
return AttrSource(path_source, inner_name)
class CollectiveFunctionRewriteVariable(UserFunctionVariable):
"""
Some of the torch.distributed.* collective APIs are possible to rewrite to 'traceable' collectives.
This class provides both a way to check if a function is remappable, and perform the remapping.
In the case that a function is 'remappable' but only for some combinations of call-time arguments,
we check the args at `call_function` time and fall back to graph-breaking if needed. This is no worse
than status-quo as we currently graph-break on all distributed.* collectives.
"""
def __init__(self, fn, *, replacement_var, **kwargs) -> None:
super().__init__(fn, **kwargs)
assert isinstance(replacement_var, UserFunctionVariable)
self.replacement_var = replacement_var
@staticmethod
def create(tx: "InstructionTranslator", old_fn, source, **options):
new_fn, new_source = CollectiveFunctionRewriteVariable.rewrite(tx, old_fn)
return CollectiveFunctionRewriteVariable(
old_fn,
replacement_var=UserFunctionVariable(new_fn, source=new_source, **options),
source=source,
**options,
)
@staticmethod
def can_rewrite(variable):
return (
inspect.isfunction(variable) and variable in _traceable_collective_remaps()
)
@staticmethod
def rewrite(tx: "InstructionTranslator", fn):
new_fn = _traceable_collective_remaps()[fn]
return new_fn, _traceable_collectives_source(tx, new_fn)
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
# call_function must check any unsupported arguments and graph-break.
# It's safe to assume args/kwargs from orig_fn map 1:1 to args/kwargs of remapped_fn,
# since that's the contract for putting a mapping in `traceable_collective_remaps`
import torch.distributed as dist
from torch.distributed._functional_collectives import REDUCE_OP_TO_STR
# Merge args into kwargs so positional and keyword args
# can be processed the same way.
signature = inspect.signature(self.fn)
kwargs = dict(signature.bind(*args, **kwargs).arguments)
args = ()
if "async_op" in kwargs and kwargs["async_op"].as_python_constant():
unimplemented(
f"CollectiveFunctionRewriteVariable can't support async_op=True for {self.fn}"
)
if self.fn in (
dist.all_reduce,
dist.reduce_scatter_tensor,
dist._reduce_scatter_base,
):
reduce_op_var = kwargs.get("op")
reduce_op = (
reduce_op_var.value
if reduce_op_var is not None
else signature.parameters["op"].default
)
if reduce_op not in REDUCE_OP_TO_STR:
raise ValueError(f"Unsupported all_reduce op: {reduce_op}")
kwargs["op"] = variables.ConstantVariable.create(
REDUCE_OP_TO_STR[reduce_op]
)
return self.replacement_var.call_function(tx, args, kwargs)
class FunctoolsPartialVariable(VariableTracker):
def __init__(self, func: VariableTracker, args, keywords, **kwargs) -> None:
super().__init__(**kwargs)
self.func = func
assert isinstance(args, list)
self.args = args
assert isinstance(keywords, dict)
self.keywords = keywords
def reconstruct(self, codegen):
codegen.add_push_null(lambda: codegen.load_import_from("functools", "partial"))
codegen(self.func)
if self.args:
codegen.foreach(self.args)
if not self.keywords:
codegen.extend_output(create_call_function(len(self.args) + 1, False))
return
codegen.foreach(self.keywords.values())
keys = tuple(self.keywords.keys())
codegen.extend_output(
codegen.create_call_function_kw(len(keys) + len(self.args) + 1, keys, False)
)
def get_function(self):
return self.as_python_constant()
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
merged_args = self.args + args
merged_kwargs = {**self.keywords, **kwargs}
return self.func.call_function(tx, merged_args, merged_kwargs)
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> VariableTracker:
# functools.partial uses slots, so attributes are constant
return variables.ConstantVariable.create(
hasattr(functools.partial(identity), name)
)
def as_python_constant(self):
return functools.partial(
self.func.as_python_constant(),
*[arg.as_python_constant() for arg in self.args],
**{k: v.as_python_constant() for k, v in self.keywords.items()},
)
def guard_as_python_constant(self):
"""Similar to as_python_constant(), but add ID_MATCH guards to try to force things to become constants"""
return functools.partial(
self.func.guard_as_python_constant(),
*[v.guard_as_python_constant() for v in self.args],
**{k: v.guard_as_python_constant() for k, v in self.keywords.items()},
)
class PolyfilledFunctionVariable(VariableTracker):
_nonvar_fields = {
"fn",
"wrapped_fn",
"traceable_fn",
*VariableTracker._nonvar_fields,
}
@classmethod
@functools.lru_cache(None)
def _get_polyfill_handlers(cls) -> Dict[Callable[..., Any], types.FunctionType]:
return {}
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
return cls(value, source=source)
def __init__(self, fn: _F, **kwargs) -> None:
super().__init__(**kwargs)
self.fn: _F = fn
handler = self._get_polyfill_handlers().get(fn, fn)
assert callable(handler), f"Polyfill handler {handler} is not callable for {fn}"
for candidate_attr in (
"__torch_dynamo_polyfill__", # registered polyfill
"__python_implementation__", # self handler from third-party libraries
):
candidate = getattr(handler, candidate_attr, None)
if candidate:
assert callable(candidate)
traceable_fn = candidate
break
else:
raise RuntimeError(
f"Polyfill handler {handler} does not have a traceable function"
)
self.wrapped_fn: _F = handler
self.traceable_fn: _F = traceable_fn
@property
def polyfill_fn(self) -> _F:
return self.traceable_fn
def can_constant_fold_through(self):
return getattr(
self.wrapped_fn, "__torch_dynamo_can_constant_fold_through__", False
)
def get_function(self):
return self.as_python_constant()
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if self.can_constant_fold_through() and check_unspec_or_constant_args(
args, kwargs
):
result = (
self.fn( # use the original function which is faster than the polyfill
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
)
)
return VariableTracker.build(tx, result)
# Special case for sum on tuple/list of ints
if (
self.fn is builtins.sum
and len(args) == 1
and not kwargs
and isinstance(args[0], (variables.ListVariable, variables.TupleVariable))
and all(
(isinstance(x, variables.ConstantVariable) and isinstance(x.value, int))
or (isinstance(x, variables.SymNodeVariable) and x.python_type() is int)
for x in args[0].items
)
):
return variables.SymNodeVariable.create(
tx,
tx.output.create_proxy(
"call_function",
torch.sym_sum,
(tuple(a.as_proxy() for a in args[0].items),),
{},
),
sym_num=torch.sym_sum(
[
(
x.value
if isinstance(x, variables.ConstantVariable)
else x.sym_num
)
for x in args[0].items
]
),
)
traceable_function_variable = VariableTracker.build(tx, self.traceable_fn)
return traceable_function_variable.call_function(tx, args, kwargs)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__call__":
return self.call_function(tx, args, kwargs)
method = getattr(self.fn, name, None)
assert method is not None, f"Member {name} not found in {self.fn}"
assert is_function(method), f"Member {name} is not callable in {self.fn}"
options = {}
if self.source:
options["source"] = AttrSource(self.source, name)
polyfilled_method_variable = PolyfilledFunctionVariable(method, **options)
return polyfilled_method_variable.call_function(tx, args, kwargs)
def as_python_constant(self):
return self.fn
from torch._higher_order_ops.triton_kernel_wrap import (
TMADescriptorMetadata,
TritonHOPifier,
)
class DynamoTritonHOPifier(TritonHOPifier):
def raise_unsupported(self, msg: str) -> Never:
raise Unsupported(msg)
def is_callable(self, maybe_callable: Any) -> bool:
return isinstance(
maybe_callable, (NestedUserFunctionVariable, UserFunctionVariable)
)
def get_value(self, val: Any) -> Any:
return val.value
def check_grid(self, grid) -> Tuple[torch.fx.proxy.Proxy, ...]:
from .lists import BaseListVariable
if isinstance(grid, BaseListVariable):
return grid.as_proxy()
else:
unimplemented(f"grid for the triton kernel is {type(grid)}")
def call_grid(self, grid, meta, tx):
meta = {variables.ConstantVariable.create(k): v for k, v in meta.items()}
grid = grid.call_function(tx, [meta], {})
return grid
def call_HOP(self, variable, grids, combined_args_raw, tx) -> ConstantVariable:
from .constant import ConstantVariable
from .dicts import ConstDictVariable
# as we can only pass tensors as non-const args in fx graph,
# here we replace TMA descriptors (TMADescriptorVariable
# instances) with the underlying tensors, while moving the
# TMA descriptor-related metadata to a separate argument,
# so that we can reconstruct the TMA descriptors downstream
tma_descriptor_metadata: TMADescriptorMetadata = {}
for k in list(combined_args_raw.keys()):
v = combined_args_raw[k]
if isinstance(v, TMADescriptorVariable):
tma_descriptor_metadata[k] = v.to_metadata()
combined_args_raw[k] = v.data_ptr.from_tensor
combined_args = {
variables.ConstantVariable.create(k): v
for k, v in combined_args_raw.items()
}
from torch._higher_order_ops.triton_kernel_wrap import (
kernel_side_table,
triton_kernel_wrapper_mutation,
)
# Combine args and kwargs and pass as a dict so that if user defined triton
# kernel uses variables as 'grid' or 'kernel', it does not conflict with
# parameters of the wrapper function
constant_args = {
k: v.as_python_constant()
for k, v in combined_args_raw.items()
if isinstance(v, ConstantVariable)
}
non_constant_args = {
k: v
for k, v in combined_args.items()
if not isinstance(v, ConstantVariable)
}
for v in non_constant_args.values():
v = v.realize()
if not isinstance(v, (variables.TensorVariable, variables.SymNodeVariable)):
self.raise_unsupported(
f"Unexpected argument type for a Triton kernel: {repr(v)}."
)
constant_args_idx = kernel_side_table.add_constant_args(constant_args)
meta = ConstDictVariable(non_constant_args, dict)
tx.output.create_proxy(
"call_function",
triton_kernel_wrapper_mutation,
(),
{
"kernel_idx": variable.kernel_idx,
"constant_args_idx": constant_args_idx,
"grid": grids,
"tma_descriptor_metadata": tma_descriptor_metadata,
"kwargs": meta.as_proxy(),
},
)
return variables.ConstantVariable(
None,
)
dynamo_triton_hopifier_singleton = DynamoTritonHOPifier()
class TritonKernelVariable(VariableTracker):
grid: "TritonGridType"
kernel: "TritonKernelType"
kernel_idx: Optional[int]
def __init__(self, kernel, kernel_idx, grid, **kwargs) -> None:
super().__init__(**kwargs)
dynamo_triton_hopifier_singleton.init_variable(self, kernel, kernel_idx, grid)
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
return dynamo_triton_hopifier_singleton.call_triton_kernel(
self, args, kwargs, tx
)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__getitem__":
return dynamo_triton_hopifier_singleton.call_getitem(self, args)
elif name == "run":
return dynamo_triton_hopifier_singleton.call_run(self, args, kwargs, tx)
# Bail out to parent's implementation
return super().call_method(tx, name, args, kwargs)
def specialize_symbolic(self, arg: Any) -> Any:
from .constant import ConstantVariable
from .tensor import SymNodeVariable
# See [Note: Specialize tl.constexpr args in user-defined triton kernels]
if isinstance(arg, SymNodeVariable):
return ConstantVariable.create(arg.evaluate_expr())
return arg
class TMADescriptorVariable(VariableTracker):
def __init__(
self,
data_ptr: "variables.DataPtrVariable",
dims: "List[ConstantVariable]",
block_dims: "List[ConstantVariable]",
element_size: "ConstantVariable",
**kwargs,
):
assert isinstance(data_ptr, variables.DataPtrVariable)
super().__init__(**kwargs)
self.data_ptr = data_ptr
self.dims = dims
self.block_dims = block_dims
self.element_size = element_size
def to_metadata(self):
return (
[dim.as_proxy() for dim in self.dims],
[dim.as_proxy() for dim in self.block_dims],
self.element_size.as_proxy(),
)
def reconstruct(self, codegen):
codegen.add_push_null(
lambda: codegen.load_import_from(
"triton.tools.experimental_descriptor",
f"create_{len(self.dims)}d_tma_descriptor",
)
)
self.data_ptr.reconstruct(codegen)
args = [*self.dims, *self.block_dims, self.element_size]
codegen.foreach(args)
codegen.call_function(len(args) + 1, False)
class CreateTMADescriptorVariable(VariableTracker):
def __init__(
self,
rank: int,
**kwargs,
) -> None:
assert rank in (1, 2)
super().__init__(**kwargs)
self.rank = rank
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
ptr = kwargs["ptr"] if "ptr" in kwargs else args[0]
if not isinstance(ptr, variables.DataPtrVariable):
raise Unsupported(
"Please ensure there were no graph breaks between "
f"create_{self.rank}d_tma_descriptor and the upstream "
".data_ptr() call."
)
if self.rank == 1:
assert len(args) + len(kwargs) == 4
dims = [
kwargs["dim"] if "dim" in kwargs else args[1],
]
block_dims = [
kwargs["block_dim"] if "block_dim" in kwargs else args[2],
]
else:
assert len(args) + len(kwargs) == 6
dims = [
kwargs["dim1"] if "dim1" in kwargs else args[1],
kwargs["dim0"] if "dim0" in kwargs else args[2],
]
block_dims = [
kwargs["block_dim1"] if "block_dim1" in kwargs else args[3],
kwargs["block_dim0"] if "block_dim0" in kwargs else args[4],
]
element_size = kwargs["element_size"] if "element_size" in kwargs else args[-1]
return TMADescriptorVariable(
data_ptr=ptr,
dims=dims,
block_dims=block_dims,
element_size=element_size,
)
|