File: higher_order_ops.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2891 lines) | stat: -rw-r--r-- 107,833 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
# mypy: ignore-errors

import contextlib
import copy
import functools
import inspect
import itertools
import logging
import types
import warnings
from typing import Dict, List, Optional, Tuple, TYPE_CHECKING

import torch._C
import torch.fx
import torch.nn
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo.utils import get_fake_value
from torch._dynamo.variables import ConstantVariable
from torch._dynamo.variables.builtin import BuiltinVariable
from torch._dynamo.variables.functions import UserFunctionVariable
from torch._dynamo.variables.tensor import SymNodeVariable
from torch._guards import Source
from torch._ops import HigherOrderOperator
from torch.fx.node import map_arg
from torch.fx.passes.shape_prop import _extract_tensor_metadata
from torch.utils import _pytree as pytree

from .. import variables
from ..exc import (
    IncorrectUsage,
    UncapturedHigherOrderOpError,
    unimplemented,
    Unsupported,
)
from ..source import AttrSource
from ..utils import proxy_args_kwargs
from .base import VariableTracker
from .dicts import ConstDictVariable
from .lazy import LazyVariableTracker
from .lists import ListVariable, TupleVariable


if TYPE_CHECKING:
    from torch._dynamo.symbolic_convert import InstructionTranslator


log = logging.getLogger(__name__)


def raise_hard_error_if_graph_break(reason):
    def deco(fn):
        @functools.wraps(fn)
        def graph_break_as_hard_error(*args, **kwargs):
            try:
                return fn(*args, **kwargs)
            except Unsupported as e:
                msg = " Scroll up to find out what causes the graph break."
                raise UncapturedHigherOrderOpError(reason + msg) from e

        return graph_break_as_hard_error

    return deco


# This function is a syntax sugar for creating a dummy new subtracer so that
# newly added nodes are added to a separate subgraph in this subtracer instead of affecting
# the main graph. This is useful for creating sample inputs for tracing the subgraph.
# For example, in FlexAttentionHigherOrderVariable, we want to create several scalars
# to trace the score_mod function but we don't want the operators that creates the scalar to
# show up in the graph, we could this function to discard the graph changes.
# Example usage:
# with discard_graph_changes():
#   sample_input= create_sample_inputs()
# speculate_subgraph(tx, f, sample_inputs, {})
@contextlib.contextmanager
def discard_graph_changes(tx):
    ctx = tx.output.subtracer("subgraph_wrapper", None)
    try:
        ctx.__enter__()
        yield
    finally:
        ctx.__exit__(None, None, None)


def diff_meta(tensor_vars1, tensor_vars2) -> str:
    from torch._higher_order_ops.utils import diff_tensor_meta

    from . import TensorVariable

    assert all(isinstance(var, TensorVariable) for var in tensor_vars1 + tensor_vars2)
    all_diffs = []
    for i, (var1, var2) in enumerate(zip(tensor_vars1, tensor_vars2)):
        # We have vmap x cond tests and querying is_contiguous inside of vmap for
        # memory_format other than torch.contiguous_format is not yet implemented.
        # And it seems the remaining metas are good enough for now.
        meta1 = _extract_tensor_metadata(
            var1.proxy.node.meta["example_value"], include_contiguity=False
        )
        meta2 = _extract_tensor_metadata(
            var2.proxy.node.meta["example_value"], include_contiguity=False
        )
        # We cannot get accurate require_grad. See Note [invariants for node meta 'val']
        pair_diffs = diff_tensor_meta(meta1, meta2, check_grad=False)

        if len(pair_diffs) > 0:
            fmt_str = ", ".join(pair_diffs)
            all_diffs.append(
                f"pair[{i}] differ in {fmt_str}, where lhs is {meta1} and rhs is {meta2}"
            )
    return "\n".join(all_diffs)


@contextlib.contextmanager
def dynamo_enable_grad(tx: "InstructionTranslator", enable=True):
    from . import GradModeVariable

    org_value = torch.is_grad_enabled()
    try:
        GradModeVariable.create(tx, enable, initialized=True)
        yield
    finally:
        GradModeVariable.create(tx, org_value, initialized=True)


@contextlib.contextmanager
def dynamo_under_activation_checkpoint(tx: "InstructionTranslator"):
    orig_val = tx.output.current_tracer.under_activation_checkpoint
    try:
        tx.output.current_tracer.under_activation_checkpoint = True
        yield
    finally:
        tx.output.current_tracer.under_activation_checkpoint = orig_val


def find_mismatched_vars(var, types, allow_none=False):
    """
    Recursively finds variables whose type is not an instance of the specified types.
    Args:
        var: The variable to check.
        types: A tuple of allowed types.
        allow_none (bool): Whether to allow None values. Defaults to False.
    Returns:
        A set of variables whose type is not an instance of the specified types.
    """
    mismatched_vars = set()
    if isinstance(var, (TupleVariable, ListVariable)):
        for item in var.items:
            mismatched_vars.update(find_mismatched_vars(item, types, allow_none))
    elif isinstance(var, ConstDictVariable):
        for value in var.items.values():
            mismatched_vars.update(find_mismatched_vars(value, types, allow_none))
    else:

        def _is_none(var):
            return var.is_python_constant() and var.as_python_constant() is None

        if not isinstance(var, types) and not (allow_none and _is_none(var)):
            mismatched_vars.add(var)
    return mismatched_vars


def only_consist_of(var, types, allow_none=False):
    mismatch_vars = find_mismatched_vars(var, types, allow_none=allow_none)
    return len(mismatch_vars) == 0


# A more read-able syntax sugar for creating a UserFunctionVariable for f
# and run call_function on it. Make it return a function to preserve the calling
# convention of the original f.
def _make_inlined(tx: "InstructionTranslator", f):
    assert callable(f), "Expect f to be a python callable."

    def inline_call(*args, **kwargs):
        return UserFunctionVariable(f).call_function(tx, args, kwargs)

    return inline_call


def _call_function_and_unflatten_output(
    tx, fn, args, kwargs, flat_example_value, ret_treespec
):
    from .builder import wrap_fx_proxy

    # Store the invocation as a call
    flat_variable = wrap_fx_proxy(
        tx=tx,
        proxy=tx.output.create_proxy(
            "call_function",
            fn,
            args=args,
            kwargs=kwargs,
        ),
        example_value=flat_example_value,
    )

    # Transform variable back into a list (previously made into a tuple by
    # speculate_subgraph function) so as to respect the pytree API typing.
    flat_list_variable = BuiltinVariable(list).call_function(tx, [flat_variable], {})
    return (
        _make_inlined(tx, pytree.tree_unflatten)(flat_list_variable, ret_treespec)
        if ret_treespec
        else flat_variable
    )


def _assert_tensors_nonaliasing(inputs, outputs):
    input_tensor_ids = {
        id(t) for t in pytree.tree_leaves(inputs) if isinstance(t, torch.Tensor)
    }
    output_tensor_ids = {
        id(t) for t in pytree.tree_leaves(outputs) if isinstance(t, torch.Tensor)
    }
    assert input_tensor_ids.isdisjoint(
        output_tensor_ids
    ), "inputs to function body cannot alias outputs"


def _check_supported_callable_arg(
    tx: "InstructionTranslator", func_var: VariableTracker, arg_name
):
    is_callable = (
        BuiltinVariable(callable).call_function(tx, [func_var], {}).as_python_constant()
    )
    if not is_callable:
        unimplemented(f"{arg_name} is of unsupported callable type {str(func_var)}.")


def validate_args_and_maybe_create_graph_inputs(
    sub_args,
    tracer,
    tx,
    set_subgraph_inputs,
    description,
    sub_args_names=None,
):
    from . import AutogradFunctionContextVariable
    from .builder import wrap_fx_proxy_cls

    assert tracer.parent is not None

    if set_subgraph_inputs == "flatten_manual":
        flat_args, tree_spec = _make_inlined(tx, pytree.tree_flatten)(
            ListVariable(sub_args)
        ).unpack_var_sequence(tx)

        flat_inputs = validate_args_and_maybe_create_graph_inputs(
            flat_args.unpack_var_sequence(tx),
            tracer,
            tx,
            set_subgraph_inputs="manual",
            description=description,
        )

        return _make_inlined(tx, pytree.tree_unflatten)(
            ListVariable(flat_inputs), tree_spec
        ).unpack_var_sequence(tx)
    else:
        if sub_args_names is not None:
            # Can be greater if user passes some args as kwargs
            assert len(sub_args_names) >= len(sub_args)
        args = []
        for idx, a in enumerate(sub_args):
            assert isinstance(a, VariableTracker)
            if set_subgraph_inputs == "automatic":
                args.append(a)
                continue
            elif set_subgraph_inputs == "semi_automatic":
                if isinstance(a, AutogradFunctionContextVariable):
                    example_value = a.as_proxy().node.meta["example_value"]
                    arg_name = (
                        a.as_proxy().node.name
                        if sub_args_names is None
                        else sub_args_names[idx]
                    )
                    tracer.create_graph_input(arg_name, a.python_type(), example_value)
                elif a.maybe_fx_node() is not None:
                    node = a.maybe_fx_node()
                    example_value = node.meta["example_value"]
                    arg_name = (
                        a.as_proxy().node.name
                        if sub_args_names is None
                        else sub_args_names[idx]
                    )
                    new_proxy = tracer.create_graph_input(
                        arg_name, a.python_type(), example_value
                    )
                    example_value = (
                        node.meta["example_value"]
                        if "example_value" in node.meta
                        else None
                    )
                    a = wrap_fx_proxy_cls(
                        target_cls=type(a),
                        tx=tx,
                        proxy=new_proxy,
                        example_value=example_value,
                    )
                args.append(a)
                continue

            if a.is_python_constant():
                # This arg is not used in the body of the higher order op.
                # Currently, this new input is added to make the calls
                # happy, which expect a fixed number of arguments. In
                # future, we can clean this up.
                arg_name = (
                    "const_unused"
                    if sub_args_names is None
                    else f"const_unused_{sub_args_names[idx]}"
                )
                tracer.create_graph_input(
                    arg_name, a.python_type(), a.as_python_constant()
                )
                new_arg = a
            # Weird special case, we probably want to delete it or fold it
            # into the next case (of `a` being placeable into a graph)
            elif isinstance(a, AutogradFunctionContextVariable):
                example_value = a.as_proxy().node.meta["example_value"]
                arg_name = (
                    a.as_proxy().node.name
                    if sub_args_names is None
                    else sub_args_names[idx]
                )
                tracer.create_graph_input(arg_name, a.python_type(), example_value)
                new_arg = a
            # If `a` can be put into a graph
            elif a.maybe_fx_node() is not None:
                node = a.maybe_fx_node()
                example_value = (
                    node.meta["example_value"] if "example_value" in node.meta else None
                )
                arg_name = node.name if sub_args_names is None else sub_args_names[idx]
                new_proxy = tracer.create_graph_input(
                    arg_name, a.python_type(), example_value
                )
                new_arg = wrap_fx_proxy_cls(
                    target_cls=type(a),
                    tx=tx,
                    proxy=new_proxy,
                    example_value=example_value,
                )
            # If `a` cannot be put into a graph
            else:
                # HOPs work much better if they use speculate_subgraph(set_subgraph_inputs="automatic").
                unimplemented(
                    f"{description} with body that accepts non-Tensors as input. "
                    f"Got: {a.python_type()}"
                )
            args.append(new_arg)
        return args


# This helper function is used to make sure two graphs share the same input signature. For example,
# in torch.cond, two branches might lift different set of tensors as inputs. This function helps to
# dedup the inputs and modify the graphs to take the same set of inputs.
def _merge_graph_inputs(
    l_graph, l_lifted_freevars, l_name, r_graph, r_lifted_freevars, r_name
):
    def dedup_and_sort_lifted_freevars(l_lifted_freevars, r_lifted_freevars):
        # The nn module attributes are guaranteed to be registered into the top-level graph module during
        # higher order op speculation. Therefore, get_attr nodes in two branches with the same
        # target refer to the same attribute and we can safely deduplicate them with their target.
        #
        # Note: ideally, dynamo should just create a single proxy for the same attribute of a nn module. But
        # true_branch and false_branch belong to two separate tracing contexts, they may register the same
        # attribute to top level seperately. This creates two get_attr proxies for the same attribute
        # that have different meta data such as stack_trace (one stack trace for the true_branch,
        # and the other for false_branch). It seems better to discard the proxy explicitly in cond
        # than make dynamo create a single proxy for the same get_attr target.
        def shared_getattrs(l_lifted_proxies, r_lifted_proxies):
            true_targets = {
                proxy.node.target: proxy
                for proxy in l_lifted_proxies
                if proxy.node.op == "get_attr"
            }
            l_shared_getattrs = {}
            r_shared_getattrs = {}

            for false_proxy in r_lifted_proxies:
                if (
                    false_proxy.node.op == "get_attr"
                    and false_proxy.node.target in true_targets
                ):
                    true_proxy = true_targets[false_proxy.node.target]
                    l_shared_getattrs[true_proxy] = true_proxy
                    r_shared_getattrs[false_proxy] = true_proxy
            return l_shared_getattrs, r_shared_getattrs

        l_shared_getattrs, r_shared_getattrs = shared_getattrs(
            l_lifted_freevars.keys(), r_lifted_freevars.keys()
        )

        l_shared_freevars = (l_lifted_freevars.keys() & r_lifted_freevars.keys()).union(
            l_shared_getattrs.keys()
        )
        r_shared_freevars = (l_lifted_freevars.keys() & r_lifted_freevars.keys()).union(
            r_shared_getattrs.keys()
        )
        unique_l_freevars = l_lifted_freevars.keys() - l_shared_freevars
        unique_r_freevars = r_lifted_freevars.keys() - r_shared_freevars

        def _sort_by_name(vars):
            return sorted(vars, key=lambda var: var.node.name)

        return (
            list(_sort_by_name(list(l_shared_freevars))),
            list(_sort_by_name(list(r_shared_freevars))),
            list(_sort_by_name(list(unique_l_freevars))),
            list(_sort_by_name(list(unique_r_freevars))),
        )

    (l_shared, r_shared, unique_l, unique_r) = dedup_and_sort_lifted_freevars(
        l_lifted_freevars, r_lifted_freevars
    )

    # Let's say we capture cond(pred, true_fn, false_fn, (x,))
    # With set_graph_input set to automatic,
    # true_fn has lifted variables x, a, b, c
    # false_fn has lifted variables x, a, b, d
    # Then fixup_branch_inps make sure both branches have the same signature, i.e.:
    # - true_fn(x, a, b, c_true_branch, d_false_branch)
    # - false_fn(x, a, b, c_true_branch, d_false_branch)
    #
    # More formally, the signature has three parts in the following order:
    # 1. used in both branches: x, a, b
    # 2. only used in true branches: c, suffixed with _true_branch
    # 3. only used in false branches: d, suffixed with _false_branch
    # Within each part, we re-order the nodes by name to have a derterministic ordering for testing.
    def fixup_branch_inps(graph, lifted_freevars, shared, unique_l, unique_r):
        def _insert_or_replace_phs(new_args, name_suffix):
            for arg in new_args:
                new_ph = graph.placeholder(arg.node.name + name_suffix)
                # Override with new_ph if there exists a old placeholder.
                if arg in lifted_freevars:
                    old_ph = lifted_freevars[arg].node
                    old_ph.replace_all_uses_with(new_ph)
                    # replace_all_uses_with doesn't clean users. Clean it mannually so that we could erase it.
                    old_ph.users = {}
                    graph.erase_node(old_ph)

        first_not_ph_node = next(
            node for node in graph.nodes if node.op != "placeholder"
        )
        with graph.inserting_before(first_not_ph_node):
            _insert_or_replace_phs(shared, "")
            _insert_or_replace_phs(unique_l, "_" + l_name)
            _insert_or_replace_phs(unique_r, "_" + r_name)

    fixup_branch_inps(l_graph, l_lifted_freevars, l_shared, unique_l, unique_r)
    fixup_branch_inps(r_graph, r_lifted_freevars, r_shared, unique_l, unique_r)
    return l_graph, r_graph, l_shared, r_shared, unique_l, unique_r


# See NOTE [HigherOrderOperator tracing design] for details of the design
def speculate_subgraph(
    tx,
    f,
    sub_args,
    sub_kwargs,
    description,
    *,
    # source_target is the .value of HigherOrderOpVariable and is the
    # target of the proxy that we created for the higherOrderOperator.
    source_target=None,
    always_restore=False,
    enable_grad=None,
    # NOTE [argument `set_subgraph_inputs`]
    # set_subgraph_inputs controls what how to construct subgraphs' placeholders from sub_args.
    # 1. if your HOP supports arbitrary inputs, use set_subgraph_inputs="automatic" (most recommended).
    # 2. if your HOP supports only Tensor and symnode inputs, use set_subgraph_inputs="flatten_manual" (recommended).
    # If sub_args contain Pytree structure (e.g. dict/list/tuple/set), the sub_args will be flattened first.
    # Then the flattened args are manually set as subgraph's placeholders.
    # 3. if your HOP must preserve inputs that are not tensor or symnode as placeholders e.g. AutogradFunctionContextVariable
    # use set_subgraph_inputs="manual" (not recommended). We do not recommend it in general because it has the
    # restriction that user need to manually control how to create placeholders and VariableTrackers for the args.
    set_subgraph_inputs="automatic",
    restore_side_effects=True,
    should_flatten_outputs=False,
    under_activation_checkpoint=False,
    # Pass in an originating tracer - this is needed for preserving context
    # across fwd-bwd for autograd.Function
    tracer=None,
):
    if sub_kwargs is None:
        sub_kwargs = {}

    assert set_subgraph_inputs in {
        "automatic",
        "semi_automatic",
        "flatten_manual",
        "manual",
    }, "Please use one of the supported set_subgraph_inputs options."

    # See NOTE [Temporary argument `set_subgraph_inputs`]
    if sub_kwargs and set_subgraph_inputs != "automatic":
        unimplemented("Use `set_subgraph_inputs=automatic` when passing `sub_kwargs`.")

    try:
        # ensure guards on args get installed in parent subgraph
        f, sub_args, sub_kwargs = LazyVariableTracker.realize_all(
            (f, sub_args, sub_kwargs),
        )

        with tx.output.subtracer(source_target, tracer) as subtracer:
            sub_args_names = maybe_positional_arg_names(f)
            # User mismatch in the number of args. Will eventually lead to an error.
            if sub_args_names is not None and len(sub_args_names) < len(sub_args):
                sub_args_names = None
            args = validate_args_and_maybe_create_graph_inputs(
                sub_args,
                subtracer,
                tx,
                set_subgraph_inputs,
                description,
                sub_args_names,
            )

            validate_args_and_maybe_create_graph_inputs(
                sub_kwargs.values(),
                subtracer,
                tx,
                set_subgraph_inputs="automatic",
                description=description,
            )

            autograd_ctx = (
                dynamo_enable_grad(tx, enable_grad)
                if enable_grad is not None
                else contextlib.nullcontext()
            )
            checkpoint_ctx = (
                dynamo_under_activation_checkpoint(tx)
                if under_activation_checkpoint
                else contextlib.nullcontext()
            )

            # For handling side effects, we can make an argument that we don't
            # have to do anything here. The side effects infra does a good job
            # of graph breaking if we mutate any nonlocal or global variable
            # while subtracing. As a result if tracing succeeds, side effects
            # data structure will only contain read-only data structures that
            # are put there for tracking purposes.
            # But on the other hand, there is an argument that if we ever write
            # a new side effect in Dynamo which does not go through the side
            # effect infra, we can end up in bad state.
            # Therefore we restore the side effects after tracing. The catch is
            # that we have to special handle tensor variables. If we have seen a
            # nonlocal variable tensor during subtracing, we want to keep a
            # track of that tensor, so that later subtracing or the root tracer
            # itself does not create a new proxy for the already observed tensor
            # variable.
            if restore_side_effects:
                prev_side_effects = tx.output.side_effects.clone()

            with autograd_ctx, checkpoint_ctx:
                output = f.call_function(tx, args, sub_kwargs)

            if restore_side_effects:
                new_side_effects = tx.output.side_effects.clone()
                prev_side_effects.track_tensor_variables_from_runahead_side_effects(
                    new_side_effects
                )
                tx.output.side_effects = prev_side_effects

            treespec = None
            if should_flatten_outputs:
                # Flatten the speculated subgraph output.
                output, treespec = _make_inlined(tx, pytree.tree_flatten)(
                    output
                ).unpack_var_sequence(tx)
                # Actually, transform the list (returned by flatten) into a tuple
                # for dynamo consistency.
                output = BuiltinVariable(tuple).call_function(tx, [output], {})

            # Register output to graph
            # Modeled off of compile_and_call_fx_graph
            # TODO: support pytree output
            # We check always_restore because we dont use the output or side effects of always_restore code,
            # like bwd.
            if always_restore:
                # Nothing left to do here
                return (output, treespec), tx.output.graph, subtracer.lifted_freevars
            else:
                from . import TensorVariable

                if not only_consist_of(output, TensorVariable, allow_none=True):
                    unimplemented(
                        "HigherOrderOperator body's output must consist of tensors only"
                    )

                # The output proxies might not belong to this SubgraphTracer
                # (if they are free variables that were never lifted)
                # so lift them here.
                output_proxies = output.as_proxy()
                output_proxies = pytree.tree_map(
                    subtracer.maybe_lift_tracked_freevar_to_input, output_proxies
                )

                tx.output.create_node(
                    "output",
                    "output",
                    (subtracer.create_arg((output_proxies,))),
                    {},
                )
                graph = tx.output.graph
                graph.lint()
                lifted_freevars = subtracer.lifted_freevars

                # NOTE: [HigherOrderOperator subgraph input ordering]
                # The input ordering of the higher order ops is determined by the order of
                # the creatation of the placehoder.
                # Mannually created inputs are created in validate_args_and_maybe_create_graph_inputs before
                # speculating subgraph.
                # During subgraph speculation, we may lift closured tensors and free symbols as inputs,
                # their ordering is determined by the time they are lifted: earlier lifted ones precede later
                # lifted ones.
                #
                # Suppose the placeholders are
                # O1, O2, X1, O3, O4, X2, X3, O5 where Xs are lifted phs
                # The following code re-order the placeholders to
                # O1, O2, O3, O4, O5, X1, X2, X3
                def move_lifted_freevars_phs_to_end(
                    graph: torch.fx.Graph, lifted_freevars: Tuple[torch.fx.Node]
                ):
                    lifted_ph_set = {
                        child_p.node for child_p in lifted_freevars.values()
                    }

                    prev_phs = [n for n in graph.nodes if n.op == "placeholder"]

                    # No need to reorder when graph doesn't have args or doesn't
                    # have lifted freevars or all inputs are lifted freevars.
                    if (
                        len(prev_phs) == 0
                        or len(lifted_ph_set) == 0
                        or len(prev_phs) == len(lifted_ph_set)
                    ):
                        return

                    # Step 1: find first X1
                    for x1 in prev_phs:
                        if x1 in lifted_ph_set:
                            break

                    assert x1 is not None and x1.op == "placeholder"
                    # Step 2: starting from the X1, skip Xs and prepend Os before X1.
                    cand_x = x1.next
                    while cand_x is not None and cand_x.op == "placeholder":
                        if cand_x in lifted_ph_set:
                            cand_x = cand_x.next
                        else:
                            nxt = cand_x.next
                            cand_x._remove_from_list()
                            x1.prepend(cand_x)
                            cand_x = nxt

                    # Step 3: assert that all placeholders are in the correct order as .
                    # in lifted_freevars
                    after_phs = [
                        node for node in graph.nodes if node.op == "placeholder"
                    ][-len(lifted_freevars) :]
                    assert len(after_phs) == len(lifted_freevars)
                    for child_proxy, ph in zip(lifted_freevars.values(), after_phs):
                        assert (
                            child_proxy.node is ph
                        ), "The order of placeholders is different from the order of lifted_freevars"

                    graph.lint()

                if len(lifted_freevars) > 0:
                    move_lifted_freevars_phs_to_end(graph, lifted_freevars)

                return (
                    (output, treespec),
                    graph,
                    lifted_freevars,
                )

    except Unsupported as ex:
        f_name = f"{type(f).__name__}"
        if isinstance(f, UserFunctionVariable):
            f_name = f.get_name()
        msg = (
            f"speculate_subgraph: while introspecting {description}, we were unable "
            f"to trace function `{f_name}` into a single graph. This means "
            f"that Dynamo was unable to prove safety for this API and will "
            f"fall back to eager-mode PyTorch, which could lead to a slowdown."
        )
        log.info(msg)
        log.info(ex)
        raise ex


def make_attr(tx: "InstructionTranslator", name):
    node = tx.output.create_proxy(
        "get_attr",
        name,
        (),
        {},
    )
    return node


class TorchHigherOrderOperatorVariable(VariableTracker):
    def __init__(
        self, value: HigherOrderOperator, source: Optional[Source] = None, **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.value = value
        self.source = source

    @staticmethod
    def make(value, source=None, **kwargs):
        from torch._higher_order_ops import PrimHOPBase

        if value.__name__ == "cond":
            return CondHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "while_loop":
            return WhileLoopHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ in ("map", "map_impl"):
            return MapHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "executorch_call_delegate":
            return ExecutorchCallDelegateHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "out_dtype":
            return OutDtypeHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "wrap":
            return WrapHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "hints_wrapper":
            return HintsWrapperHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "flex_attention":
            return FlexAttentionHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ in (
            "wrap_activation_checkpoint",
            "tag_activation_checkpoint",
        ):
            return CheckpointHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "_export_tracepoint":
            return ExportTracepointHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "trace_wrapped":
            return TraceWrappedHigherOrderOperatorVariable(value, source, **kwargs)
        elif value.__name__ == "strict_mode":
            return StrictModeHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "run_with_rng_state":
            return RunWithRNGStateHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "associative_scan":
            return AssociativeScanHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "scan":
            return ScanHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "call_torchbind":
            return CallTorchbindHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "wrap_with_set_grad_enabled":
            return WrapWithSetGradEnabledHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "wrap_with_autocast":
            return WrapWithAutocastHigherOrderVariable(value, source, **kwargs)
        elif (
            value.__name__ == "auto_functionalized"
            or value.__name__ == "auto_functionalized_v2"
        ):
            return AutoFunctionalizeHigherOrderVariable(value, source, **kwargs)
        elif value.__name__ == "invoke_subgraph":
            return InvokeSubgraphHigherOrderVariable(value, source, **kwargs)
        elif isinstance(value, PrimHOPBase):
            return PrimHOPBaseVariable(value, source, **kwargs)
        else:
            unimplemented(f"HigherOrderOperator {value.__name__}")

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        unimplemented(f"HigherOrderOperator {self.value.__name__}")


class CondHigherOrderVariable(TorchHigherOrderOperatorVariable):
    @raise_hard_error_if_graph_break(
        reason="Cond doesn't work unless it is captured completely with torch.compile."
    )
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from . import ListVariable, TensorVariable

        args, kwargs = LazyVariableTracker.realize_all((args, kwargs))

        for i, k in enumerate(["pred", "true_fn", "false_fn", "operands"]):
            if v := kwargs.pop(k, None):
                assert i == len(
                    args
                ), "did not provide the right number of non-keyword args"
                args.append(v)

        if kwargs:
            unimplemented(f"torch.cond: Got unexpected kwargs: {list(kwargs.keys())}")

        # TODO(voz): Support fake tensor dispatch for recursive
        # ops - see torch/dispatch/_dispatcher.py
        if len(args) != 4:
            unimplemented(
                f"Expected 4 arguments but got {len(args)}.\n"
                f"Usage: cond(pred, true_fn, false_fn, operands)",
            )

        # Specialize into one of the branches since pred is constant
        pred, true_fn, false_fn, operands = args
        if type(args[0]) is ConstantVariable:
            warnings.warn(
                "Pred is a Python constant. When used with torch.cond, it specializes on one of the branches."
                " If you want torch.cond to preserve two branches, please make the predicate a boolean tensor or a SymBool.",
                UserWarning,
            )
            if pred.as_python_constant():
                return true_fn.call_function(tx, operands.unpack_var_sequence(tx), {})
            else:
                return false_fn.call_function(tx, operands.unpack_var_sequence(tx), {})

        # predicate
        if type(pred) not in (ConstantVariable, TensorVariable, SymNodeVariable):
            unimplemented(
                f"Expected pred to be bool or a boolean tensor with single "
                f"item but got {str(type(pred))} "
                f"with original python type {str(pred.python_type())}.",
            )

        # operands
        if not isinstance(operands, (ListVariable, TupleVariable)):
            unimplemented(
                f"Expected operands to be a list/tuple but got "
                f"{operands.python_type()}",
            )
        operands_seq = operands.unpack_var_sequence(tx)
        if not only_consist_of(operands, (TensorVariable, ConstantVariable)):
            unimplemented(
                "Expect operands to be a tuple of pytrees that only consists of tensor leaves."
            )

        # branches
        _check_supported_callable_arg(tx, true_fn, "true_fn")
        _check_supported_callable_arg(tx, false_fn, "false_fn")

        # Our strategy for tracing the true/false branches of cond
        # are to checkpoint our graphstate, run the true branch,
        # roll it back to the checkpoint, and run the false
        # branch, and then merge the graphstates.  Well, perhaps
        # "merge" is too strong a word: we mostly assert that
        # the resulting graphstates have to be the same.
        #
        # We only permit guards to diverge (we union the guards from
        # both branches).  In particular, this means that side
        # effects are NOT permitted inside true/false branches; this
        # would be difficult to implement, because of the path
        # explosion problem.

        def speculate_branch(branch):
            # NB: 0 is predicate
            ix = 1 if branch else 2
            # TODO: Support kwargs
            (
                (ret_val, ret_treespec),
                ret_graph,
                ret_lifted_freevars,
            ) = speculate_subgraph(
                tx,
                args[ix],
                operands_seq,
                {},
                "cond",
                source_target=self.value,
                should_flatten_outputs=True,
            )

            if not only_consist_of(ret_val, (TensorVariable,)):
                unimplemented(
                    "Expected branches to return a possibly nested list/tuple/dict of tensors but it consists of non tensors.",
                )
            return ret_val, ret_treespec, ret_graph, ret_lifted_freevars

        (true_r, true_treespec, true_graph, true_lifted_freevars) = speculate_branch(
            True
        )
        true_nn_modules = dict(tx.output.nn_modules)

        (
            false_r,
            false_treespec,
            false_graph,
            false_lifted_freevars,
        ) = speculate_branch(False)
        false_nn_modules = dict(tx.output.nn_modules)

        same_treespec = _make_inlined(tx, pytree.TreeSpec.__eq__)(
            true_treespec, false_treespec
        )
        if not same_treespec.as_python_constant():
            unimplemented("Expected branches to return the same pytree structure.")

        if diffs := diff_meta(
            true_r.unpack_var_sequence(tx), false_r.unpack_var_sequence(tx)
        ):
            unimplemented(
                f"Expect branches to return tensors with same metadata but find {diffs}"
            )

        (
            true_graph,
            false_graph,
            true_shared,
            false_shared,
            unique_true,
            unique_false,
        ) = _merge_graph_inputs(
            true_graph,
            true_lifted_freevars,
            "true_branch",
            false_graph,
            false_lifted_freevars,
            "false_branch",
        )

        true_name = tx.output.install_subgraph(
            "cond_true",
            torch.fx.GraphModule(true_nn_modules, true_graph),
        )
        false_name = tx.output.install_subgraph(
            "cond_false",
            torch.fx.GraphModule(false_nn_modules, false_graph),
        )

        true_node = make_attr(tx, true_name)
        false_node = make_attr(tx, false_name)

        p_args = (
            pred.as_proxy(),
            true_node,
            false_node,
            # We pick true_shared but it shouldn't matter
            true_shared + unique_true + unique_false,
        )

        flat_example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            true_r.as_proxy(),
        )

        return _call_function_and_unflatten_output(
            tx,
            torch.ops.higher_order.cond,
            p_args,
            {},
            flat_example_value,
            true_treespec,
        )


class CallTorchbindHigherOrderVariable(TorchHigherOrderOperatorVariable):
    def __init__(self, hop, source, script_obj_var, method_name) -> None:
        super().__init__(hop, source)
        self.script_obj_var = script_obj_var
        self.method_name = method_name

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        from .builder import wrap_fx_proxy

        args, kwargs = LazyVariableTracker.realize_all((args, kwargs))

        args_proxy = [arg.as_proxy() for arg in args]
        kwargs_proxy = {k: v.as_proxy() for k, v in kwargs.items()}
        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                self.value,
                args=tuple(
                    [self.script_obj_var.as_proxy(), self.method_name] + args_proxy
                ),
                kwargs=kwargs_proxy,
            ),
        )


class WhileLoopHigherOrderVariable(TorchHigherOrderOperatorVariable):
    @raise_hard_error_if_graph_break(
        reason="while_loop doesn't work unless it is captured completely with torch.compile."
    )
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        from . import TensorVariable

        args, kwargs = LazyVariableTracker.realize_all((args, kwargs))
        cond_fn, body_fn, operands, additional_inputs = args

        # Input checks
        for i, k in enumerate(["cond_fn", "body_fn", "operands"]):
            if v := kwargs.pop(k, None):
                assert i == len(
                    args
                ), "did not provide the right number of non-keyword args"
                args.append(v)

        if kwargs:
            unimplemented(
                f"torch.while_loop: Got unexpected kwargs: {list(kwargs.keys())}"
            )

        if len(args) != 4:
            unimplemented(
                f"Expected 4 arguments but got {len(args)}.\n"
                f"Usage: while_loop(cond_fn, body_fn, operands)",
            )

        # cond_fn and body_fn input check
        _check_supported_callable_arg(tx, cond_fn, "cond_fn")
        _check_supported_callable_arg(tx, body_fn, "body_fn")

        # operands input check
        operands_seq = operands.unpack_var_sequence(tx)

        # additional_inputs input check
        if not isinstance(additional_inputs, (ListVariable, TupleVariable)):
            unimplemented(
                f"Expected additional_inputs to be a list/tuple but got "
                f"{additional_inputs.python_type()}. It seems to be an "
                f"internal error, please report an issue to PyTorch."
            )
        additional_inputs_seq = additional_inputs.unpack_var_sequence(tx)

        # create cond subgrpahs
        (
            (cond_r, cond_treespec),
            cond_graph,
            cond_lifted_freevars,
        ) = speculate_subgraph(
            tx,
            cond_fn,
            operands_seq + additional_inputs_seq,
            {},
            "while_loop",
            source_target=self.value,
            # NOTE [why we cannot use "automatic" for while_loop]:
            # The reason is that we want to enforce
            # the ordering of inputs and outputs to be consistent and the the ordering
            # of cond_fn and body_fn to the consistent.
            # e.g. suppose we use "automatic" and we have:
            #
            # def body_fn(ph1, ph2):
            #   new_a, new_b = ph2.cos(), ph1.sin()
            #   return new_a, new_b
            #
            # a, b = torch.randn(3), torch.randn(3)
            # new_a, new_b = body_fn(a, b)
            #
            # Using automatic, the ordering of arguments will be the order that they're
            # used. In this example, the capture graph looks like:
            #
            # def captured_body(ph1, ph2):
            #   new_a, new_b = ph1.cos(), ph2.add_(1)
            #   return new_a, new_b
            #
            # This is fine when we change the calling convention of captured_body to be
            # new_a, new_b = captured_body(b, a).
            # But for while_loop, the next iteration's input is previous iteration output
            # we'll end up feeding captured_body(new_a, new_b) instead.
            # So it's best we always enforce the ordering of carried_inputs the same as outputs
            # with "flatten_manual".
            set_subgraph_inputs="flatten_manual",
        )
        cond_nn_modules = dict(tx.output.nn_modules)
        if not isinstance(cond_r, TensorVariable):
            unimplemented(
                f"Expected cond_fn to return a tensor but got {cond_r.python_type()}",
            )

        # cond output checks
        cond_r_meta = _extract_tensor_metadata(
            cond_r.proxy.node.meta["example_value"], include_contiguity=False
        )
        if not cond_r_meta.dtype == torch.bool or not cond_r_meta.shape == torch.Size(
            []
        ):
            unimplemented(
                f"Expected cond_fn to return a tensor with shape (,) but got {cond_r_meta.shape}"
            )

        # create body subgraph
        (
            (body_r, body_treespec),
            body_graph,
            body_lifted_freevars,
        ) = speculate_subgraph(
            tx,
            body_fn,
            operands_seq + additional_inputs_seq,
            {},
            "while_loop",
            source_target=self.value,
            set_subgraph_inputs="flatten_manual",
            should_flatten_outputs=True,
        )

        if diffs := diff_meta(operands_seq, body_r.unpack_var_sequence(tx)):
            unimplemented(
                f"Expected carried_inputs and body outputs return tensors with same metadata but find:\n{diffs}"
            )

        (
            cond_graph,
            body_graph,
            cond_shared,
            body_shared,
            cond_unique,
            body_unique,
        ) = _merge_graph_inputs(
            cond_graph,
            cond_lifted_freevars,
            "cond_fn",
            body_graph,
            body_lifted_freevars,
            "body_fn",
        )

        # Note: cond_shared and body_shared refer to the same proxy in parent graph
        # so using either of them is OK. Use cond_shared as it doesnt matter.
        additional_lifted_inputs = cond_shared + cond_unique + body_unique

        body_nn_modules = dict(tx.output.nn_modules)

        cond_name = tx.output.install_subgraph(
            "cond_fn",
            torch.fx.GraphModule(cond_nn_modules, cond_graph),
        )
        body_name = tx.output.install_subgraph(
            "body_fn",
            torch.fx.GraphModule(body_nn_modules, body_graph),
        )

        cond_node = make_attr(tx, cond_name)
        body_node = make_attr(tx, body_name)

        p_args = (
            cond_node,
            body_node,
            tuple([operand.as_proxy() for operand in operands_seq]),
            tuple(
                [inp.as_proxy() for inp in additional_inputs_seq]
                + additional_lifted_inputs
            ),
        )

        flat_example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            body_r.as_proxy(),
        )

        return _call_function_and_unflatten_output(
            tx,
            torch.ops.higher_order.while_loop,
            p_args,
            {},
            flat_example_value,
            body_treespec,
        )


class AssociativeScanHigherOrderVariable(TorchHigherOrderOperatorVariable):
    @raise_hard_error_if_graph_break(
        reason="associative_scan must be captured completely with torch.compile."
    )
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        from torch._higher_order_ops.utils import first_slice_copy

        from .builder import wrap_fx_proxy

        args, kwargs = LazyVariableTracker.realize_all((args, kwargs))

        def arg_extractor(combine_fn, xs, dim):
            return combine_fn, xs, dim

        combine_fn, xs, dim = arg_extractor(*args, **kwargs)

        if xs.python_type() != list:
            unimplemented(
                f"Expected xs to be a list of tensors but got {xs.python_type()}",
            )
        assert isinstance(xs, torch._dynamo.variables.lists.BaseListVariable)

        # Trace the subgraph
        # The sub_args is a slice of original input, e.g. if input.size is (3, 4), and scan dim=0
        # the sub_args shape will be (4, ).
        with discard_graph_changes(tx):
            sub_args = [
                _make_inlined(tx, first_slice_copy)(leaf, dim)
                for leaf in itertools.chain(xs.items, xs.items)
            ]
        (
            (combine_result, combine_treespec),
            combine_graph,
            combine_lifted_freevars,
        ) = speculate_subgraph(
            tx,
            combine_fn,
            sub_args,
            sub_kwargs={},
            description="associative_scan_combine_fn",
            source_target=self.value,
            set_subgraph_inputs="flatten_manual",
        )

        if combine_lifted_freevars:
            unimplemented(
                f"Combine fn had unexpected freevars: {combine_lifted_freevars}"
            )

        if combine_result.python_type() != list:
            unimplemented(
                f"Expected combine_fn to return a list if tensor but got {combine_result.python_type()}",
            )

        xs_proxy = xs.as_proxy()
        combine_result_proxy = combine_result.as_proxy()
        for result, inp_proxy in zip(combine_result_proxy, xs_proxy):
            inp_meta = inp_proxy.node.meta["example_value"]
            combine_result_meta = result.node.meta["example_value"]
            if combine_result_meta.device != inp_meta.device:
                unimplemented(
                    f"Expected combine_fn to return a tensor on device {inp_meta.device} but "
                    + f"got {combine_result_meta.device}"
                )
            if combine_result_meta.dtype != inp_meta.dtype:
                unimplemented(
                    f"Expected combine_fn to return a tensor of {inp_meta.dtype} but "
                    + f"got {combine_result_meta.dtype}"
                )

        combine_gm = torch.fx.GraphModule(dict(tx.output.nn_modules), combine_graph)
        combine_fn_name = tx.output.install_subgraph(
            "associative_scan_combine_fn", combine_gm
        )

        p_args = (
            make_attr(tx, combine_fn_name),
            xs_proxy,
            dim.as_proxy(),
        )

        with tx.fake_mode:
            out_meta = tuple(
                inp_proxy.node.meta["example_value"].clone() for inp_proxy in xs_proxy
            )
        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function", torch.ops.higher_order.associative_scan, p_args, {}
            ),
            example_value=out_meta,
        )


class ScanHigherOrderVariable(TorchHigherOrderOperatorVariable):
    @raise_hard_error_if_graph_break(
        reason="scan must be captured completely with torch.compile."
    )
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        from torch._higher_order_ops.scan import (
            _extract_carry_and_out,
            first_slice_copy,
            stack_y,
        )

        from .builder import wrap_fx_proxy

        args, kwargs = LazyVariableTracker.realize_all((args, kwargs))

        def arg_extractor(combine_fn, init, xs, dim, reverse, additional_inputs):
            return combine_fn, init, xs, dim, reverse, additional_inputs

        combine_fn, init, xs, dim, reverse, additional_inputs = arg_extractor(
            *args, **kwargs
        )
        assert isinstance(additional_inputs, variables.BaseListVariable)

        if xs.python_type() != list:
            unimplemented(
                f"Expected xs to be a list of tensors but got {xs.python_type()}",
            )
        assert isinstance(xs, variables.BaseListVariable)
        if init.python_type() != list:
            unimplemented(
                f"Expected init to be a list of tensors but got {init.python_type()}",
            )
        assert isinstance(init, variables.BaseListVariable)

        dim_fake = (
            dim.as_proxy()
            if type(dim.as_proxy()) == int
            else get_fake_value(dim.as_proxy().node, tx)
        )
        scan_length = get_fake_value(xs.items[0].as_proxy().node, tx).size()[dim_fake]
        if scan_length == 0:
            unimplemented(
                "scan() operator doesn't support zero-sized tensors during tracing."
            )

        init_len = len(init.items)
        if init_len == 0:
            unimplemented("scan() operator requires init leaves.")

        # Trace the subgraph
        with discard_graph_changes(tx):
            sub_args_init = [
                ini.call_method(tx, "clone", args=(), kwargs={}) for ini in init.items
            ]
            # The sub_args_inp is a slice of original input, e.g. if input.size is (3, 4), and scan dim=0
            # the sub_args_inp shape will be (4, ).
            sub_args_inp = [
                _make_inlined(tx, first_slice_copy)(inp, dim) for inp in xs.items
            ]
            sub_args_additional_inputs = [
                t.call_method(tx, "clone", args=(), kwargs={})
                for t in additional_inputs.items
            ]
        sub_args = sub_args_init + sub_args_inp + sub_args_additional_inputs
        (
            (combine_result, combine_treespec),
            combine_graph,
            combine_lifted_freevars,
        ) = speculate_subgraph(
            tx,
            combine_fn,
            sub_args,
            sub_kwargs={},
            description="scan_combine_fn",
            source_target=self.value,
            set_subgraph_inputs="flatten_manual",
        )

        # key in the combine_lifted_freevars are proxies in the root tracer.
        # We use root tracer's proxies to create scan op's inputs.
        def _check_phs_position_match(
            combine_graph: torch.fx.Graph, lifted_proxies: list[torch.fx.Proxy]
        ):
            lifted_phs = [
                node for node in combine_graph.nodes if node.op == "placeholder"
            ][-len(lifted_proxies) :]
            for ph, lifted_proxy in zip(lifted_phs, lifted_proxies):
                if ph is not lifted_proxy.node:
                    unimplemented(
                        "The postion lifted freevars doesn't match the order of placeholders in subgraph."
                    )

        _check_phs_position_match(combine_graph, list(combine_lifted_freevars.values()))
        combine_freevars_proxy = list(combine_lifted_freevars.keys())

        if combine_result.python_type() != list:
            unimplemented(
                f"Expected combine_fn to return a list if tensor but got {combine_result.python_type()}",
            )

        xs_proxy = xs.as_proxy()
        init_proxy = init.as_proxy()
        additional_inputs_proxy = additional_inputs.as_proxy() + combine_freevars_proxy
        num_init_leaves = len(init_proxy)
        # combine_result is a flatten list concated by carry + y, len(carry) is len(init) since they have
        # same pytree structure.
        carry_vars, y_vars = _extract_carry_and_out(
            combine_result.items, num_init_leaves
        )
        carry_proxies = [carry_var.as_proxy() for carry_var in carry_vars]
        y_proxies = [y_var.as_proxy() for y_var in y_vars]

        # Checks for carry and init
        for ini_proxy, carry in zip(init_proxy, carry_proxies):
            ini_meta = ini_proxy.node.meta["example_value"]
            carry_meta = carry.node.meta["example_value"]
            if (
                carry_meta.device != ini_meta.device
                or carry_meta.dtype != ini_meta.dtype
                or carry_meta.shape != ini_meta.shape
            ):
                unimplemented(
                    f"Expected metadata of the combine_fn result {carry_meta} to be the same as "
                    + f"the metadata of init with {ini_meta}"
                )

        combine_gm = torch.fx.GraphModule(dict(tx.output.nn_modules), combine_graph)
        combine_fn_name = tx.output.install_subgraph("scan_combine_fn", combine_gm)

        p_args = (
            make_attr(tx, combine_fn_name),
            init_proxy,
            xs_proxy,
            dim.as_proxy(),
            reverse.as_proxy(),
            additional_inputs_proxy,
        )

        with tx.fake_mode:
            example_carry = [
                init_p.node.meta["example_value"].clone() for init_p in init_proxy
            ]
            # For the fake mode, we need to duplicate the init tensor along the dim
            # to have the same size as the xs arguments
            example_stacked_out = [
                stack_y(y.node.meta["example_value"], scan_length) for y in y_proxies
            ]
            out_meta = [*example_carry, *example_stacked_out]

        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function", torch.ops.higher_order.scan, p_args, {}
            ),
            example_value=out_meta,
        )


def non_single_tensor_return_unsupported(api, ret):
    from . import TensorVariable

    if not isinstance(ret, TensorVariable):
        raise Unsupported(
            f"{api} over function that returns something " f"other than one Tensor"
        )


class MapHigherOrderVariable(TorchHigherOrderOperatorVariable):
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        from . import TensorVariable
        from .builder import wrap_fx_proxy_cls

        if len(kwargs) > 0:
            unimplemented(
                "torch.ops.higher_order.map: kwargs are not supported in the map operator."
            )

        _check_supported_callable_arg(tx, args[0].realize(), "map_fn")

        assert type(args[1].realize()) is TensorVariable

        sample_shape = get_fake_value(args[1].as_proxy().node, tx).size()

        if len(sample_shape) < 1 or sample_shape[0] == 0:
            unimplemented(
                "map() operator doesn't support scalar or zero-sized tensors during tracing."
            )

        # To get the example output from map() we will need to provide at least one sample to
        # the loop body. In our case we will always use xs[0], and our map() won't support zero
        # sized tensor during tracing.
        with discard_graph_changes(tx):
            first_dim = wrap_fx_proxy_cls(
                target_cls=TensorVariable, tx=tx, proxy=args[1].as_proxy()[0]
            )

        # TODO: Support kwargs
        (
            (body_r, body_spec),
            body_graph,
            body_lifted_freevars,
        ) = speculate_subgraph(
            tx,
            args[0],
            [
                first_dim,
                *args[2:],
            ],
            {},
            "torch.ops.higher_order.map",
            source_target=self.value,
            set_subgraph_inputs="flatten_manual",
            should_flatten_outputs=True,
        )

        subgraph_example_value = [
            proxy.node.meta["example_value"] for proxy in body_r.as_proxy()
        ]

        with tx.output.fake_mode:
            # We need to expand the example output from map() so that it has
            # the same first dimension as the mapped input.
            # We also do a clone with contiguous_format. This is to be consistent with
            # eager semantic of map, which stacks the outputs. The result is contiguous
            # as a result of the stack operation.
            map_example_out = [
                t.expand(sample_shape[0], *t.size()).clone(
                    memory_format=torch.contiguous_format
                )
                for t in subgraph_example_value
            ]

        body_nn_modules = dict(tx.output.nn_modules)

        body_name = tx.output.install_subgraph(
            "map_body",
            torch.fx.GraphModule(body_nn_modules, body_graph),
        )

        body_node = make_attr(tx, body_name)

        p_args = (
            body_node,
            [args[1].as_proxy()],
            [arg.as_proxy() for arg in args[2:]] + list(body_lifted_freevars.keys()),
        )

        return _call_function_and_unflatten_output(
            tx, torch.ops.higher_order.map_impl, p_args, {}, map_example_out, body_spec
        )


class ExecutorchCallDelegateHigherOrderVariable(TorchHigherOrderOperatorVariable):
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from .builder import wrap_fx_proxy

        # This is operator for delegation within Executorch which calls a
        # specific function in the given lowered module with the given
        # operators. The actual operator is defined in the Executorch codebase.
        # This is a bad hierarchical violation since
        # executorch_call_delegate sits at a higher level than dynamo, but
        # there's no real solution to this issue yet.
        if len(kwargs) > 0:
            unimplemented(
                "executorch_call_delegate: kwargs arguments were not enabled."
            )
        lowered_module = tx.output.get_submodule(args[0].module_key)

        lowered_node = make_attr(tx, args[0].module_key)

        p_args = tuple(arg.as_proxy() for arg in args[1:])
        real_sub_args = pytree.tree_map_only(
            torch.fx.Proxy, lambda a: get_fake_value(a.node, tx), p_args
        )

        with tx.fake_mode:
            example_value = lowered_module.original_module.module()(*real_sub_args)

        # NOTE [Guaranteeing the 1-1 correspondence of FakeTensors and real tensors]:
        # executorch modules promise not to alias inputs and outputs.
        # Thus, output FakeTensors will correctly not alias input FakeTensors.
        _assert_tensors_nonaliasing(real_sub_args, example_value)

        p_args = (lowered_node,) + p_args

        # Store the invocation as a call
        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                self.value,
                args=tuple(p_args),
                kwargs={},
            ),
            example_value=example_value,
        )


class FunctorchHigherOrderVariable(UserFunctionVariable):
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        return super().call_function(tx, args, kwargs)


class FunctionalCallVariable(FunctorchHigherOrderVariable):
    def call_function(
        self, tx, args: List[VariableTracker], kwargs: Dict[str, VariableTracker]
    ) -> VariableTracker:
        if not torch._dynamo.config.inline_inbuilt_nn_modules:
            unimplemented(
                "torch.func.functional_call capture is disabled, "
                "it can be turned on by setting "
                "`torch._dynamo.config.inline_inbuilt_nn_modules=True`"
            )
        return super().call_function(tx, args, kwargs)


class WrapHigherOrderVariable(TorchHigherOrderOperatorVariable):
    def install_subgraph_in_output_graph(
        self, tx, fn_vt, fn_args_vt, kwargs, body_gmod, attr_name="wrap_body"
    ):
        return tx.output.install_subgraph(
            f"{attr_name}",
            body_gmod,
        )

    def create_wrapped_node(
        self,
        tx: "InstructionTranslator",
        fn_vt,
        fn_args_vt,
        kwargs,
        description,
        under_activation_checkpoint=False,
        *,
        subgraph_name="wrap_body",
    ):
        # See NOTE [HigherOrderOperator tracing design] for more details

        (
            (body_r, treespec),
            body_graph,
            body_lifted_freevars,
        ) = speculate_subgraph(
            tx,
            fn_vt,
            fn_args_vt,
            kwargs,
            description,
            source_target=self.value,
            should_flatten_outputs=True,
            under_activation_checkpoint=under_activation_checkpoint,
        )

        body_gmod = torch.fx.GraphModule(tx.output.nn_modules, body_graph)
        body_name = self.install_subgraph_in_output_graph(
            tx,
            fn_vt,
            fn_args_vt,
            kwargs,
            body_gmod,
            attr_name=subgraph_name,
        )
        body_node = make_attr(tx, body_name)

        # Since, we call `speculate_subgraph` with `set_subgraph_inputs="automatic`,
        # all the arguments are lifted.
        lifted_args = tuple(arg for arg in body_lifted_freevars.keys())

        proxy_args = (body_node,) + lifted_args
        example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            body_r.as_proxy(),
        )

        return proxy_args, {}, example_value, body_r, treespec, body_gmod, body_name

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        # This flattens the kwargs into lifted args
        (
            p_args,
            p_kwargs,
            example_value,
            body_r,
            treespec,
            _,
            _,
        ) = self.create_wrapped_node(tx, args[0], args[1:], kwargs, "wrap")

        if len(p_kwargs) > 0:
            unimplemented("kwargs should have been flattened into lifted args")

        flat_example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            body_r.as_proxy(),
        )

        return _call_function_and_unflatten_output(
            tx, self.value, tuple(p_args), p_kwargs, flat_example_value, treespec
        )


class WrapWithSetGradEnabledHigherOrderVariable(TorchHigherOrderOperatorVariable):
    """
    This hop is not exposed to users but is inserted into the graph
    after export as a post-processing step.
    """

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        args, kwargs = LazyVariableTracker.realize_all((args, kwargs))

        if kwargs:
            unimplemented(
                f"wrap_with_set_grad_enabled: Got unexpected kwargs: {list(kwargs.keys())}"
            )

        grad_enabled, fn_var, *rest_args = args

        if not isinstance(grad_enabled, ConstantVariable):
            unimplemented("grad_enabled must be a constant")

        _check_supported_callable_arg(tx, fn_var, "enable_grad_fn")

        with torch.set_grad_enabled(grad_enabled.as_python_constant()):
            (
                (body_r, treespec),
                body_graph,
                body_lifted_freevars,
            ) = speculate_subgraph(
                tx,
                fn_var,
                [*rest_args],
                {},
                "torch.ops.higher_order.wrap_with_set_grad_enabled",
                source_target=self.value,
                set_subgraph_inputs="manual",
                should_flatten_outputs=True,
            )

        if len(body_lifted_freevars) > 0:
            unimplemented(
                f"wrap_with_set_grad_enabled: Got unexpected freevars {body_lifted_freevars}"
            )

        body_gmod = torch.fx.GraphModule(tx.output.nn_modules, body_graph)
        body_name = tx.output.install_subgraph(
            "wrap_body",
            body_gmod,
        )

        body_node = make_attr(tx, body_name)

        proxy_args = tuple(
            [
                grad_enabled.as_python_constant(),
                body_node,
            ]
            + [operand.as_proxy() for operand in rest_args]
        )
        example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            body_r.as_proxy(),
        )
        return _call_function_and_unflatten_output(
            tx, self.value, proxy_args, {}, example_value, treespec
        )


class WrapWithAutocastHigherOrderVariable(TorchHigherOrderOperatorVariable):
    """
    This hop is not exposed to users but is inserted into the graph
    after export as a post-processing step.
    """

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        args, kwargs = LazyVariableTracker.realize_all((args, kwargs))

        if kwargs:
            unimplemented(
                f"wrap_with_autocast: Got unexpected kwargs: {list(kwargs.keys())}"
            )

        device_type, dtype, enabled, cache_enabled, fn_var, *rest_args = args

        for arg in [device_type, dtype, enabled, cache_enabled]:
            if not isinstance(arg, ConstantVariable):
                unimplemented(
                    "device_type, dtype, enabled, cache_enabled must be constants"
                )

        _check_supported_callable_arg(tx, fn_var, "autocast")

        python_constants = [
            arg.as_python_constant()
            for arg in [device_type, dtype, enabled, cache_enabled]
        ]

        with torch.autocast(*python_constants):
            (
                (body_r, treespec),
                body_graph,
                body_lifted_freevars,
            ) = speculate_subgraph(
                tx,
                fn_var,
                [*rest_args],
                {},
                "torch.ops.higher_order.wrap_with_autocast",
                source_target=self.value,
                set_subgraph_inputs="manual",
                should_flatten_outputs=True,
            )

        if len(body_lifted_freevars) > 0:
            unimplemented(
                f"wrap_with_autocast: Got unexpected freevars {body_lifted_freevars}"
            )

        body_gmod = torch.fx.GraphModule(tx.output.nn_modules, body_graph)
        body_name = tx.output.install_subgraph(
            "wrap_body",
            body_gmod,
        )

        body_node = make_attr(tx, body_name)

        proxy_args = tuple(
            [
                *python_constants,
                body_node,
            ]
            + [operand.as_proxy() for operand in rest_args]
        )
        example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            body_r.as_proxy(),
        )

        return _call_function_and_unflatten_output(
            tx, self.value, proxy_args, {}, example_value, treespec
        )


class HintsWrapperHigherOrderVariable(TorchHigherOrderOperatorVariable):
    @raise_hard_error_if_graph_break(
        reason="Hints_wrapper doesn't work unless it is captured completely with torch.compile."
    )
    def call_function(
        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
    ) -> "VariableTracker":
        _check_supported_callable_arg(tx, args[0], "body_fn")

        # inputs
        if len(args) != 3:
            unimplemented(
                f"Expected 3 arguments but got {len(args)}.\n"
                f"Usage: hints_wrapper(body_fn, args, kwargs, hints).\n"
                f"kwargs required to be provided explicitly."
            )

        if not isinstance(args[1], (ListVariable, TupleVariable)):
            unimplemented(
                f"Expected a tuple but got {args[1].python_type()}",
            )
        operands = args[1].unpack_var_sequence(tx)

        if not isinstance(args[2], ConstDictVariable):
            unimplemented(
                f"Expected a dict but got {args[2].python_type()}",
            )

        if "hints" not in kwargs:
            raise IncorrectUsage("hints_wrapper - key hints not provided")

        (
            (body_r, treespec),
            body_graph,
            body_lifted_freevars,
        ) = speculate_subgraph(
            tx,
            args[0],  # function
            operands,
            args[2].as_python_constant(),
            "hints_wrapper",
            source_target=self.value,
            should_flatten_outputs=True,
        )

        body_gmod = torch.fx.GraphModule(tx.output.nn_modules, body_graph)
        body_name = tx.output.install_subgraph(
            "hints_wrapper_body",
            body_gmod,
        )

        body_node = make_attr(tx, body_name)

        # Since, we call `speculate_subgraph` with `set_subgraph_inputs="automatic`,
        # all the arguments are lifted.
        lifted_args = tuple(arg for arg in body_lifted_freevars.keys())
        p_args = (body_node, lifted_args, {})

        p_kwargs = {}
        # add hints into p_kwargs
        p_kwargs["hints"] = kwargs["hints"].as_python_constant()

        flat_example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            body_r.as_proxy(),
        )

        return _call_function_and_unflatten_output(
            tx, self.value, p_args, p_kwargs, flat_example_value, treespec
        )


class OutDtypeHigherOrderVariable(TorchHigherOrderOperatorVariable):
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from .builder import wrap_fx_proxy

        if len(kwargs) > 0:
            unimplemented("out_dtype does not handle kwargs")

        p_args = tuple(arg.as_proxy() for arg in args)
        op = p_args[0]
        output_dtype = p_args[1]
        fake_sub_args = pytree.tree_map_only(
            torch.fx.Proxy, lambda a: a.node.meta["example_value"], p_args[2:]
        )
        # This is a simplified implementation of this operator just for tracing.
        # Actual implementation may also first promote the arguments
        example_value = op(*fake_sub_args).to(dtype=output_dtype)

        # Store the invocation as a call
        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                self.value,
                args=tuple(p_args),
                kwargs={},
            ),
            example_value=example_value,
        )


class StrictModeHigherOrderVariable(TorchHigherOrderOperatorVariable):
    @raise_hard_error_if_graph_break(
        reason="strict_mode HOO doesn't work unless it is captured completely with torch.compile."
    )
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        callable = args[0]

        unpacked_sequence = args[1].unpack_var_sequence(tx)
        # TODO (tmanlaibaatar) support pytree here
        for arg in unpacked_sequence:
            if isinstance(arg, (ListVariable, TupleVariable, ConstDictVariable)):
                unimplemented("strict_mode HOO only works for flat inputs for now")

        if kwargs:
            unimplemented(
                f"strict_mode HOO received unexpected kwargs: {list(kwargs.keys())}"
            )

        (
            (ret_val, ret_treespec),
            ret_graph,
            ret_lifted_freevars,
        ) = speculate_subgraph(
            tx,
            args[0],
            unpacked_sequence,
            {},
            "strict_mode",
            source_target=self.value,
            should_flatten_outputs=True,
        )

        strict_mode_nn_modules = dict(tx.output.nn_modules)

        strict_mode_name = tx.output.install_subgraph(
            "strict_mode_body",
            torch.fx.GraphModule(strict_mode_nn_modules, ret_graph),
        )

        strict_mode_node = make_attr(tx, strict_mode_name)
        p_args = (
            strict_mode_node,
            tuple(arg for arg in ret_lifted_freevars.keys()),
        )

        flat_example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            ret_val.as_proxy(),
        )

        return _call_function_and_unflatten_output(
            tx,
            torch.ops.higher_order.strict_mode,
            p_args,
            {},
            flat_example_value,
            ret_treespec,
        )


class CheckpointHigherOrderVariable(WrapHigherOrderVariable):
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        from torch._higher_order_ops.wrap import TagActivationCheckpoint
        from torch.utils.checkpoint import noop_context_fn

        from .builder import wrap_fx_proxy

        context_fn = None
        if "context_fn" in kwargs and kwargs["context_fn"] != noop_context_fn:
            ctx = kwargs.pop("context_fn")
            if isinstance(ctx, torch._dynamo.variables.UserFunctionVariable):
                context_fn = ctx.fn
            elif isinstance(
                ctx, torch._dynamo.variables.functions.FunctoolsPartialVariable
            ):
                context_fn = ctx.as_python_constant()
            else:
                raise NotImplementedError(
                    f"checkpoint not implemented for {type(ctx)} context_fn"
                )

        checkpoint_kwargs, gmod_kwargs = TagActivationCheckpoint.divide_kwargs(kwargs)

        # Here we use checkpoint_kwargs (and not gmod kwargs). gmod_kwargs are
        # already flattened above and managed inside the fx graph.
        (
            p_args,
            _,
            example_value,
            body_r,
            treespec,
            checkpointed_gmod,
            _,
        ) = self.create_wrapped_node(
            tx,
            args[0],
            args[1:],
            gmod_kwargs,
            "torch.utils.checkpoint.checkpoint",
            under_activation_checkpoint=True,
        )
        if context_fn is not None:
            checkpointed_gmod.meta["_checkpoint_context_fn"] = context_fn

        _, checkpoint_kwargs = proxy_args_kwargs([], checkpoint_kwargs)

        # Store the invocation as a call
        variable = wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                self.value,
                args=tuple(p_args),
                kwargs=checkpoint_kwargs,
            ),
            example_value=example_value,
        )

        if treespec is None:
            return variable

        # Transform variable back into a list (previously made into a tuple by
        # speculate_subgraph function) so as to respect the pytree API typing.
        variable = BuiltinVariable(list).call_function(tx, [variable], {})

        return _make_inlined(tx, pytree.tree_unflatten)(variable, treespec)


class ExportTracepointHigherOrderVariable(TorchHigherOrderOperatorVariable):
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from .builder import wrap_fx_proxy

        p_args = tuple(arg.as_proxy() for arg in args)
        p_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                self.value,
                args=p_args,
                kwargs=p_kwargs,
            ),
            example_value=None,
        )


class RunWithRNGStateHigherOrderVariable(TorchHigherOrderOperatorVariable):
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from .builder import wrap_fx_proxy

        p_args = tuple(arg.as_proxy() for arg in args)
        p_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                self.value,
                args=p_args,
                kwargs=p_kwargs,
            ),
            example_value=None,
        )


class AutoFunctionalizeHigherOrderVariable(TorchHigherOrderOperatorVariable):
    def call_function(
        self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
    ) -> "VariableTracker":
        from .builder import wrap_fx_proxy

        p_args = tuple(arg.as_proxy() for arg in args)
        p_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                self.value,
                args=p_args,
                kwargs=p_kwargs,
            ),
            example_value=None,
        )


class TraceWrappedHigherOrderOperatorVariable(TorchHigherOrderOperatorVariable):
    """
    Handles torch._dynamo._trace_wrapped_higher_order_op.inner_trace
    by unwrapping the higher order op and inlining through it.  This op
    is created by dynamo to survive through AotAutograd, then unwrapped
    here in the call to dynamo from compiled autograd.
    """

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        kwargs = dict(kwargs)
        fn = kwargs.pop("fn")
        return fn.call_function(tx, args, kwargs)


class FlexAttentionHigherOrderVariable(TorchHigherOrderOperatorVariable):
    @staticmethod
    def normalize_to_args(args, kwargs):
        # input signature is (query, key, value, score_mod, block_mask, *other_buffers),
        # block_mask is a tuple, and we don't want to flatten it.
        # only flatten kwargs into lists
        flat_kwargs = pytree.tree_flatten(kwargs)[0]

        # Combine the flattened lists
        all_args = args + flat_kwargs
        return all_args

    def create_wrapped_node(
        self,
        tx: "InstructionTranslator",
        query: "VariableTracker",
        fn: "VariableTracker",
        fn_name: str,
    ):
        from .._trace_wrapped_higher_order_op import TransformGetItemToIndex

        tx: InstructionTranslator = tx

        def create_scalar():
            return query.call_method(
                tx,
                "new_empty",
                (VariableTracker.build(tx, []),),
                {
                    "dtype": VariableTracker.build(tx, torch.int32),
                },
            )

        with discard_graph_changes(tx):
            bhmn = [create_scalar() for _ in range(4)]
            if fn_name == "score_mod":
                scores_require_grad: bool = query.requires_grad
                score = query.call_method(
                    tx,
                    "new_empty",
                    (VariableTracker.build(tx, []),),
                    {"requires_grad": VariableTracker.build(tx, scores_require_grad)},
                )
                new_args = [score, *bhmn]
            else:
                assert fn_name == "mask_fn", "Illegal function name: " + fn_name
                new_args = [*bhmn]

        with TransformGetItemToIndex():
            (
                (body_output, body_treespec),
                body_graph,
                body_lifted_freevars,
            ) = speculate_subgraph(
                tx,
                fn,
                new_args,
                {},  # expect only args no kwargs for now
                description=fn_name,
                source_target=self.value,
                set_subgraph_inputs="flatten_manual",
            )

        body_name = tx.output.install_subgraph(
            fn_name,
            torch.fx.GraphModule(tx.output.nn_modules, body_graph),
        )

        body_node = make_attr(tx, body_name)

        # It is possible that the score-mod function captures some free variables that are not
        # passed in as arguments. In this case, we need to lift them, which is handled by speculate_subgraph.
        # We then need to create proxies for this + the inputs.

        lifted_args = tuple(arg for arg in body_lifted_freevars.keys())

        proxy_args = (body_node, lifted_args)

        return proxy_args

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from .builder import wrap_fx_proxy

        (
            query,
            key,
            value,
            score_mod,
            block_mask,
            scale,
            kernel_options,
        ) = self.normalize_to_args(args, kwargs)

        score_mod_node, score_mod_lifted_args = self.create_wrapped_node(
            tx, query, score_mod, "score_mod"
        )
        mask_fn = block_mask.items[-1]
        if isinstance(mask_fn, ConstantVariable):
            mask_fn = UserFunctionVariable(torch.nn.attention._flex_attention._no_mask)
        mask_fn_node, mask_fn_lifted_args = self.create_wrapped_node(
            tx, query, mask_fn, "mask_fn"
        )

        proxied_args = [
            query,
            key,
            value,
            TupleVariable(block_mask.items[:-1], source=block_mask.source),
            scale,
            kernel_options,
        ]

        # Store the invocation as a call
        # Norm_kwargs contains the score_function and we dont want to proxy this because
        # Proxying user defined functions is not supported.
        inp_args, _ = proxy_args_kwargs(proxied_args, {})

        query_meta = query.as_proxy().node.meta["example_value"]
        logsumexp_shape = query_meta.size()[:-1]  # [B, H, M]
        with torch._guards.TracingContext.try_get().fake_mode:
            out_meta = torch.empty_like(
                query_meta, memory_format=torch.contiguous_format
            )
            # TODO: Figure out a better way to handle this for NJT than using sum()
            lse_meta = torch.empty_like(query_meta, dtype=torch.float32).sum(dim=-1)
        example_value = (out_meta, lse_meta)

        # Compose the ordered HOO args:
        # - inp_args: [query, key, value, block_mask, scale, kernel_options]
        # - subgraph node: [score_mod, mask_fn_node]
        # - lifted args from tracing subgraph: [score_mod_other_buffers, mask_fn_other_buffers]
        _, _, _, inp_arg_block_mask, inp_arg_scale, inp_arg_kernel_options = inp_args
        block_mask = tuple(inp_arg_block_mask + (mask_fn_node,))
        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                self.value,
                args=inp_args[:3]
                + (
                    score_mod_node,
                    block_mask,
                    inp_arg_scale,
                    inp_arg_kernel_options,
                    score_mod_lifted_args,
                    mask_fn_lifted_args,
                ),
                kwargs={},
            ),
            example_value=example_value,
        )


class AutogradFunctionApplyVariable(VariableTracker):
    def __init__(self, fwd_graph, bwd_graph, parent_source, **kwargs) -> None:
        super().__init__(**kwargs)
        self.fwd_graph = fwd_graph
        self.bwd_graph = bwd_graph
        self.parent_source = parent_source

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from . import (
            AutogradFunctionContextVariable,
            UserDefinedClassVariable,
            UserFunctionVariable,
            UserMethodVariable,
        )
        from .builder import wrap_fx_proxy

        """
        Consider the following:
        class MySin(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                ctx.save_for_backward(x)
                return x.sin()
            @staticmethod
            def backward(ctx, grad):
                x, = ctx.saved_tensors
                return grad * x.cos()
        We want the resulting graphs to look like:
        def fwd(ctx, x):
            # (output, saved tensors / attrs)
            return (x.sin(), [x])
        # bwd(ctx, grad0, grad1, ..., gradn, *saved_tensors_or_attrs)
        def bwd(ctx, grad, x):
            return grad * x.cos()
        To accomplish this, we're going to:
        1. Construct a ctx object
        2. (fwd_out, _), fwd_graph, fwd_freevars = speculate_subgraph on MySin.forward (manually_set_inputs=True)
        3. (bwd_out, _), bwd_graph, bwd_freevars = speculate_subgraph on MySin.backward, while manually setting
        the ctx and grad inputs.
        4. Manually rewriting the fwd graph's output to be (output, stuff_that_gets_used in bwd_graph)
        Getting from 3 to 4 is pretty elegant: stuff_that_gets_used in bwd graph is
        just the bwd_freevars returned from speculate_subgraph, assuming MySin.backward
        doesn't capture any arguments.
        All these steps work if MySin.backward doesn't capture any values. This is a
        limitation in general that we should check for.
        """

        prev_side_effects = tx.output.side_effects.clone()
        fwd_tracer = torch._dynamo.output_graph.SubgraphTracer(
            tx.output,
            parent=tx.output.current_tracer,
            source_target="autograd.Function",
        )

        ctx = AutogradFunctionContextVariable.create(tx, args, kwargs)
        if isinstance(self.fwd_graph, types.FunctionType):
            fwd_fn = UserFunctionVariable(self.fwd_graph)
            fwd_args = [ctx, *args]
        elif isinstance(self.fwd_graph, types.MethodType):
            fwd_fn = UserMethodVariable(
                self.fwd_graph.__func__,
                UserDefinedClassVariable(self.fwd_graph.__class__),
            )
            fwd_args = [fwd_fn.obj, ctx, *args]
        else:
            unimplemented("non-function or method")

        # Speculate subgraph on the fwd
        (fwd_out, _), fwd_graph, fwd_freevars = speculate_subgraph(
            tx,
            fwd_fn,
            fwd_args,
            kwargs,
            "autograd.Function",
            enable_grad=False,
            set_subgraph_inputs="semi_automatic",
            restore_side_effects=False,
            tracer=fwd_tracer,
        )

        if ctx in tx.output.side_effects.store_attr_mutations:
            if (
                "_materialize_non_diff_grads"
                in tx.output.side_effects.store_attr_mutations[ctx]
            ):
                unimplemented("NYI")

        bwd_tracer = torch._dynamo.output_graph.SubgraphTracer(
            tx.output,
            parent=fwd_tracer,
            source_target="autograd.Function",
        )

        # Speculate subgraph on the backward. We make the
        # bwd tracer a child of the fwd tracer, because backward may rely on
        # tensors/attrs created in the fwd tracer.

        if isinstance(fwd_out, variables.BaseListVariable):
            bwd_args = [ctx, *fwd_out.items]
        else:
            bwd_args = [ctx, fwd_out]

        bwd_src = AttrSource(self.parent_source, member="backward")
        if isinstance(self.bwd_graph, types.FunctionType):
            bwd_fn = UserFunctionVariable(self.bwd_graph, source=bwd_src)
        elif isinstance(self.bwd_graph, types.MethodType):
            bwd_fn = UserMethodVariable(
                self.bwd_graph.__func__,
                UserDefinedClassVariable(self.bwd_graph.__class__),
                source=bwd_src,
            )
            bwd_args = [bwd_fn.obj, *bwd_args]
        else:
            unimplemented("non-function or method")

        def is_strict_for(v: VariableTracker):
            if isinstance(v, variables.TensorVariable):
                # we can be more lax for stuff from forward
                return v.proxy.tracer is not fwd_tracer
            return True

        with tx.output.subtracer(fwd_fn, fwd_tracer), tx.strict_translation_mode(
            is_strict_for
        ):
            (bwd_out, _), bwd_graph, bwd_freevars = speculate_subgraph(
                tx,
                bwd_fn,
                bwd_args,
                kwargs,
                "autograd.Function",
                enable_grad=False,
                set_subgraph_inputs="manual",
                restore_side_effects=False,
                tracer=bwd_tracer,
            )

        # TODO: assert that bwd_graph didn't capture values that were
        # not created inside fwd_graph.

        # TODO(oulgen): Ideally, we would not do a linear search for output
        # node but as things currently are there could be nodes after the
        # output node
        # This is bug prone as if there's code after the output node, then
        # graph.output will append the output at the very end
        # This might be a behavior difference

        # If users call ctx.mark_non_differentiable, we should capture these output tensors who
        # are marked as non-differentiable and pass them to ApplyTemplate
        # at torch._functorch.autograd_function.AutogradFunctionApply for reconstruction.
        non_differentiable_idx = []
        if ctx.non_differentiable is not None:
            non_differentiable_set = set(ctx.non_differentiable)
            assert isinstance(fwd_out, variables.BaseListVariable)
            for i, x in enumerate(fwd_out.items):
                if (
                    isinstance(x, variables.TensorVariable)
                    and x.as_proxy() in non_differentiable_set
                ):
                    non_differentiable_idx.append(i)

        # Rewrite the output of fwd_graph to (output, stuff_necessary_for_bwd)
        for node in fwd_graph.find_nodes(op="output"):
            fwd_graph.erase_node(node)
            break

        # Because we lift the bwd_freevars as inputs of the bwd_graph,
        # we have to manually add the bwd_freevars as output of fwd_graph.
        # However, the bwd_freevars got from speculate_subgraph use the Proxies in the bwd_graph,
        # we need to convert them to Proxies in the fwd_graph and then generate new fwd_graph output.
        fwd_proxy_of_bwd_freevars = []
        for k in bwd_freevars.keys():
            if k in fwd_freevars:
                fwd_proxy_of_bwd_freevars.append(fwd_freevars[k])
            else:
                fwd_proxy_of_bwd_freevars.append(k)

        new_fwd_graph_outputs = (fwd_out.as_proxy(), fwd_proxy_of_bwd_freevars)
        new_fwd_graph_outputs = pytree.tree_map(lambda x: x.node, new_fwd_graph_outputs)
        fwd_graph.output(new_fwd_graph_outputs)
        fwd_graph.lint()

        # Store fwd_body
        fwd_nn_modules = tx.output.tracing_context.module_context.copy_graphstate()
        fwd_name = tx.output.install_subgraph(
            "fwd_body",
            torch.fx.GraphModule(fwd_nn_modules.nn_modules, fwd_graph),
        )

        fwd_node = make_attr(tx, fwd_name)

        # The type of original args can be arbitrary, but we only support basic type in FX graph.
        # So the speculated subgraph input includes original tensor args and the lifted freevars.
        # We need to filter out the original tensor args and concat them with the lifted freevars
        # to generate the proxy args for the FX call_function node.
        filtered_args = []
        # A boolean list to mark if the type of corresponding argument is tensor.
        # This is used to determine if a FX node's argument should be an argument of
        # ApplyTemplate.forward and if we should skip the output from ApplyTemplate.backward
        # at torch._functorch.autograd_function.AutogradFunctionApply.
        args_tensor_mask = [False] * len(args)
        for i, arg in enumerate(args):
            if isinstance(arg, (variables.TensorVariable, variables.SymNodeVariable)):
                filtered_args.append(arg)
                args_tensor_mask[i] = True

        # Rewrite the output of bwd_graph to remove the grad output for the non-Tensor args.
        new_bwd_graph_outputs = None
        for node in bwd_graph.find_nodes(op="output"):
            bwd_graph.erase_node(node)
            break

        # The same as the above fwd proxies, we need to use the bwd proxies in the bwd_graph
        # if some of the output is from fwd_freevars.
        bwd_out_proxy = bwd_out.as_proxy()
        bwd_proxy_of_fwd_freevars = []
        if isinstance(bwd_out_proxy, (tuple, list)):
            for k in bwd_out_proxy:
                if k in bwd_freevars:
                    bwd_proxy_of_fwd_freevars.append(bwd_freevars[k])
                else:
                    bwd_proxy_of_fwd_freevars.append(k)
        else:
            if bwd_out_proxy in bwd_freevars:
                bwd_proxy_of_fwd_freevars = bwd_freevars[bwd_out_proxy]
            else:
                bwd_proxy_of_fwd_freevars = bwd_out_proxy

        # Remove bwd output for non-Tensor args.
        output_proxy = bwd_proxy_of_fwd_freevars
        if isinstance(output_proxy, (tuple, list)):
            new_bwd_graph_outputs = ()
            for x, mask in zip(output_proxy, args_tensor_mask):
                if mask:
                    new_bwd_graph_outputs = new_bwd_graph_outputs + (x,)
                else:
                    assert x is None, f"Grad of non-Tensor arg {x} is not None."
        else:
            new_bwd_graph_outputs = output_proxy

        # Update the bwd graph output.
        new_bwd_graph_outputs = pytree.tree_map(
            lambda x: None if x is None else x.node, new_bwd_graph_outputs
        )
        bwd_graph.output(new_bwd_graph_outputs)
        bwd_graph.lint()

        # Store bwd_body
        bwd_nn_modules = tx.output.tracing_context.module_context.copy_graphstate()
        bwd_name = tx.output.install_subgraph(
            "bwd_body",
            torch.fx.GraphModule(bwd_nn_modules.nn_modules, bwd_graph),
        )

        bwd_node = make_attr(tx, bwd_name)

        tx.output.side_effects = prev_side_effects

        p_args = (
            fwd_node,
            bwd_node,
            *([arg.as_proxy() for arg in filtered_args] + list(fwd_freevars.keys())),
        )
        kwargs = {
            "args_tensor_mask": args_tensor_mask,
            "non_differentiable_idx": non_differentiable_idx,
        }

        # Store the invocation as a call
        from torch._functorch.autograd_function import autograd_function_apply

        # We use speculate_subgraph to get the fwd graph, but it's alway under no grad mode like what eager mode does.
        # The fwd outputs (tensor's example_value) need to be inferred from fake tensor prop to get the correct attributes
        # (e.g, tensor.requires_grad), which would be used by downstream Dynamo tracing.
        # Since there can be other ops like Triton kernels, which depends on python dispatcher, we have to enable it.
        with enable_python_dispatcher():
            with tx.output.fake_mode:
                fake_args = (
                    tx.output.nn_modules[fwd_node.node.name],
                    tx.output.nn_modules[bwd_node.node.name],
                    *(
                        [
                            _get_fake_value(arg)
                            for arg in filtered_args + list(fwd_freevars.keys())
                        ]
                    ),
                )
                example_value = autograd_function_apply(*fake_args, **kwargs)

        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                autograd_function_apply,
                args=p_args,
                kwargs=kwargs,
            ),
            example_value=example_value,
        )


def _get_fake_value(x):
    if isinstance(x, variables.VariableTracker):
        return x.as_proxy().node.meta["example_value"]
    elif isinstance(x, torch.fx.Proxy):
        return x.node.meta["example_value"]
    else:
        return x


def maybe_positional_arg_names(func):
    result = []
    if not hasattr(func, "get_function"):
        return None
    try:
        fn = func.get_function()
    except (Unsupported, NotImplementedError):
        return None
    try:
        sig = inspect.signature(func.get_function())
    except ValueError:
        return None
    for name, param in sig.parameters.items():
        if param.kind is inspect.Parameter.VAR_POSITIONAL:
            return None
        if (
            param.kind is inspect.Parameter.POSITIONAL_ONLY
            or param.kind is inspect.Parameter.POSITIONAL_OR_KEYWORD
        ):
            if name == "self":
                # FX graphs can't have a placeholder named self
                result.append("self_")
            else:
                result.append(name)
    return result


def canonicalize(gmod, root_gmod):
    # autograd_cache_key is sensitive to the name of the placeholder and intermediate nodes.
    # So, we first canonicalize it.
    new_graph = torch.fx.Graph()
    env = {}

    placeholder_counter = itertools.count(0)

    def next_placeholder_name():
        nonlocal placeholder_counter
        return f"placeholder_{next(placeholder_counter)}"

    node_counter = itertools.count(0)

    def next_node_name():
        nonlocal node_counter
        return f"node_{next(node_counter)}"

    for node in gmod.graph.nodes:
        if node.op == "placeholder":
            env[node] = new_graph.placeholder(next_placeholder_name())
        else:
            # Can't use node_copy because node.name will not be unique.
            args = map_arg(node.args, lambda x: env[x])
            kwargs = map_arg(node.kwargs, lambda x: env[x])
            env[node] = new_graph.create_node(
                node.op, node.target, args, kwargs, next_node_name(), node.type
            )
        env[node].meta = copy.copy(node.meta)

    new_graph.lint()
    new_gmod = torch.fx.GraphModule(root_gmod, new_graph)
    return new_gmod


@functools.lru_cache(None)
def get_dummy_aot_autograd_config():
    from torch._functorch._aot_autograd.schemas import AOTConfig

    return AOTConfig(
        fw_compiler=None,
        bw_compiler=None,
        inference_compiler=None,
        partition_fn=None,
        decompositions={},
        num_params_buffers=0,
        aot_id=0,
        keep_inference_input_mutations=False,
        dynamic_shapes=True,
        aot_autograd_arg_pos_to_source=None,
        is_export=False,
        no_tangents=False,
        enable_log=False,
    )


def hash_graph_and_inputs(tx, gmod, fake_inputs):
    # Here, we use the existing autograd_cache_key infrastructure to hash the
    # graph and fake inputs.

    # TODO(anijain2305) - Consider reorganizing autograd_cache_key such that the
    # namespaces seem more intuitive. It seems somewhat confusing that we are
    # calling an API from aot_autograd here.
    from torch._functorch._aot_autograd.autograd_cache import autograd_cache_key

    # autograd_cache_key is sensitive to the name of the placeholder nodes.
    # So, we first canonicalize it.
    canonicalized_gmod = canonicalize(gmod, tx.output.nn_modules)
    config = get_dummy_aot_autograd_config()

    key, _ = autograd_cache_key(canonicalized_gmod, fake_inputs, config, {})
    return key


class PrimHOPBaseVariable(WrapHigherOrderVariable):
    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        (
            p_args,
            p_kwargs,
            example_value,
            body_r,
            treespec,
            body_gmod,
            body_name,
        ) = self.create_wrapped_node(
            tx, args[0], args[1].items, {}, self.value._name, subgraph_name="subgraph"
        )
        assert len(p_kwargs) == 0

        from torch._higher_order_ops.utils import has_potential_input_alias_or_mutation

        fake_inputs = [
            node.meta["example_value"]
            for node in body_gmod.graph.nodes
            if node.op == "placeholder"
        ]
        if has_potential_input_alias_or_mutation(body_gmod, fake_inputs):
            raise RuntimeError(
                f"{self.value._name} where the inputs are mutated or the "
                f"outputs are aliases of the inputs. Please ensure that this doesn't happen."
            )

        flat_example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            body_r.as_proxy(),
        )
        p_args = (
            p_args[0],
            p_args[1:],
        )
        p_kwargs = {key: value.as_proxy() for key, value in kwargs.items()}
        return _call_function_and_unflatten_output(
            tx, self.value, p_args, p_kwargs, flat_example_value, treespec
        )


class InvokeSubgraphHigherOrderVariable(WrapHigherOrderVariable):
    def install_subgraph_in_output_graph(
        self, tx, fn_vt, fn_args_vt, kwargs, body_gmod, attr_name
    ):
        # Check if the subgraph from speculate_subgraph (body_gmod) and the fake
        # inputs have already been seen before. If yes, the subgraph is already
        # installed in the output graph and we can just access the subgraph
        # using the saved attr name.
        from torch._higher_order_ops.utils import has_potential_input_alias_or_mutation

        fake_inputs = [
            node.meta["example_value"]
            for node in body_gmod.graph.nodes
            if node.op == "placeholder"
        ]

        # TODO(anijain2305) - This might be too big of a limitation. Consider
        # supporting mutation/aliasing in HOP itself to remove this restriction.
        if has_potential_input_alias_or_mutation(body_gmod, fake_inputs):
            unimplemented("NYI: invoke_subgraph with aliasing/mutation")

        key = hash_graph_and_inputs(tx, body_gmod, fake_inputs)

        invoke_subgraph_cache = (
            tx.output.tracing_context.hop_dispatch_set_cache.get_cache(
                torch._higher_order_ops.invoke_subgraph
            )
        )

        if invoke_subgraph_cache:
            if identifier := invoke_subgraph_cache.get_dynamo_identifier(key):
                return identifier

        body_name = super().install_subgraph_in_output_graph(
            tx, fn_vt, fn_args_vt, kwargs, body_gmod, "invoke_subgraph"
        )
        if invoke_subgraph_cache:
            invoke_subgraph_cache.add_dynamo_identifier(key, body_name)

        return body_name

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        # This flattens the kwargs into lifted args
        (
            p_args,
            p_kwargs,
            example_value,
            body_r,
            treespec,
            body_gmod,
            body_name,
        ) = self.create_wrapped_node(tx, args[0], args[1:], kwargs, "invoke_subgraph")

        if len(p_kwargs) > 0:
            unimplemented("kwargs should have been flattened into lifted args")

        flat_example_value = pytree.tree_map_only(
            torch.fx.Proxy,
            lambda a: a.node.meta["example_value"],
            body_r.as_proxy(),
        )

        p_args = (
            p_args[0],
            body_name,
            p_args[1:],
        )
        return _call_function_and_unflatten_output(
            tx,
            torch._higher_order_ops.invoke_subgraph,
            tuple(p_args),
            p_kwargs,
            flat_example_value,
            treespec,
        )