File: misc.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1760 lines) | stat: -rw-r--r-- 63,133 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
# mypy: ignore-errors
import collections
import dataclasses
import functools
import inspect
import itertools
import random
import re
import sys
import types
import warnings
from typing import Dict, List, Optional, TYPE_CHECKING

import torch._C
import torch._numpy as tnp
import torch.utils._pytree as pytree

from .. import config, variables
from ..bytecode_transformation import create_call_function, create_instruction
from ..create_parameter_op import do_not_convert_to_tracable_parameter
from ..exc import unimplemented
from ..guards import GuardBuilder, install_guard
from ..mutation_guard import unpatched_nn_module_init
from ..source import (
    AttrSource,
    DefaultsSource,
    GetItemSource,
    ODictGetItemSource,
    TypeSource,
    WeakRefCallSource,
)
from ..utils import (
    check_unspec_or_constant_args,
    identity,
    is_tensor_base_attr_getter,
    proxy_args_kwargs,
    set_example_value,
)
from .base import VariableTracker
from .functions import (
    NestedUserFunctionVariable,
    UserFunctionVariable,
    UserMethodVariable,
    wrap_bound_arg,
)
from .nn_module import UnspecializedNNModuleVariable
from .user_defined import call_random_fn, is_standard_setattr, UserDefinedObjectVariable


if TYPE_CHECKING:
    from torch._dynamo.symbolic_convert import InstructionTranslator


class NO_SUCH_SUBOBJ:
    pass


class SuperVariable(VariableTracker):
    _nonvar_fields = {
        *VariableTracker._nonvar_fields,
    }

    def __init__(self, typevar, objvar=None, **kwargs) -> None:
        super().__init__(**kwargs)
        # typevar is the fist argument to super(). In the case where no argument
        # is provided to super(), it is the __class__ object where
        # the super() function is being called
        self.typevar = typevar
        # objvar here must be an instance or subtype of typevar.
        # In the case where super() is called without arguments, it is the first argument
        # to the current function where super() is called from (self for regular method,
        # cls for a classmethod)
        self.objvar = objvar

    def reconstruct(self, codegen):
        codegen.add_push_null(lambda: codegen(variables.BuiltinVariable(super)))
        codegen(self.typevar)
        if self.objvar is not None:
            codegen(self.objvar)
            codegen.extend_output(create_call_function(2, False))
        else:
            codegen.extend_output(create_call_function(1, False))

    def _resolved_getattr_and_source(self, tx: "InstructionTranslator", name):
        assert self.objvar, "1-arg super not implemented"
        search_type = self.typevar.as_python_constant()

        # The rest of this function does two things:
        #   - Walk the mro to find where the attribute comes from to be
        #     able to provide accurate source
        #   - Call the getattr to get the object

        # Find the class object, where the function lives.
        # When objvar is "self", use type(self), when objvar is "cls", use it as-is
        type_to_use = self.objvar.python_type()
        type_to_use_source = (
            TypeSource(self.objvar.source) if self.objvar.source else None
        )
        if issubclass(type_to_use, type):
            type_to_use = self.objvar.value
            type_to_use_source = self.objvar.source

        source = None
        resolved_class = None
        resolved_attr = None
        search_mro = type_to_use.__mro__

        try:
            start_index = search_mro.index(search_type) + 1
        except ValueError:
            # Corner case where the typevar is not in the mro of the objvar
            # https://github.com/python/cpython/blob/3.11/Objects/typeobject.c#L8843-L8844
            return getattr(super(search_type, type_to_use), name), None
        # Implemented based on https://github.com/python/cpython/blob/3.11/Objects/typeobject.c#L8812
        # super has its getattro implementation. The key point is that instead of calling getattr, it checks the
        # attribute in the class __dict__
        for index in range(start_index, len(search_mro)):
            # Dont call getattr, just check the __dict__ of the class
            if resolved_getattr := search_mro[index].__dict__.get(name, NO_SUCH_SUBOBJ):
                if resolved_getattr is not NO_SUCH_SUBOBJ:
                    # Equivalent of something like type(L['self']).__mro__[1].attr_name
                    if type_to_use_source:
                        source = AttrSource(
                            GetItemSource(
                                AttrSource(type_to_use_source, "__mro__"), index
                            ),
                            name,
                        )
                    return resolved_getattr, source

        unimplemented("Unable to resolve super getattr")

    def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        # Check if getattr is a constant. If not, delay the actual work by
        # wrapping the result in GetAttrVariable. Mostly super is called with a
        # method, so most of the work is delayed to call_function.
        #
        # We could have just implemented a const_getattr. However, super is
        # special when it comes to finding sources. Compared to other VTs, super
        # requires the attr name to walk the mro and find the actual source (and
        # not just AttrSource).
        value, source = self._resolved_getattr_and_source(self, name)
        if not variables.ConstantVariable.is_literal(value):
            return GetAttrVariable(self, name)
        if source:
            install_guard(source.make_guard(GuardBuilder.CONSTANT_MATCH))
        return variables.ConstantVariable.create(value, source=source)

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        inner_fn, source = self._resolved_getattr_and_source(self, name)
        if inner_fn is object.__init__:
            return LambdaVariable(identity)
        elif inner_fn is torch.nn.Module.__init__:
            objvar = self.objvar
            from ..side_effects import AttributeMutationNew

            if (
                isinstance(objvar, variables.UserDefinedObjectVariable)
                and isinstance(objvar.mutation_type, AttributeMutationNew)
                and not (args or kwargs)
            ):
                with do_not_convert_to_tracable_parameter():
                    return variables.UserFunctionVariable(
                        unpatched_nn_module_init, source=source
                    ).call_function(tx, [self.objvar] + args, kwargs)
            else:
                unimplemented("super() nn.Module.__init__")
        elif self.objvar.source and inner_fn is object.__new__:
            return tx.output.side_effects.track_object_new_from_user_defined_class(
                self.objvar
            )
        elif isinstance(inner_fn, staticmethod) and isinstance(
            inner_fn.__func__, types.FunctionType
        ):
            return variables.UserFunctionVariable(
                inner_fn.__func__, source=source
            ).call_function(tx, args, kwargs)
        elif isinstance(inner_fn, classmethod) and isinstance(
            inner_fn.__func__, types.FunctionType
        ):
            return variables.UserMethodVariable(
                inner_fn.__func__, self.objvar, source=source
            ).call_function(tx, args, kwargs)
        elif isinstance(inner_fn, types.FunctionType):
            return variables.UserFunctionVariable(
                inner_fn, source=source
            ).call_function(tx, [self.objvar] + args, kwargs)
        elif isinstance(inner_fn, types.MethodType):
            return variables.UserMethodVariable(
                inner_fn.__func__, self.objvar, source=source
            ).call_function(tx, args, kwargs)
        elif (
            inner_fn is collections.OrderedDict.__getitem__
            and isinstance(self.objvar, variables.UserDefinedObjectVariable)
            and self.objvar.source
            and len(args) == 1
            and len(kwargs) == 0
            and args[0].is_python_constant()
        ):
            key = args[0].as_python_constant()
            value = collections.OrderedDict.__getitem__(self.objvar.value, key)
            source = ODictGetItemSource(self.objvar.source, key)
            return VariableTracker.build(tx, value, source)
        elif inner_fn in (
            collections.OrderedDict.__setitem__,
            object.__setattr__,
        ) and isinstance(self.objvar, variables.CustomizedDictVariable):
            assert not kwargs and len(args) == 2
            return super(variables.CustomizedDictVariable, self.objvar).call_method(
                tx, "__setitem__", args, kwargs
            )
        elif inner_fn is collections.OrderedDict.__getitem__ and isinstance(
            self.objvar, variables.CustomizedDictVariable
        ):
            return super(variables.CustomizedDictVariable, self.objvar).call_method(
                tx, "__getitem__", args, kwargs
            )
        elif is_standard_setattr(inner_fn) and isinstance(
            self.objvar, UserDefinedObjectVariable
        ):
            return self.objvar.method_setattr_standard(tx, *args, **kwargs)
        elif inner_fn is object.__delattr__:
            attr = args[0]
            try:
                attr = attr.as_python_constant()
            except NotImplementedError:
                unimplemented(f"non-const delattr attr: {attr}")
            if not tx.output.side_effects.is_attribute_mutation(self.objvar):
                unimplemented(f"delattr({self.objvar}, {attr}, ...)")

            tx.output.side_effects.store_attr(
                self.objvar, attr, variables.DeletedVariable()
            )
            return variables.ConstantVariable(None)

        unimplemented(f"non-function or method super: {inner_fn}")


class ExceptionVariable(VariableTracker):
    def __init__(self, exc_type, args, **kwargs) -> None:
        super().__init__(**kwargs)
        self.exc_type = exc_type
        self.args = args

    def reconstruct(self, codegen):
        codegen.add_push_null(
            lambda: codegen.load_import_from("builtins", self.exc_type.__name__)
        )
        codegen.foreach(self.args)
        codegen.call_function(len(self.args), False)


class UnknownVariable(VariableTracker):
    """
    It could be anything!
    """


class DelayGraphBreakVariable(UnknownVariable):
    """
    Used to insert a dummy variable in the stack to do the graph break at CALL_FUNCTION.
    """


class ComptimeVariable(VariableTracker):
    """
    This variable is special, it lets you execute arbitrary code at
    Dynamo compile time
    """

    def reconstruct(self, codegen):
        raise NotImplementedError("comptime is special form")

    def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        from ..comptime import comptime

        # To support the comptime.print_graph convenience accessors
        from .functions import UserFunctionVariable

        return UserFunctionVariable(
            getattr(comptime, name), source=AttrSource(self.source, name)
        )

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from ..comptime import ComptimeContext

        # TODO: support an expression form as well

        assert not kwargs
        # Second argument is runtime lambda, ignored
        assert len(args) <= 2
        fn = args[0]
        if isinstance(fn, UserFunctionVariable):
            fn.get_function()(ComptimeContext(tx))
        elif isinstance(fn, NestedUserFunctionVariable):
            # We have to manually bind the freevars ourselves
            code = fn.get_code()
            assert not fn.closure, (
                "comptime function must not have free variables, "
                f"but these variables were free: {code.co_freevars}"
            )
            func = types.FunctionType(
                code,
                fn.f_globals,
                fn.fn_name.as_python_constant(),
                tuple(fn.defaults.items) if fn.defaults else None,
                # We could automatically promote free variables into
                # ComptimeVar but this is confusing if you access
                # a free variable that we actually DO have the runtime
                # value for
                # tuple(make_cell(ComptimeVar(i)) for i in fn.closure.items)
                (),
            )
            func(ComptimeContext(tx))
        else:
            raise RuntimeError(f"unsupported argument to comptime: {type(fn)}")

        return variables.ConstantVariable.create(None)


class CellVariable(VariableTracker):
    # If the cell existed before Dynamo tracing started, this will be the
    # VariableTracker that represents the cell content.
    #
    # Note that all mutation to the cell (i.e., its content) will be buffered in
    # SideEffects, rather than being reflected here. One can think of
    # `CellVariable` as a special case for `UserDefinedObjectVariable`.
    pre_existing_contents: Optional[VariableTracker]

    # This is set when this cell can be referenced via `LOAD/STORE_DEREF` in the
    # root frame via this name (e.g., the name is in `co_cellvars/co_freevars`).
    local_name: Optional[str] = None

    def __init__(
        self, pre_existing_contents: Optional[VariableTracker] = None, **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.pre_existing_contents = pre_existing_contents


class NewGlobalVariable(VariableTracker):
    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)


class InspectSignatureVariable(VariableTracker):
    """represents inspect.signature(...)"""

    _nonvar_fields = {
        "signature",
        "parameters",
        *VariableTracker._nonvar_fields,
    }

    @staticmethod
    def create(callable, **kwargs):
        if kwargs:
            unimplemented(f"inspect.signature with {kwargs}")
        return InspectSignatureVariable(
            callable, mutation_type=variables.base.ValueMutationNew()
        )

    def __init__(self, inspected: VariableTracker, **kwargs) -> None:
        super().__init__(**kwargs)
        self.inspected = inspected

        try:
            if hasattr(self.inspected, "get_function"):
                self.fn = self.inspected.get_function()
            elif isinstance(self.inspected, UnspecializedNNModuleVariable):
                self.fn = self.inspected.value
            else:
                self.fn = self.inspected.as_python_constant()
        except NotImplementedError:
            unimplemented("inspect.signature with non-constant function")

        self.signature = inspect.signature(self.fn)
        self.parameters = list(self.signature.parameters.items())
        if isinstance(self.inspected, UserMethodVariable):
            self.parameters = self.parameters[1:]

    def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        if name == "parameters":
            return variables.ConstDictVariable(
                {
                    variables.ConstantVariable.create(
                        param[0]
                    ): InspectParameterVariable(param[1])
                    for param in self.parameters
                },
                user_cls=dict,
            )
        return super().var_getattr(tx, name)

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        if name == "bind":
            if not hasattr(self.fn, "__kwdefaults__"):
                unimplemented(
                    f"inspect.signature.bind with {self.fn} without __kwdefaults__"
                )
            obj = self.signature.bind(*args, **kwargs)

            # wrap function defaults in VTs
            defaults = {}
            if self.fn.__kwdefaults__:
                wrap = functools.partial(wrap_bound_arg, tx=tx)
                kwdefaults_sources = {
                    k: (
                        None
                        if self.source is None
                        else DefaultsSource(self.source, k, is_kw=True)
                    )
                    for k in self.fn.__kwdefaults__
                }
                defaults = {
                    k: wrap(val=v, source=kwdefaults_sources[k])
                    for k, v in self.fn.__kwdefaults__.items()
                }

            return InspectBoundArgumentsVariable(
                obj,
                defaults,
                self,
            )
        return super().call_method(tx, name, args, kwargs)

    def reconstruct(self, codegen):
        codegen.add_push_null(
            lambda: codegen.extend_output(
                [
                    codegen.create_load_python_module(inspect),
                    codegen.create_load_attr("signature"),
                ]
            )
        )
        codegen(self.inspected)
        codegen.extend_output(create_call_function(1, False))


class InspectParameterVariable(VariableTracker):
    """represents inspect.Parameter(...)"""

    def __init__(self, value, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value

    def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        try:
            attr_value = getattr(self.value, name)
            source = self.source and AttrSource(self.source, name)
            return VariableTracker.build(tx, attr_value, source)
        except AttributeError:
            unimplemented(f"getattr({self.value}, {name})")


class InspectBoundArgumentsVariable(VariableTracker):
    """represents inspect.signature(...).bind(...)"""

    _nonvar_fields = {
        "bound_arguments",
        "packed_vars",
        *VariableTracker._nonvar_fields,
    }

    # NOTE: we keep track of changes to arguments via bound_arguments_var,
    # but we still keep a copy of the inspect.BoundArguments object in order
    # to get the correct args/kwargs.
    def __init__(
        self,
        bound_arguments: inspect.BoundArguments,
        defaults: Dict[str, VariableTracker],
        signature: InspectSignatureVariable,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.bound_arguments = bound_arguments
        self.defaults = defaults
        # used to convert from VT to tuple/dict when updating bound_arguments
        self.packed_vars = set()

        arguments_dict = {}
        for key, val in bound_arguments.arguments.items():
            key_var = variables.ConstantVariable(key)
            # convert val to VT
            if isinstance(val, tuple):
                arguments_dict[key_var] = variables.TupleVariable(list(val))
                self.packed_vars.add(key)
            elif isinstance(val, dict):
                self.packed_vars.add(key)
                arguments_dict[key_var] = variables.ConstDictVariable(
                    {variables.ConstantVariable(k): v for k, v in val.items()}
                )
            elif isinstance(val, VariableTracker):
                arguments_dict[key_var] = val
            else:
                unimplemented(
                    "inspect.signature(...).bind(...).arguments contains non-variable/tuple/dict"
                )

        self.bound_arguments_var = variables.ConstDictVariable(
            arguments_dict,
            type(bound_arguments.arguments),
            mutation_type=variables.base.ValueMutationNew(),
        )
        self.signature = signature

    def _update_bound_arguments(self):
        for key, val in self.bound_arguments_var.items.items():
            true_val = val
            if key.underlying_value in self.packed_vars:
                if isinstance(val, variables.TupleVariable):
                    true_val = tuple(val.items)
                elif isinstance(val, variables.ConstDictVariable):
                    true_val = {k.underlying_value: v for k, v in val.items.items()}
                else:
                    unimplemented(
                        "inspect.signature(...).bind(...) cannot update bound arguments"
                    )
            self.bound_arguments.arguments[key.underlying_value] = true_val

    def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        if name == "arguments":
            return self.bound_arguments_var
        elif name == "args":
            self._update_bound_arguments()
            return variables.TupleVariable(list(self.bound_arguments.args))
        elif name == "kwargs":
            self._update_bound_arguments()
            kw = {
                variables.ConstantVariable(key): val
                for key, val in self.bound_arguments.kwargs.items()
            }
            return variables.ConstDictVariable(kw)
        elif name == "signature":
            return self.signature
        return super().var_getattr(tx, name)

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        if name == "apply_defaults":
            # mimic calling apply_defaults
            for key, val in self.defaults.items():
                key_var = variables.ConstantVariable(key)
                if key_var not in self.bound_arguments_var:
                    self.bound_arguments_var.call_method(
                        tx, "__setitem__", [key_var, val], {}
                    )

            # actually apply the changes
            self._update_bound_arguments()

            return variables.ConstantVariable(None)
        return super().call_method(tx, name, args, kwargs)

    def reconstruct(self, codegen):
        # reconstruct inspect.signature(...).bind(*bound_arguments.args, **bound_arguments.kwargs)
        # NOTE the reconstructed inspect.signature(...) object might not be the same object
        # as the Signature object that originally created the BoundArguments object.
        self._update_bound_arguments()

        def gen_fn():
            codegen(self.signature)
            codegen.append_output(codegen.create_load_attr("bind"))

        codegen.add_push_null(gen_fn, call_function_ex=True)

        codegen.foreach(self.bound_arguments.args)
        codegen.append_output(
            create_instruction("BUILD_TUPLE", arg=len(self.bound_arguments.args))
        )

        for key, val in self.bound_arguments.kwargs.items():
            codegen.append_output(codegen.create_load_const(key))
            codegen(val)
        codegen.extend_output(
            [
                create_instruction("BUILD_MAP", arg=len(self.bound_arguments.kwargs)),
                create_instruction("CALL_FUNCTION_EX", arg=1),
            ]
        )


def produce_trampoline_autograd_apply(fn_cls):
    def trampoline_autograd_apply(*args, **kwargs):
        return fn_cls.apply(*args, **kwargs)

    trampoline_autograd_apply._origin = produce_trampoline_autograd_apply
    return trampoline_autograd_apply


class AutogradFunctionVariable(VariableTracker):
    """represents a torch.autograd.Function subclass"""

    _nonvar_fields = {
        "fn_cls",
        *VariableTracker._nonvar_fields,
    }

    def __init__(self, fn_cls, **kwargs) -> None:
        super().__init__(**kwargs)
        self.fn_cls = fn_cls

    def call_apply(self, tx: "InstructionTranslator", args, kwargs):
        requires_grad = False

        def visit(node):
            nonlocal requires_grad
            if isinstance(node, variables.TensorVariable):
                if node.requires_grad is not False:
                    requires_grad = True
            if isinstance(node, variables.NNModuleVariable):
                if node.is_training(tx):
                    requires_grad = True

        VariableTracker.visit(visit, (args, kwargs))

        if requires_grad and torch.is_grad_enabled():
            if config.capture_autograd_function is False:
                warnings.warn(
                    "The config.capture_autograd_function flag is deprecated, it's now always true."
                )

            from torch._functorch.autograd_function import (
                autograd_function_forward_rewritten,
            )
            from torch.autograd.function import _is_setup_context_defined

            forward_fn = self.fn_cls.forward

            is_setup_ctx_defined = _is_setup_context_defined(self.fn_cls.setup_context)
            if is_setup_ctx_defined:
                # If setup_context is defined, we generate a new forward function which includes
                # the original forward and setup_context function, and trace the new forward function.
                forward_fn = autograd_function_forward_rewritten(
                    self.fn_cls.forward, self.fn_cls.setup_context
                )

            vjp_fn = self.fn_cls.vjp  # type: ignore[attr-defined]
            if vjp_fn is not torch.autograd.Function.vjp:
                unimplemented("NYI - User defind vjp")

            jvp_fn = self.fn_cls.jvp  # type: ignore[attr-defined]
            if jvp_fn is not torch.autograd.Function.jvp:
                unimplemented("NYI - User defind jvp")

            from .higher_order_ops import AutogradFunctionApplyVariable

            source = self.source
            if source is None:
                source = AttrSource(
                    tx.import_source(self.fn_cls.__module__), self.fn_cls.__name__
                )

            val = AutogradFunctionApplyVariable(
                forward_fn,
                self.fn_cls.backward,
                source,
                source=AttrSource(source, member="apply"),
            ).call_function(tx, args, kwargs)
            # Inside of AutogradFunctionApplyVariable.call_function, we use sourceless variable wrapping
            # the forward function, as we don't want to generate guards for new_forward.__closure__
            # if forward is rewritten by autograd_function_forward_rewritten.
            # But we still need to generate correct guards for the original forward and setup_context
            # functions, so we have to add guards manually.
            if self.source:
                fwd_src = AttrSource(self.source, "forward")
                install_guard(fwd_src.make_guard(GuardBuilder.FUNCTION_MATCH))
                if is_setup_ctx_defined:
                    setup_ctx_src = AttrSource(self.source, "setup_context")
                    install_guard(setup_ctx_src.make_guard(GuardBuilder.FUNCTION_MATCH))

            return val

        if self.source:
            source = AttrSource(self.source, "forward")
        else:
            source = None

        fn = self.fn_cls.forward
        ctx = AutogradFunctionContextVariable.create(tx, args, kwargs)
        args = [ctx, *args]
        if isinstance(fn, types.FunctionType):
            sig = inspect.signature(fn)
            if len(args) - 1 == len(sig._parameters):
                args = args[1:]  # Don't use context
            return variables.UserFunctionVariable(fn, source=source).call_function(
                tx, args, kwargs
            )
        elif isinstance(fn, types.MethodType):
            return variables.UserMethodVariable(
                fn.__func__,
                variables.UserDefinedClassVariable(self.fn_cls),
                source=source,
            ).call_function(tx, args, kwargs)
        else:
            unimplemented(
                f"non-function or method in subclass of torch.autograd.Function: {fn}"
            )

    def call_backward(self, tx: "InstructionTranslator", args, kwargs):
        fn = self.fn_cls.backward
        assert type(args[0].value) is torch._dynamo.external_utils.FakeBackwardCFunction
        assert isinstance(fn, types.FunctionType)

        fn_source = AttrSource(self.source, "backward")
        return variables.UserFunctionVariable(fn, source=fn_source).call_function(
            tx, args, kwargs
        )

    def call_function(self, tx: "InstructionTranslator", args, kwargs):
        return AutogradFunctionVariable(self.fn_cls)

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ):
        from ..trace_rules import is_callable_allowed
        from .builder import wrap_fx_proxy

        if name == "apply":
            if is_callable_allowed(self.fn_cls):
                trampoline_autograd_apply = produce_trampoline_autograd_apply(
                    self.fn_cls
                )
                return wrap_fx_proxy(
                    tx=tx,
                    proxy=tx.output.create_proxy(
                        "call_function",
                        trampoline_autograd_apply,
                        *proxy_args_kwargs(args, kwargs),
                    ),
                )
            else:
                return self.call_apply(tx, args, kwargs)

        elif name == "backward":
            return self.call_backward(tx, args, kwargs)
        else:
            from .. import trace_rules

            source = AttrSource(self.source, name) if self.source is not None else None
            try:
                obj = inspect.getattr_static(self.fn_cls, name)
            except AttributeError:
                obj = None

            if isinstance(obj, staticmethod):
                func = obj.__get__(self.fn_cls)
                if source is not None:
                    return (
                        trace_rules.lookup(func)
                        .create_with_source(func, source=source)
                        .call_function(tx, args, kwargs)
                    )
                else:
                    return trace_rules.lookup(func)(func).call_function(
                        tx, args, kwargs
                    )
            elif isinstance(obj, classmethod):
                return variables.UserMethodVariable(
                    obj.__func__, self, source=source
                ).call_function(tx, args, kwargs)
            else:
                unimplemented(f"Unsupported method: {name}")


@dataclasses.dataclass
class SavedTensorBox:
    tensors: List[VariableTracker] = dataclasses.field(default_factory=list)


class AutogradFunctionContextVariable(UserDefinedObjectVariable):
    """
    Tracks an autograd.Function() context using mutation tracking in side_effects.py
    """

    _nonvar_fields = {
        "proxy",
        "inference",
        "saved_tensors",
        *UserDefinedObjectVariable._nonvar_fields,
    }

    def __init__(
        self,
        value,
        value_type=None,
        inference=False,
        proxy=None,
        saved_tensors=None,
        needs_input_grad=None,
        non_differentiable=None,
        **kwargs,
    ) -> None:
        super().__init__(value=value, value_type=value_type, **kwargs)
        self.inference = inference
        self.proxy = proxy
        self.saved_tensors = saved_tensors
        self.needs_input_grad = needs_input_grad
        self.non_differentiable = non_differentiable

    @staticmethod
    def create(tx: "InstructionTranslator", args=None, kwargs=None):
        needs_input_grad = None
        if args and not kwargs:
            needs_input_grad = tuple(
                isinstance(x, variables.TensorVariable) and x.requires_grad
                for x in args
            )
        proxy = tx.output.create_proxy(
            "call_function", torch.autograd.function.FunctionCtx, (), {}
        )
        out = tx.output.side_effects.track_object_new(
            None,
            torch.autograd.function.FunctionCtx,
            functools.partial(
                AutogradFunctionContextVariable,
                inference=True,
                proxy=proxy,
                saved_tensors=SavedTensorBox(),
                needs_input_grad=needs_input_grad,
            ),
            {},
        )
        set_example_value(proxy.node, out.value)

        return out

    def as_proxy(self):
        if self.proxy is None:
            unimplemented("proxy not set")
        return self.proxy

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        if name == "__setattr__":
            return super().call_method(tx, name, args, kwargs)
        elif name == "mark_non_differentiable":
            assert len(kwargs) == 0
            self.non_differentiable = proxy_args_kwargs(args, {})[0]
            return variables.ConstantVariable.create(None)

        if name != "save_for_backward":
            unimplemented(f"autograd.Function context method: {name}")
        if self.saved_tensors is None:
            unimplemented(
                "save_for_backward only supported on a newly constructed FunctionCtx"
            )

        if not self.inference:
            assert self.source and not kwargs
            tx.output.side_effects.track_save_for_backward(self, args)

        # In eager mode, multiple calls to .save_for_backward() will overwrite previous calls.
        if len(self.saved_tensors.tensors) > 0:
            self.saved_tensors.tensors = []
        for arg in args:
            self.saved_tensors.tensors.append(arg)
        return variables.ConstantVariable.create(None)

    def var_getattr(self, tx: "InstructionTranslator", name):
        if name in ["save_for_backward", "mark_non_differentiable"]:
            return LambdaVariable(
                lambda *args, **kwargs: self.call_method(tx, name, args, kwargs)
            )
        if name == "saved_tensors" and self.saved_tensors is not None:
            return variables.TupleVariable(list(self.saved_tensors.tensors))
        if name == "needs_input_grad":
            if self.needs_input_grad is not None:
                return variables.ConstantVariable.create(self.needs_input_grad)
            if self.source:
                source = AttrSource(self.source, "needs_input_grad")
                return VariableTracker.build(tx, self.value.needs_input_grad, source)

        return super().var_getattr(tx, name)


class AutogradEngineVariable(UserDefinedObjectVariable):
    """
    Represents a torch._C._ImperativeEngine instance.
    """

    def __init__(
        self,
        value,
        value_type=None,
        **kwargs,
    ) -> None:
        super().__init__(value=value, value_type=value_type, **kwargs)

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        if name == "queue_callback":
            if torch._dynamo.compiled_autograd.in_compiled_autograd_region:
                assert (
                    tx.one_graph
                ), "queue_callback() is only supported when Compiled Autograd is enabled with fullgraph=True"
                return variables.UserFunctionVariable(
                    torch._dynamo.external_utils.FakeCompiledAutogradEngine.queue_callback,
                    source=self.source,
                ).call_function(
                    tx,
                    (tx.output.side_effects.get_ca_final_callbacks_var(), *args),
                    kwargs,
                )
            else:
                unimplemented(
                    "queue_callback() is only supported when Compiled Autograd is enabled with fullgraph=True"
                )
        else:
            unimplemented(f"torch._C._ImperativeEngine method: {name}")


class LambdaVariable(VariableTracker):
    def __init__(self, fn, **kwargs) -> None:
        super().__init__(**kwargs)
        self.fn = fn

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        return self.fn(*args, **kwargs)


class GetAttrVariable(VariableTracker):
    _nonvar_fields = {
        "name",
        "py_type",
        *VariableTracker._nonvar_fields,
    }

    def __init__(self, obj, name, py_type=None, **kwargs) -> None:
        super().__init__(**kwargs)
        assert isinstance(obj, VariableTracker)
        assert isinstance(name, str)
        self.obj = obj
        self.name = name
        self.py_type = py_type  # In some cases we know the type (ex. tensor methods)

    def python_type(self):
        if self.py_type is not None:
            return self.py_type
        else:
            super().python_type()

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.obj}, {self.name})"

    @staticmethod
    def create_getattr_proxy(base_proxy: torch.fx.Proxy, attr):
        return getattr(base_proxy, attr)

    def as_proxy(self):
        return GetAttrVariable.create_getattr_proxy(self.obj.as_proxy(), self.name)

    def as_python_constant(self):
        constant = self.obj.as_python_constant()
        try:
            return getattr(constant, self.name)
        except AttributeError:
            raise NotImplementedError(f"{self} is not a constant") from None

    def const_getattr(self, tx: "InstructionTranslator", name):
        if not isinstance(self.obj, variables.NNModuleVariable):
            raise NotImplementedError
        step1 = tx.output.get_submodule(self.obj.module_key)
        if self.name not in step1.__dict__:
            raise NotImplementedError
        step2 = inspect.getattr_static(step1, self.name)
        if name not in step2.__dict__:
            raise NotImplementedError
        return inspect.getattr_static(step2, name)

    def reconstruct(self, codegen):
        codegen(self.obj)
        codegen.extend_output(codegen.create_load_attrs(self.name))

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        return self.obj.call_method(tx, self.name, args, kwargs)

    def call_method(
        self,
        tx,
        name,
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        if (
            name in ("__getitem__", "get")
            and self.name == "__dict__"
            and not kwargs
            and args[0].is_python_constant()
            and isinstance(
                self.obj,
                (
                    variables.UserDefinedObjectVariable,
                    variables.NNModuleVariable,
                    variables.UserDefinedClassVariable,
                ),
            )
        ):
            obj = self.obj
            key = args[0].as_python_constant()
            if obj.has_key_in_generic_dict(tx, key):
                # redirect to var_getattr on the original obj
                return obj.var_getattr(tx, key)

            # Return the default value for get
            if name == "get":
                if len(args) == 2:
                    return args[1]
                else:
                    return variables.ConstantVariable(None)

        elif (
            name == "__contains__"
            and self.name == "__dict__"
            and len(args) == 1
            and args[0].is_python_constant()
            and not kwargs
            and isinstance(
                self.obj,
                (
                    variables.UserDefinedObjectVariable,
                    variables.NNModuleVariable,
                    variables.UserDefinedClassVariable,
                ),
            )
        ):
            obj = self.obj
            key = args[0].as_python_constant()
            if obj.has_key_in_generic_dict(tx, key):
                return variables.ConstantVariable(True)
            else:
                return variables.ConstantVariable(False)

        return super().call_method(tx, name, args, kwargs)


class MethodWrapperVariable(VariableTracker):
    def __init__(self, method_wrapper, **kwargs) -> None:
        super().__init__(**kwargs)
        self.method_wrapper = method_wrapper

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        if is_tensor_base_attr_getter(self.method_wrapper) and isinstance(
            args[0], variables.TensorVariable
        ):
            assert len(args) == 1 and len(kwargs) == 0

            return args[0].var_getattr(tx, self.method_wrapper.__self__.__name__)

        super().call_function(tx, args, kwargs)

    def is_python_constant(self):
        return True

    def as_python_constant(self):
        return self.method_wrapper


class GetSetDescriptorVariable(VariableTracker):
    def __init__(self, desc, **kwargs) -> None:
        super().__init__(**kwargs)
        self.desc = desc

    def var_getattr(self, tx: "InstructionTranslator", name):
        if name == "__get__" and self.source:
            source = AttrSource(self.source, "__get__")
            return VariableTracker.build(tx, self.desc.__get__, source)
        else:
            return super().var_getattr(tx, name)

    def is_python_constant(self):
        return True

    def as_python_constant(self):
        return self.desc


class PythonModuleVariable(VariableTracker):
    _nonvar_fields = {
        "value",
        "is_torch",
        *VariableTracker._nonvar_fields,
    }

    def __init__(self, value: types.ModuleType, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value
        self.is_torch = self.value is torch or self.value.__name__.startswith("torch.")

    def python_type(self):
        return types.ModuleType

    def as_python_constant(self):
        return self.value

    def __repr__(self) -> str:
        return f"PythonModuleVariable({self.value})"

    def call_hasattr(self, tx: "InstructionTranslator", name):
        result = hasattr(self.value, name)
        return variables.ConstantVariable.create(result)

    def var_getattr(self, tx: "InstructionTranslator", name):
        if tx.output.side_effects.has_pending_mutation_of_attr(self, name):
            return tx.output.side_effects.load_attr(self, name)

        if self.is_torch or name not in self.value.__dict__:
            attr_value = getattr(self.value, name)
        else:
            attr_value = self.value.__dict__[name]

        source = self.source and AttrSource(self.source, name)
        return VariableTracker.build(tx, attr_value, source)


class TypingVariable(VariableTracker):
    def __init__(self, value, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        # Create a new typing variable, e.g., `List[int]`
        if name == "__getitem__" and len(args) == 1:
            new_typing = self.value[args[0].as_python_constant()]
            return TypingVariable(new_typing)
        unimplemented("unsupported method call on typing variablel")

    def var_getattr(self, tx: "InstructionTranslator", name: str):
        from .builder import SourcelessBuilder, VariableBuilder

        if tx.output.side_effects.has_pending_mutation_of_attr(self, name):
            return tx.side_effects.load_attr(self, name)

        value = getattr(self.value, name)
        if self.source:
            attr_source = AttrSource(self.source, name)
            return VariableBuilder(tx, attr_source)(value)
        else:
            return SourcelessBuilder(tx, value)

    def as_python_constant(self):
        return self.value


@functools.lru_cache(maxsize=1)
def get_np_to_tnp_map():
    from ..utils import NP_TO_TNP_MODULE

    np_fn_to_tnp_fn = {}

    for np_mod, tnp_mod in NP_TO_TNP_MODULE.items():
        for fn_name, tnp_fn in tnp_mod.__dict__.items():
            if callable(tnp_fn):
                # some internal details do leak from tnp
                # which are not part of numpy API.
                if np_fn := getattr(np_mod, fn_name, None):
                    np_fn_to_tnp_fn[np_fn] = tnp_fn

    return np_fn_to_tnp_fn


class NumpyVariable(VariableTracker):
    """
    Wrapper around `numpy.*`. Currently, is able to trace a small subset of numpy functions as well as numpy dtypes.
    """

    constant_fold_functions = (tnp.issubdtype,)

    def __init__(self, value, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value

    @classmethod
    def can_constant_fold_through(cls, fn):
        mod = fn.__module__.split(".")
        assert len(mod) >= 2 and mod[:2] == ["torch", "_numpy"]
        return fn in cls.constant_fold_functions

    @classmethod
    def get_constant_collection_for_func(cls, fn):
        mod = fn.__module__.split(".")
        assert len(mod) >= 2 and mod[:2] == ["torch", "_numpy"]
        return np_constant_collections_map.get(fn, None)

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        if not config.trace_numpy:
            unimplemented(f"numpy.{self.value}()")

        from ..utils import numpy_to_tensor_wrapper
        from .tensor import NumpyNdarrayVariable

        func = get_np_to_tnp_map().get(self.value)
        if func is None:
            unimplemented(
                f"Can't find numpy function {self.value} in torch._numpy. "
                " Please file an issue to request support for this function."
            )

        # We are dealing with a function that produces a const collection type (np.dtype, np.iinfo/np.finfo)
        if (
            collection_variable_typ := self.get_constant_collection_for_func(func)
        ) is not None:
            try:
                return collection_variable_typ(
                    self.value(
                        *[x.as_python_constant() for x in args],
                        **{k: v.as_python_constant() for k, v in kwargs.items()},
                    )
                )
            except NotImplementedError:
                unimplemented(
                    f"{self.value.__name__} with non-const args: {args} {kwargs}"
                )
        else:
            if (
                func.__module__ == "torch._numpy.random"
                and config.use_numpy_random_stream
            ):
                msg = f"delegate '{func.__qualname__}' to NumPy itself via "
                msg += f"confg.use_numpy_random_stream={config.use_numpy_random_stream}"
                unimplemented(msg)

            args, kwargs = NumpyNdarrayVariable.patch_args(func.__name__, args, kwargs)

            if self.can_constant_fold_through(func) and (
                check_unspec_or_constant_args(args, kwargs)
            ):
                # constant fold
                return variables.ConstantVariable.create(
                    self.as_python_constant()(
                        *[x.as_python_constant() for x in args],
                        **{k: v.as_python_constant() for k, v in kwargs.items()},
                    ),
                )

            # TODO Add all the functions that go from constants to constants to can_constant_fold_through
            proxy = tx.output.create_proxy(
                "call_function",
                numpy_to_tensor_wrapper(func),
                *proxy_args_kwargs(args, kwargs),
            )
            return NumpyNdarrayVariable.create(tx, proxy)

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        unimplemented("numpy")

    def as_python_constant(self):
        return self.value

    def as_proxy(self):
        if config.trace_numpy and isinstance(self.value, type):
            # This handles numpy dtype attributes such as np.float32
            # We return a string as we don't want to serialize non-PyTorch objects in the output FX graph
            # In torch/_numpy we normalize strings to their dtypes when the input is a dtype, as NumPy does
            return self.value.__name__

        return super().as_proxy()


# Used to keep track of NULLs pushed on the stack for Python 3.11 function calls
class NullVariable(VariableTracker):
    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)

    def __repr__(self) -> str:
        return "NullVariable"

    def reconstruct(self, codegen):
        if sys.version_info < (3, 11):
            unimplemented("cannot reconstruct NullVariable in < Python 3.11")
        codegen.append_output(create_instruction("PUSH_NULL"))


class DeletedVariable(VariableTracker):
    """Marker used to implement delattr()"""


class StringFormatVariable(VariableTracker):
    """
    Represents a call to str.format(), we delay calling format until after the graph.
    """

    _nonvar_fields = {"format_string", *VariableTracker._nonvar_fields}

    @classmethod
    def create(cls, format_string, sym_args, sym_kwargs):
        if all(
            x.is_python_constant()
            for x in itertools.chain(sym_args, sym_kwargs.values())
        ):
            return variables.ConstantVariable.create(
                format_string.format(
                    *[v.as_python_constant() for v in sym_args],
                    **{k: v.as_python_constant() for k, v in sym_kwargs.items()},
                )
            )
        return cls(format_string, list(sym_args), dict(sym_kwargs))

    def __init__(self, format_string, sym_args, sym_kwargs, **kwargs) -> None:
        super().__init__(**kwargs)
        assert isinstance(format_string, str)
        self.format_string = format_string
        self.sym_args = sym_args
        self.sym_kwargs = sym_kwargs

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.format_string!r}, {self.sym_args!r}, {self.sym_kwargs!r})"

    def reconstruct(self, codegen):
        codegen.add_push_null(
            lambda: codegen.extend_output(
                [
                    codegen.create_load_const(self.format_string),
                    codegen.create_load_attr("format"),
                ]
            ),
            call_function_ex=True,
        )
        codegen(variables.TupleVariable(self.sym_args))
        kwargs = {
            variables.ConstantVariable.create(k): v for k, v in self.sym_kwargs.items()
        }
        codegen(variables.ConstDictVariable(kwargs))
        codegen.append_output(create_instruction("CALL_FUNCTION_EX", arg=1))


class DebuggingVariable(VariableTracker):
    """
    Represents a call to a debugging function like print(), or something
    registered to config.reorderable_logging_functions.
    """

    def __init__(self, value, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value

    @staticmethod
    def is_reorderable_logging_function(obj):
        return (
            callable(obj)
            and isinstance(obj, (types.FunctionType, types.BuiltinFunctionType))
            and obj in torch._dynamo.config.reorderable_logging_functions
        )

    def call_function(self, tx: "InstructionTranslator", args, kwargs):
        if tx.export:
            # For export cases, we can just make debugging functions no-ops
            return

        if not self.can_reorder_logs(self.value, args, kwargs):
            unimplemented(
                f"Reordering debugging function {self.value} "
                f"with inputs {args} {kwargs} is not yet implemented."
            )

        tx.debug_locals.append((self, list(args)))

    def reconstruct(self, codegen):
        return self.source.reconstruct(codegen)

    @staticmethod
    def can_reorder_logs(fn, args, kwargs) -> True:
        """
        Run some additional checks for what sort of function calls can we
        actually reorder.
        """

        allowed_input_types = (
            variables.TensorVariable,
            variables.ConstantVariable,
            StringFormatVariable,
        )

        flat_args = pytree.tree_leaves([args, kwargs])
        for arg in flat_args:
            if not isinstance(arg, allowed_input_types):
                return False

        return True


class LoggingLoggerVariable(VariableTracker):
    """
    Represents a call to any of logging.Logger methods
    """

    def __init__(self, value, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        if tx.export:
            # For export cases, we can just make debugging functions no-ops
            return
        method = getattr(self.value, name, None)
        function = getattr(method, "__func__", None)
        if {method, function}.intersection(torch._dynamo.config.ignore_logger_methods):
            return variables.ConstantVariable.create(None)
        unimplemented(
            "Logger not supported for non-export cases. "
            "To avoid graph breaks caused by logger in compile-mode, it is recommended to"
            " disable logging by adding logging methods to config.ignore_logger_methods"
        )


class ConstantLikeVariable(VariableTracker):
    """self.value is a compile-time constant, but not a literal"""

    _error_prefix = "ConstantLikeVariable"
    try:
        from numpy import (
            dtype as np_dtype,
            floating as np_floating,
            generic as np_generic,
        )
    except ImportError:
        np_floating = type("invalid_type", (), {})
        np_dtype = type("invalid_type", (), {})

    def __init__(self, value, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value

    def as_python_constant(self):
        return self.value

    def call_method(
        self,
        tx,
        name,
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        try:
            # we only support constant propagation for methods
            cargs = [x.as_python_constant() for x in args]
            ckwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
        except NotImplementedError:
            unimplemented(f"{self._error_prefix}.{name}(*{args}, **{kwargs})")

        result = getattr(self.value, name)(*cargs, **ckwargs)

        if variables.ConstantVariable.is_literal(result):
            return variables.ConstantVariable.create(result)
        if isinstance(result, re.Match):
            return ConstantRegexMatchVariable(result)

        unimplemented(f"{self._error_prefix}.{name}() -> {result}")

    def var_getattr(self, tx: "InstructionTranslator", name: str) -> VariableTracker:
        result = getattr(self.value, name)
        if isinstance(result, self.np_floating):
            result = float(result)
        if isinstance(result, self.np_dtype):
            return NumpyDTypeVariable(result)
        if isinstance(result, type) and issubclass(result, self.np_generic):
            # things like x.dtype.type
            return NumpyVariable(result)
        if variables.ConstantVariable.is_literal(result):
            return variables.ConstantVariable.create(result)
        return GetAttrVariable(self, name)


class RegexPatternVariable(ConstantLikeVariable):
    _error_prefix = "re.Pattern"


class ConstantRegexMatchVariable(ConstantLikeVariable):
    _error_prefix = "re.Match"


class TorchVersionVariable(ConstantLikeVariable):
    _error_prefix = "torch.__version__"

    def __init__(self, **kwargs) -> None:
        kwargs.setdefault("value", torch.__version__)
        assert kwargs["value"] is torch.__version__
        super().__init__(**kwargs)


class NumpyTypeInfoVariable(ConstantLikeVariable):
    _error_prefix = "np.iinfo/np.finfo"


class NumpyDTypeVariable(ConstantLikeVariable):
    _error_prefix = "np.dtype[...]"

    def as_proxy(self):
        """Similar to how numpy dtype descriptors (e.g. np.float32 ) are handled by NumpyVariable:

        np.dtype() objects are serialized as strings, torch._numpy wrappers will normalize to the torch dtype.
        This also handles unsupported things nicely (i.e. structured arrays and object arrays).
        """
        return self.value.type.__name__


np_constant_collections_map = {
    tnp.finfo: NumpyTypeInfoVariable,
    tnp.iinfo: NumpyTypeInfoVariable,
    tnp.dtype: NumpyDTypeVariable,
}


class RandomClassVariable(VariableTracker):
    """random.Random"""

    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)

    def call_function(self, tx: "InstructionTranslator", args, kwargs):
        if len(args) > 1:
            unimplemented("random.Random() with > 1 arg")
        elif kwargs:
            unimplemented("random.Random() with kwargs")
        seed = variables.ConstantVariable.create(None) if len(args) == 0 else args[0]
        return RandomVariable(
            seed=seed, mutation_type=variables.base.ValueMutationNew()
        )


class RandomVariable(VariableTracker):
    """random.Random()

    Implemented by wrapping a VariableTracker around a random.Random object.
    The supported methods for the random.Random object cannot be overriden.
    Assumes that random objects behave the same given a set seed or state.
    """

    _nonvar_fields = {
        "random",
        *VariableTracker._nonvar_fields,
    }

    _supported_fn_names = {
        "random",
        "randint",
        "randrange",
        "uniform",
    }

    def __init__(
        self,
        rand: Optional[random.Random] = None,
        seed: Optional[VariableTracker] = None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        if rand is not None:
            assert self.is_supported_random_obj(rand)
            self.random = random.Random()
            self.random.setstate(rand.getstate())
        else:
            seed = seed.as_python_constant() if seed is not None else None
            self.random = random.Random(seed)

    def python_type(self):
        return random.Random

    def as_python_constant(self):
        return self.random

    @staticmethod
    def is_supported_random_obj(val):
        if type(val) is not random.Random:
            return False
        for name in itertools.chain(
            RandomVariable._supported_fn_names, ("seed", "getstate", "setstate")
        ):
            if not hasattr(val, name):
                return False
            meth = getattr(val, name)
            if inspect.isbuiltin(meth):
                # e.g. random.Random.random
                if meth != getattr(random.Random, name).__get__(val):
                    return False
            else:
                if getattr(meth, "__func__", None) is not getattr(random.Random, name):
                    return False
        return True

    @staticmethod
    def check_state(state):
        assert type(state) is tuple
        assert type(state[0]) is int
        assert type(state[1]) is tuple
        assert all(type(x) is int for x in state[1])
        assert state[2] is None or type(state[2]) is float

    @staticmethod
    def wrap_state(state):
        RandomVariable.check_state(state)
        return variables.TupleVariable(
            [
                variables.ConstantVariable.create(state[0]),
                variables.TupleVariable(
                    [variables.ConstantVariable.create(x) for x in state[1]]
                ),
                variables.ConstantVariable.create(state[2]),
            ]
        )

    @staticmethod
    def unwrap_state(state):
        state_obj = state.as_python_constant()
        RandomVariable.check_state(state_obj)
        return state_obj

    def call_method(
        self,
        tx,
        name,
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        if name == "seed":
            tx.output.side_effects.mutation(self)
            self.random.seed(
                *[x.as_python_constant() for x in args],
                **{key: val.as_python_constant() for key, val in kwargs.items()},
            )
            return variables.ConstantVariable.create(None)
        elif name == "getstate":
            return self.wrap_state(self.random.getstate())
        elif name == "setstate":
            tx.output.side_effects.mutation(self)
            self.random.setstate(self.unwrap_state(args[0]))
            return variables.ConstantVariable.create(None)
        elif name in self._supported_fn_names:
            tx.output.side_effects.mutation(self)
            state = self.random.getstate()

            def call_random_meth(*args, **kwargs):
                r = random.Random()
                r.setstate(state)
                return getattr(r, name)(*args, **kwargs)

            # self.random state not actually updated by call_random_meth, so update here
            # by calling the method
            getattr(self.random, name)(
                *[x.as_python_constant() for x in args],
                **{k: v.as_python_constant() for k, v in kwargs.items()},
            )

            return call_random_fn(tx, call_random_meth, args, kwargs)
        return super().call_method(tx, name, args, kwargs)

    def reconstruct(self, codegen):
        codegen.add_push_null(
            lambda: codegen.extend_output(
                [
                    codegen.create_load_python_module(random),
                    codegen.create_load_attr("Random"),
                ]
            )
        )
        codegen.call_function(0, False)
        # NOTE using add_push_null may result in NULL being duplicated
        # so defer the push_null to call_function
        codegen.dup_top()
        codegen.load_attr("setstate")
        codegen(self.wrap_state(self.random.getstate()))
        codegen.call_function(1, True)
        codegen.pop_top()


class WeakRefVariable(VariableTracker):
    @staticmethod
    def build(tx, weakref_value, **options):
        source = options.get("source", None)
        referent = weakref_value()
        source = source and WeakRefCallSource(source)
        referent_vt = VariableTracker.build(tx, referent, source)
        options["source"] = source
        return WeakRefVariable(referent_vt, **options)

    def __init__(self, referent_vt, **options):
        super().__init__(**options)
        self.referent_vt = referent_vt

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        return self.referent_vt