File: nn_module.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1134 lines) | stat: -rw-r--r-- 47,081 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
# mypy: ignore-errors

import functools
import inspect
import itertools
import types
from contextlib import contextmanager, nullcontext
from typing import Dict, List, TYPE_CHECKING

import torch.nn

from .. import trace_rules, variables
from ..exc import (
    raise_observed_exception,
    unimplemented,
    UnspecializeRestartAnalysis,
    Unsupported,
)
from ..guards import GuardBuilder, install_guard
from ..mutation_guard import GenerationTracker
from ..source import (
    AttrSource,
    ConstDictKeySource,
    FSDPNNModuleSource,
    GetItemSource,
    NNModuleSource,
    UnspecializedBuiltinNNModuleSource,
    UnspecializedNNModuleSource,
)
from ..utils import (
    get_custom_getattr,
    get_fake_value,
    is_lazy_module,
    is_namedtuple,
    is_safe_constant,
    istensor,
    istype,
    nnmodule_has_hooks,
    object_has_getattribute,
    proxy_args_kwargs,
    set_example_value,
    unpatched_nn_module_call,
    unpatched_nn_module_call_impl,
)
from .base import typestr, ValueMutationNew, VariableTracker
from .functions import invoke_and_store_as_constant
from .lazy import LazyVariableTracker
from .lists import SliceVariable
from .user_defined import UserDefinedObjectVariable


if TYPE_CHECKING:
    from torch._dynamo.symbolic_convert import InstructionTranslator


def initialize_lazy_module(tx: "InstructionTranslator", mod, args, kwargs):
    """
    Fairly coupled helper used by NNModuleVariable and UnspecializedNNModuleVariable.

    Used to cause lazy module to be initialized (and delete its init hook) before tracing. Especially
    useful now that 'allowed' modules graph-break on hooks, calling this first ensures there is no hook
    by the time we trace __call__ and thus no graph-break for lazy allowed modules.
    """
    if hasattr(mod, "_initialize_hook"):

        def convert_to_fake(x):
            if is_namedtuple(x):
                return type(x)(*(convert_to_fake(elem) for elem in x))
            elif isinstance(x, dict):
                return {k: convert_to_fake(v) for k, v in x.items()}
            elif isinstance(x, (list, tuple, set)):
                return type(x)(convert_to_fake(elem) for elem in x)
            elif isinstance(x, torch.fx.Proxy):
                return get_fake_value(x.node, tx)
            else:
                return x

        proxy_args, proxy_kwargs = proxy_args_kwargs(args, kwargs)
        fake_args = [convert_to_fake(arg) for arg in proxy_args]
        fake_kwargs = {k: convert_to_fake(v) for k, v in proxy_kwargs.items()}
        mod._infer_parameters(mod, fake_args, fake_kwargs)


@contextmanager
def record_nn_module_stack(module_key: str, source, tx, mod: torch.nn.Module):
    fully_qualified_name = source.name()
    num_calls = tx.num_calls.get(fully_qualified_name, 0)
    module_key = f"{module_key}@{num_calls}" if num_calls > 0 else module_key
    try:
        tx.nn_module_stack[module_key] = (fully_qualified_name, mod.__class__)
        tx.num_calls[fully_qualified_name] = num_calls + 1
        yield
    finally:
        del tx.nn_module_stack[module_key]


def guard_to_detect_forward_monkeypatching(source, mod):
    # Users sometimes patch the forward method of a nn module instance to
    # perform optimizations like quantization. Though this is not a good
    # software practice, but python allows this and Dynamo needs to detect
    # this patching.
    #
    # One way to do this is to add an ID_MATCH guard on every function
    # getting inlined (https://github.com/pytorch/pytorch/pull/124975). But
    # this increased guard overhead by around 20%.
    #
    # To keep the guard overhead down, we just guard on the `forward` being
    # not present in the mod __dict__. The common case of patching forward
    # method adds `forward` in the instance __dict__, whereas the unpatched
    # `forward` sits in the type(mod).__dict__
    if source:
        if "forward" in mod.__dict__ and callable(mod.__dict__["forward"]):
            # Monkeypatched forward method, add an ID_MATCH guard on forward function
            fwd = mod.__dict__["forward"]
            forward_source = AttrSource(source, "forward")
            if type(fwd) is types.MethodType:
                forward_source = AttrSource(forward_source, "__func__")
            install_guard(forward_source.make_guard(GuardBuilder.CLOSURE_MATCH))
        else:
            # Common case - check that the forward key is absent in mod __dict__
            install_guard(
                source.make_guard(
                    functools.partial(
                        GuardBuilder.NOT_PRESENT_IN_GENERIC_DICT, attr="forward"
                    )
                )
            )


class NNModuleVariable(VariableTracker):
    _nonvar_fields = {
        "module_type",
        "module_key",
        "module",
        "nn_module_stack_source",
        *VariableTracker._nonvar_fields,
    }

    def __init__(
        self, module_type: type, module_key: str, module: torch.nn.Module, **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.module_type = module_type
        self.module_key = module_key
        self.module = module
        assert self.source
        self.nn_module_stack_source = self.source

    def get_nn_module_stack_source(self):
        return self.nn_module_stack_source or self.source

    def set_nn_module_stack_source(self, source):
        self.nn_module_stack_source = source

    def python_type(self):
        return self.module_type

    def _wrap_submodule(
        self, tx: "InstructionTranslator", source, submod, *key_extra, **options
    ):
        return

    def unpack_var_sequence(self, tx):
        # implement list/iter/tuple/etc calls
        base = tx.output.get_submodule(self.module_key)
        if isinstance(base, torch.nn.ModuleDict):
            result = []
            for name, submod in base.items():
                name_var = variables.ConstantVariable.create(name)
                tx.output.register_attr_or_module(
                    submod,
                    self.module_key,
                    name,
                    source=NNModuleSource(GetItemSource(self.source, name)),
                )
                result.append(name_var)
            return result

        assert isinstance(
            base, (torch.nn.ModuleList, torch.nn.ParameterList, torch.nn.Sequential)
        ), typestr(base)
        assert self.source
        result = []
        for idx, submod in enumerate(base):
            result.append(
                tx.output.register_attr_or_module(
                    submod,
                    self.module_key,
                    idx,
                    source=NNModuleSource(GetItemSource(self.source, idx)),
                )
            )
        return result

    def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        mod = tx.output.get_submodule(self.module_key)
        result = hasattr(mod, name)
        install_guard(
            NNModuleSource(AttrSource(self.source, name)).make_guard(
                GuardBuilder.HASATTR
            )
        )
        return variables.ConstantVariable.create(result)

    def is_training(self, tx):
        mod = tx.output.get_submodule(self.module_key)
        return getattr(mod, "training", False)

    def convert_to_unspecialized(self, tx):
        """Restart analysis treating this module as an UnspecializedNNModuleVariable"""
        mod = tx.output.get_submodule(self.module_key)
        GenerationTracker.tag(mod)

        # Mark the class dynamic unless its module initialization
        if tx.f_code.co_name != "__init__":
            GenerationTracker.mark_class_dynamic(type(mod))
        raise UnspecializeRestartAnalysis

    def has_key_in_generic_dict(self, tx: "InstructionTranslator", key):
        base = tx.output.get_submodule(self.module_key)

        if object_has_getattribute(base):
            unimplemented("NNModuleVariable with custom __getattribute__")

        if tx.output.side_effects.has_pending_mutation_of_attr(self, key):
            mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True)
            return not isinstance(mutated_attr, variables.DeletedVariable)

        base_dict = object.__getattribute__(base, "__dict__")
        return key in base_dict

    def _custom_getattr_fallback(self, base, tx, name, obj_source):
        """Check for a __getattr__ and handle it specially if it is implemented"""
        if object_has_getattribute(base):
            unimplemented("torch.nn.Module with a custom __getattribute__ defined")

        getattr_fn = get_custom_getattr(base, ignore_nn_module_getattr=True)
        if getattr_fn is None:
            return None

        if not isinstance(getattr_fn, types.FunctionType):
            unimplemented("torch.nn.Module with a non-function custom __getattr__")

        options = {"source": AttrSource(obj_source, "__getattr__")}
        return variables.UserMethodVariable(getattr_fn, self, **options).call_function(
            tx, [variables.ConstantVariable.create(name)], {}
        )

    def var_getattr(self, tx: "InstructionTranslator", name):
        source = self.source and AttrSource(self.source, name)

        base = tx.output.get_submodule(self.module_key)
        base_dict = object.__getattribute__(base, "__dict__")
        object_member = True
        all_class_attribute_names = set()
        for x in inspect.getmro(base.__class__):
            all_class_attribute_names.update(x.__dict__.keys())

        if not self.source:
            unimplemented("GETATTR with no source")

        if name == "__dict__":
            return variables.GetAttrVariable(self, name, source=source)

        if name in base_dict:
            subobj = base_dict[name]
        elif (
            "_modules" in base_dict
            and name in base_dict["_modules"]
            and name not in all_class_attribute_names
        ):
            subobj = base_dict["_modules"][name]
        elif "_parameters" in base_dict and name in base_dict["_parameters"]:
            subobj = base_dict["_parameters"][name]
        elif "_buffers" in base_dict and name in base_dict["_buffers"]:
            subobj = base_dict["_buffers"][name]
        else:
            try:
                subobj = inspect.getattr_static(base, name)
                object_member = False
            except AttributeError:
                # see if we can fallback to __getattr__, which is not checked by getattr_static
                result = self._custom_getattr_fallback(
                    base=base, tx=tx, name=name, obj_source=self.source
                )
                if result is not None:
                    return result
                # if we can't find a __getattr__, just raise the AttributeError
                raise

        if name == "forward":
            guard_to_detect_forward_monkeypatching(self.source, base)

        if name == "__class__" and not object_member:
            return variables.UserDefinedClassVariable(base.__class__, source=source)

        if object_member:
            out = VariableTracker.build(tx, subobj, NNModuleSource(source))

            if isinstance(out, (NNModuleVariable, UnspecializedNNModuleVariable)):
                # nn_module_stack source is BC surface area. Ensure that
                # mod._modules["linear"] is reflected as mod.linear for
                # nn_module_stack.
                out.set_nn_module_stack_source(
                    AttrSource(self.get_nn_module_stack_source(), name)
                )
            return out

        else:
            if istype(subobj, property):
                if self.source:
                    # Read the class attribute to reach the property
                    source = AttrSource(AttrSource(self.source, "__class__"), name)
                    # Get the getter function
                    source = AttrSource(source, "fget")
                return variables.UserFunctionVariable(
                    subobj.fget,
                    source=source,
                ).call_function(tx, [(self)], {})
            elif istype(subobj, classmethod):
                return variables.UserMethodVariable(
                    subobj.__func__,
                    variables.UserDefinedObjectVariable(type(base)),
                    source=source,
                )
            elif istype(subobj, staticmethod):
                return variables.UserFunctionVariable(
                    subobj.__get__(base), source=source
                )
            elif istype(subobj, types.FunctionType):
                return variables.UserMethodVariable(subobj, self, source=source)
            elif is_safe_constant(subobj) or istensor(subobj):
                # Support possibly common cases of class members
                return VariableTracker.build(tx, subobj, NNModuleSource(source))
            else:
                unimplemented(
                    f"class property {name} - {typestr(base)} {typestr(subobj)}"
                )

        return variables.GetAttrVariable(self, name, source=source)

    def call_function(
        self,
        tx,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        mod = tx.output.get_submodule(self.module_key)

        with record_nn_module_stack(
            self.module_key, self.get_nn_module_stack_source(), tx, mod
        ):
            is_lazy = is_lazy_module(mod)
            if (
                isinstance(mod, torch.nn.Sequential)
                and mod.__class__.forward is torch.nn.Sequential.forward
            ):
                if nnmodule_has_hooks(mod):
                    # We do not want to unroll sequential if it has hooks, since evaporating it
                    # will cause hooks to not fire!
                    # This terminates and restart the tracing process
                    self.convert_to_unspecialized(tx)

                # Unroll sequential
                assert (
                    not is_lazy
                ), "Expected lazy sequential isn't a valid combination?"
                assert not kwargs
                (arg,) = args
                # TODO: Use named_children when it supports remove_duplicate=False.
                for child_name, submod in mod._modules.items():
                    tx.call_function(
                        tx.output.register_attr_or_module(
                            submod,
                            self.module_key,
                            child_name,
                            source=NNModuleSource(AttrSource(self.source, child_name)),
                        ),
                        [arg],
                        {},
                    )
                    arg = tx.pop()
                return arg

            if is_lazy:
                # The module type will change after it is called
                if mod.cls_to_become is not None:
                    self.module_type = mod.cls_to_become

                # The pre-hook runs to initialize the module shapes, then deletes itself.  After this,
                # the module is more or less not lazy and can be treated as a normal module regardless of
                # is_allowed or other variations.
                initialize_lazy_module(tx, mod, args, kwargs)

            # If we are tracing the higher order op, we want Dynamo to step
            # inside the module call so that Dynamo can see the underlying
            # parameters and buffers and raise them as inputs to the graph.
            #
            # NB: torch.nn.utils.parametrize changes the class type of a
            # parametrized module such that its __module__ points to
            # "torch.nn.utils.parametrize".
            if (
                tx.output.is_root_tracer()
                and mod.__module__.startswith(("torch.nn.", "torch.ao."))
                and mod.__module__ != "torch.nn.utils.parametrize"
            ):
                if nnmodule_has_hooks(
                    mod, check_forward_hooks=True, check_backward_hooks=True
                ):
                    # End of fn, this bubbles up and restarts tracing.
                    self.convert_to_unspecialized(tx)

                from .builder import wrap_fx_proxy

                return wrap_fx_proxy(
                    tx=tx,
                    proxy=tx.output.create_proxy(
                        "call_module",
                        self.module_key,
                        *proxy_args_kwargs(args, kwargs),
                    ),
                )
            else:
                assert self.source, (
                    "Must provide a valid source in order to inline, "
                    "since inlined function may have default args which must be guarded."
                )
                if isinstance(mod, torch.fx.GraphModule):
                    # TODO: do we want to support __call__ for GM's?
                    # If so at least some changes are needed, we don't allow inlining
                    # the call_wrapped currently, and maybe other issues too
                    fn = mod.forward
                    fn_source = AttrSource(self.source, "forward")
                else:
                    fn = mod._call_impl
                    fn_source = AttrSource(self.source, "_call_impl")
                if istype(fn, types.MethodType):
                    fn = fn.__func__
                    fn_source = AttrSource(fn_source, "__func__")
                    args = [self] + args
                else:
                    assert istype(fn, types.FunctionType)
                return tx.inline_user_function_return(
                    variables.UserFunctionVariable(fn, source=fn_source),
                    args,
                    kwargs,
                )

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
        constant=False,
    ) -> "VariableTracker":
        from . import ConstantVariable, ListIteratorVariable, TupleVariable

        key = self.module_key
        module = tx.output.get_submodule(key)

        def generic_call_method_helper(name):
            # Helper function to put a `call_method` node in FX graph,
            # with nn.Module as the first arg.
            mod_proxy = tx.output.create_proxy(
                "get_attr",
                self.module_key,
                (),
                {},
            )
            set_example_value(mod_proxy.node, module)

            proxy_args, proxy_kwargs = proxy_args_kwargs(args, kwargs)

            from .builder import wrap_fx_proxy

            return wrap_fx_proxy(
                tx=tx,
                proxy=tx.output.create_proxy(
                    "call_method",
                    name,
                    args=(mod_proxy, *proxy_args),
                    kwargs=proxy_kwargs,
                ),
            )

        if name in ["_call_impl", "_wrapped_call_impl"]:
            # Example: `self.layer.__call__(x)`
            # This is used for explicit calling `__call__` in a forward function.
            # Dynamo inlines `__call__`, includes hooks.
            return self.call_function(tx, args, kwargs)
        elif name == "forward":
            # Example: `self.layer.forward(x)`
            # This is used for explicit calling `forward` in a forward function.
            # Dynamo puts `call_method` node in FX, doesn't trigger hooks.
            with record_nn_module_stack(
                self.module_key, self.get_nn_module_stack_source(), tx, module
            ):
                return generic_call_method_helper(name)

        if name == "_check_input_dim" and trace_rules.is_torch_inline_allowed(
            inspect.getfile(module.__class__._check_input_dim)
        ):
            return ConstantVariable.create(True)

        if name == "_get_item_by_idx":
            assert args[1].is_python_constant()
            assert isinstance(args[0], TupleVariable)
            mod_var = args[0].items[args[1].value]
            if isinstance(mod_var, UnspecializedNNModuleVariable):
                return mod_var
            key = mod_var.module_key
            submod = tx.output.get_submodule(key)
            return tx.output.register_attr_or_module(
                submod,
                key,
                key,
                source=NNModuleSource(GetItemSource(self.source, key)),
            )

        if constant:
            fn = getattr(module, name)
            name = f"{module.__class__.__name__}_{name}_result"
            return invoke_and_store_as_constant(tx, fn, name, args, kwargs)

        def assert_all_args_kwargs_const():
            if not all(
                x.is_python_constant() for x in itertools.chain(args, kwargs.values())
            ):
                unimplemented(f"non-const NNModule method {name}")

        def get_kwargs(*names):
            assert_all_args_kwargs_const()
            fn = getattr(module, name)
            bound_args = inspect.signature(fn).bind(
                *([x.as_python_constant() for x in args]),
                **{k: v.as_python_constant() for k, v in kwargs.items()},
            )
            bound_args.apply_defaults()
            bound_args = bound_args.arguments
            return {k: bound_args[k] for k in names}

        def wrap_values(items):
            result = []
            for name, submod in items:
                result.append(
                    tx.output.register_attr_or_module(
                        submod,
                        key,
                        name,
                        source=NNModuleSource(gen_source(self.source, name)),
                    )
                )
            return ListIteratorVariable(result, mutation_type=ValueMutationNew())

        def named_embed(name, obj):
            return TupleVariable(
                [
                    ConstantVariable.create(name),
                    tx.output.register_attr_or_module(
                        obj,
                        key,
                        name,
                        source=NNModuleSource(gen_source(self.source, name)),
                    ),
                ]
            )

        def gen_source(source, name):
            name_split = name.split(".")
            if name_split[0] == "":
                return source
            while len(name_split) > 0:
                x = name_split.pop(0)
                source = AttrSource(source, x)
            return source

        if name == "named_children":
            tx.output.guard_on_key_order.add(AttrSource(self.source, "_modules").name())
            assert not (args or kwargs)
            result = []
            for name, submod in module.named_children():
                result.append(named_embed(name, submod))
            return ListIteratorVariable(result, mutation_type=ValueMutationNew())
        elif name == "named_parameters":
            tx.output.guard_on_key_order.add(
                AttrSource(self.source, "_parameters").name()
            )
            result = []
            for name, param in module.named_parameters(
                **get_kwargs("prefix", "recurse")
            ):
                result.append(named_embed(name, param))
            return ListIteratorVariable(result, mutation_type=ValueMutationNew())
        elif name == "named_buffers":
            tx.output.guard_on_key_order.add(AttrSource(self.source, "_buffers").name())
            result = []
            for name, buffer in module.named_buffers(
                **get_kwargs("prefix", "recurse", "remove_duplicate")
            ):
                result.append(named_embed(name, buffer))
            return ListIteratorVariable(result, mutation_type=ValueMutationNew())
        elif name == "named_modules":
            tx.output.guard_on_key_order.add(AttrSource(self.source, "_modules").name())
            result = []
            for name, submod in module.named_modules(
                **get_kwargs("memo", "prefix", "remove_duplicate")
            ):
                result.append(named_embed(name, submod))
            return ListIteratorVariable(result, mutation_type=ValueMutationNew())
        elif name == "children":
            tx.output.guard_on_key_order.add(AttrSource(self.source, "_modules").name())
            assert not (args or kwargs)
            return wrap_values(module.named_children())
        elif name == "modules":
            tx.output.guard_on_key_order.add(AttrSource(self.source, "_modules").name())
            return wrap_values(module.named_modules())
        elif name == "parameters":
            tx.output.guard_on_key_order.add(
                AttrSource(self.source, "_parameters").name()
            )
            return wrap_values(module.named_parameters(**get_kwargs("recurse")))
        elif name == "buffers":
            tx.output.guard_on_key_order.add(AttrSource(self.source, "_buffers").name())
            return wrap_values(module.named_buffers(**get_kwargs("recurse")))
        elif name == "keys":
            assert not (args or kwargs)
            result = []
            for name in module.keys():
                result.append(ConstantVariable.create(name))
            return ListIteratorVariable(result, mutation_type=ValueMutationNew())
        elif name == "values":
            assert not (args or kwargs)
            return wrap_values(module.items())
        elif name == "items":
            assert not (args or kwargs)
            result = []
            for name, submod in module.items():
                result.append(named_embed(name, submod))
            return ListIteratorVariable(result, mutation_type=ValueMutationNew())
        elif name == "__len__":
            assert not (args or kwargs)
            return ConstantVariable.create(len(module))
        elif (
            name == "__contains__"
            and isinstance(module, (torch.nn.ModuleDict, torch.nn.ParameterDict))
            and args
            and args[0].is_python_constant()
        ):
            return ConstantVariable.create(
                args[0].as_python_constant() in module._modules
            )
        elif name == "__getitem__":
            assert not kwargs and len(args) == 1
            builtin_supported = (
                torch.nn.ModuleDict.__getitem__,
                torch.nn.ModuleList.__getitem__,
                torch.nn.ParameterDict.__getitem__,
                torch.nn.ParameterList.__getitem__,
                torch.nn.Sequential.__getitem__,
            )

            if type(module).__getitem__ not in builtin_supported:
                assert isinstance(args[0], variables.ConstantVariable), typestr(args[0])
                key = args[0].as_python_constant()
                assert isinstance(key, (str, int))
                fn = getattr(module, name).__func__

                assert isinstance(fn, types.FunctionType)

                src = AttrSource(AttrSource(self.source, name), "__func__")
                return tx.inline_user_function_return(
                    variables.UserFunctionVariable(fn, source=src),
                    [self] + list(args),
                    kwargs,
                )

            assert self.source

            if isinstance(args[0], SliceVariable):
                # TODO(anijain2305,export-team) - Remove this if condition when inlining of inbuilt nn modules is
                # enabled for export.
                if tx.output.export:
                    # Build a TupleVariable of NNModules
                    result = []

                    # Turn the slice into the list of integers
                    keys = list(range(len(module)))[args[0].as_python_constant()]
                    for idx, submod in enumerate(module[args[0].as_python_constant()]):
                        key = keys[idx]
                        src = NNModuleSource(GetItemSource(self.source, key))
                        result.append(
                            tx.output.register_attr_or_module(
                                submod,
                                key,
                                source=src,
                            )
                        )

                    new_module = module[args[0].as_python_constant()]
                    new_module_variable = tx.output.register_attr_or_module(
                        new_module,
                        f"{self}.__getitem__(slice)",
                        source=NNModuleSource(
                            GetItemSource(self.source, args[0].as_python_constant())
                        ),
                    )
                    return new_module_variable
                else:
                    # slice on nn module results in a creation of new module instance, so we need to make it sourceless.
                    # Convert to unspecialized so that UnspecializedNNModule variable can take care of it.
                    self.convert_to_unspecialized(tx)

            from .tensor import SymNodeVariable

            if isinstance(args[0], SymNodeVariable):
                key = args[0].evaluate_expr(tx.output)
            elif args[0].is_python_constant():
                key = args[0].as_python_constant()
            else:
                unimplemented(f"getitem on NNModuleVariable with key {args[0]}")

            submod = module[key]
            return tx.output.register_attr_or_module(
                submod,
                self.module_key,
                key,
                source=NNModuleSource(GetItemSource(self.source, key)),
            )
        elif (
            name == "_get_abs_string_index"
            or (
                isinstance(module, torch.nn.modules.conv._ConvNd)
                and name == "_conv_forward"
            )
            or (
                isinstance(module, torch.nn.modules.conv._ConvTransposeNd)
                and name == "_output_padding"
            )
        ):
            # Inline the function
            fn = getattr(module, name).__func__
            fn_source = AttrSource(AttrSource(self.source, name), "__func__")
            return tx.inline_user_function_return(
                variables.UserFunctionVariable(fn, source=fn_source),
                [self] + args,
                kwargs,
            )
        # A loose heuristic, but seems to be generally good before we drop into the
        # manual handling of inputs
        elif (
            name in module.__class__.__dict__
            and callable(module.__class__.__dict__[name])
            and all(
                isinstance(x, variables.TensorVariable)
                for x in itertools.chain(args, kwargs.values())
            )
        ):
            return generic_call_method_helper(name)
        else:
            return super().call_method(tx, name, args, kwargs)


class UnspecializedNNModuleVariable(UserDefinedObjectVariable):
    _nonvar_fields = {
        "value_type",
        "is_state_mutated",
        "nn_module_stack_source",
        *UserDefinedObjectVariable._nonvar_fields,
    }

    """
    The above class will specialize on the id() of a module and place
    parameters on the torch.fx.GraphModule.  Giving one graph per
    module instance.  This version treats nn.Modules() like other user
    defined objects and will pass parameters into the FX graph as inputs.
    Giving one graph per module class.
    """

    def __init__(self, value, **kwargs) -> None:
        if type(value) is torch.jit._script.RecursiveScriptModule:
            raise Unsupported(
                "ScriptModules aren't supported in UnspecializedNNModuleVariable"
                " becuase their .forward function isn't a static member of their type"
            )
        if "value_type" in kwargs:
            lazy_value_to_become = getattr(kwargs["value_type"], "cls_to_become", None)
            if type(value) is lazy_value_to_become:
                # We may have cloned a variabletracker for a LazyModule earlier (e.g. tracking side-effects)
                # and then later we called and mutated the LazyModule into a MaterializedModule.
                # We do not do the mutation upon first seeing a LazyModule since we preserve eager semantics to only
                # mutate upon first call, but this requires we update multiple copies of the VariableTracker post-mutation.
                kwargs["value_type"] = type(value)

        super().__init__(value=value, **kwargs)
        self.is_state_mutated = False
        # nn_module_stack_source is used to ensure BC for nn_module_stack.
        # Downstream users prefer mod.linear instead of mod._modules['linear']
        # as the module stack. When Dynamo inlines the __getattr__ method, we
        # cannot use self.source for nn_module_stack because it will be similar
        # to mod._modules['linear']. In these cases, we set the
        # nn_module_stack_source appropriately to resemble mod.linear.
        self.nn_module_stack_source = self.source

    def _wrap_source(self, attr_source):
        if not isinstance(attr_source, UnspecializedNNModuleSource):
            return UnspecializedNNModuleSource(attr_source)
        return attr_source

    def get_nn_module_stack_source(self):
        return self.nn_module_stack_source or self.source

    def set_nn_module_stack_source(self, source):
        self.nn_module_stack_source = source

    @staticmethod
    @functools.lru_cache(None)
    def _nn_module_method_ids():
        # Allow __setattr__ to fall through to base class handler
        supported = {torch.nn.Module.__setattr__, torch.nn.Module.__init__}
        return {
            id(x.__code__)
            for x in torch.nn.Module.__dict__.values()
            if hasattr(x, "__code__") and x not in supported
        }

    def unpack_var_sequence(self, tx):
        try:
            fn = inspect.getattr_static(self.value_type, "__iter__")
        except AttributeError as e:
            raise NotImplementedError from e

        if fn in (
            torch.nn.ModuleList.__iter__,
            torch.nn.ParameterList.__iter__,
            torch.nn.Sequential.__iter__,
        ):
            # The program can mutate the nn module object but the saved `value`
            # will not reflect the mutations. So, trace through the `__iter__`
            # function to reflect any tracked mutations.
            return tx.inline_user_function_return(
                variables.UserFunctionVariable(fn),
                [
                    self,
                ],
                {},
            ).unpack_var_sequence(tx)

        return super().unpack_var_sequence(tx)

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        mod = self.value
        # see comment on lazy module handling in NNModuleVariable.call_function for context
        if is_lazy_module(mod):
            if mod.cls_to_become is not None:
                self.value_type = mod.cls_to_become
            initialize_lazy_module(tx, mod, args, kwargs)

        if (
            not isinstance(mod, torch.fx.GraphModule)
            and mod.__call__.__func__ is not unpatched_nn_module_call
        ):
            name = "__call__"
            fn = getattr(self.value_type, name)
        else:
            name = "_call_impl"
            fn = getattr(self.value_type, name)

        # Check if we can short circuit nn.Module._call_impl to the forward
        # method.  NB - This is done to reduce the compile time of Dynamo.
        if (
            istype(mod.__call__, types.MethodType)
            and istype(mod._call_impl, types.MethodType)
            and mod.__call__.__func__ is unpatched_nn_module_call
            and mod._call_impl.__func__ is unpatched_nn_module_call_impl
            and "forward" not in mod.__dict__
        ):
            forward_method = inspect.getattr_static(mod, "forward")
            if isinstance(forward_method, types.FunctionType):
                globals_vt = tx.nn_modules_globals_vt
                if not (
                    self.var_getattr(tx, "_backward_hooks").realize().len()
                    or self.var_getattr(tx, "_backward_pre_hooks").realize().len()
                    or self.var_getattr(tx, "_forward_hooks").realize().len()
                    or self.var_getattr(tx, "_forward_pre_hooks").realize().len()
                    or globals_vt.var_getattr(tx, "_global_backward_pre_hooks").len()
                    or globals_vt.var_getattr(tx, "_global_backward_hooks").len()
                    or globals_vt.var_getattr(tx, "_global_forward_hooks").len()
                    or globals_vt.var_getattr(tx, "_global_forward_pre_hooks").len()
                ):
                    name = "forward"
                    fn = self.value_type.forward

        if self.source:
            source = AttrSource(AttrSource(self.source, "__class__"), name)
        else:
            source = None

        guard_to_detect_forward_monkeypatching(self.source, mod)

        ctx = (
            record_nn_module_stack(
                str(id(mod)), self.get_nn_module_stack_source(), tx, mod
            )
            if self.source
            else nullcontext()
        )
        with ctx:
            return variables.UserFunctionVariable(fn, source=source).call_function(
                tx, [self] + list(args), kwargs
            )

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        if name in ["_call_impl", "_wrapped_call_impl"]:
            fn = getattr(self.value_type, name)
            if self.source:
                source = AttrSource(AttrSource(self.source, "__class__"), name)
            else:
                source = None

            return variables.UserFunctionVariable(fn, source=source).call_function(
                tx, [self] + list(args), kwargs
            )

        if name not in getattr(self.value, "__dict__", {}):
            try:
                method = inspect.getattr_static(type(self.value), name)
            except AttributeError:
                method = None

            if isinstance(method, staticmethod):
                source = AttrSource(
                    AttrSource(AttrSource(self.source, "__class__"), name), "__func__"
                )
                return tx.inline_user_function_return(
                    variables.UserFunctionVariable(method.__func__, source=source),
                    args,
                    kwargs,
                )

            if (
                hasattr(method, "__code__")
                and id(method.__code__) in self._nn_module_method_ids()
            ):
                unimplemented(f"UnspecializedNNModuleVariable missing {name}")

            # "_parameters" in self.value.__dict__ checks that module is initialized
            if name == "__setattr__" and "_parameters" in self.value.__dict__:
                # Record if mutations happens on parameters/buffers/modules. The
                # mutations on these are not tracked by base class
                # UserDefinedObject vt. This will be used later to graph break
                # on seeing a paramters() and family calls.
                # TODO(anijain2305) - This might not be needed if we let Dynamo
                # inline both getattr and setattr. In that case, it should see
                # the lowest level dicts - _parameters and family and
                # automatically track mutations on those. Investigate if that
                # can be done.
                attr_name = args[0].as_python_constant()
                value = args[1]

                # This is reverse engineered by looking at nn module __setattr__
                # logic.
                if (
                    isinstance(value, variables.TensorVariable)
                    and value.python_type() is torch.nn.Parameter
                ) or attr_name in self.value.__dict__["_parameters"]:
                    # Handle parameters
                    self.is_state_mutated = True
                elif attr_name in self.value.__dict__["_buffers"]:
                    # Handle buffers
                    self.is_state_mutated = True
                elif (
                    isinstance(
                        value,
                        (
                            variables.NNModuleVariable,
                            variables.UnspecializedNNModuleVariable,
                        ),
                    )
                    or attr_name in self.value.__dict__["_modules"]
                ):
                    # Handle submodules
                    self.is_state_mutated = True

            if method is torch.nn.Module.__setattr__ and isinstance(
                args[1], variables.DeletedVariable
            ):
                # Trace through __delattr__ to track mutations on the module
                # members like `_modules``.
                return tx.inline_user_function_return(
                    variables.UserFunctionVariable(torch.nn.Module.__delattr__),
                    [self, args[0]],
                    kwargs,
                )

        return super().call_method(tx, name, args, kwargs)

    def getattr_helper(self, tx: "InstructionTranslator", field, name_vt):
        dict_vt = self.var_getattr(tx, field)
        if isinstance(dict_vt, variables.ConstDictVariable):
            return dict_vt.maybe_getitem_const(name_vt)
        return None

    def var_getattr(self, tx: "InstructionTranslator", name):
        # Allow skipping of empty hook dict guards on inbuilt nn modules
        if name in (
            "_backward_hooks",
            "_backward_pre_hooks",
            "_forward_hooks",
            "_forward_pre_hooks",
        ):
            # For empty hooks, make an EMPTY_NN_MODULE_HOOKS_DICT. This allows us to control the installation of empty
            # hooks guard via skip_nnmodule_hook_guards
            if not tx.output.side_effects.has_pending_mutation_of_attr(self, name):
                hooks_dict = getattr(self.value, name)
                if isinstance(hooks_dict, dict) and len(hooks_dict) == 0:
                    if self.source:
                        hooks_source = AttrSource(self.source, name)
                        install_guard(
                            hooks_source.make_guard(
                                GuardBuilder.EMPTY_NN_MODULE_HOOKS_DICT
                            )
                        )
                    return variables.ConstDictVariable({})

        # For non-empty hook dicts, one way is to just fallback to VariableTracker.build() and create a ConstDictVariable.
        # However, ConstDictVariable guards on keys. This can cause recompiles when the same hook is installed for
        # differnt nn module instances, because the key keeps changing (look more into RemovableHandle to understand why
        # key changes - also related https://github.com/pytorch/pytorch/issues/125836). Here, we carefully craft a
        # ConstDictVariable to avoid any guard on the keys.
        if (
            self.source
            and name
            in (
                "_forward_pre_hooks",
                "_forward_hooks",
            )
            and not tx.output.side_effects.has_pending_mutation_of_attr(self, name)
        ):
            hooks_dict = getattr(self.value, name)
            hooks_dict_source = AttrSource(self.source, name)
            install_guard(hooks_dict_source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
            tx.output.guard_on_key_order.add(hooks_dict_source.name())

            def build_key_value(i, k, v):
                # Make key sourceless to avoid any guard on it
                key = variables.ConstantVariable.create(k)

                # Instead of using dict[key] to access the value, use a dict[dict.keys()[index]] to access the
                # value. This removes the reliance on the actual key value.
                source_key = ConstDictKeySource(hooks_dict_source, i)
                source_value = GetItemSource(hooks_dict_source, source_key)
                value = LazyVariableTracker.create(v, source_value)
                return key, value

            result = dict(
                build_key_value(i, k, v) for i, (k, v) in enumerate(hooks_dict.items())
            )

            return variables.ConstDictVariable(
                result, type(hooks_dict), source=hooks_dict_source
            )
        return super().var_getattr(tx, name)

    def manually_trace_nn_module_getattr(self, tx: "InstructionTranslator", name):
        """
        Dynamo tracing of nn.Module __getattr__ can be expensive if the model
        has deep submodule hierarchy. Since the __getattr__ is stable, we can
        directly look into the underlying datastructures. This saves a lot of
        compilation time.
        """
        name_vt = variables.ConstantVariable(name)
        out = self.getattr_helper(tx, "_parameters", name_vt)
        if out is None:
            out = self.getattr_helper(tx, "_modules", name_vt)
        if out is None:
            out = self.getattr_helper(tx, "_buffers", name_vt)
        if out is None:
            raise_observed_exception(AttributeError, tx)
        return out


class UnspecializedBuiltinNNModuleVariable(UnspecializedNNModuleVariable):
    """
    Differentiates between builtin nn modules (e.g. torch.nn.Linear) and user defined nn modules.
    """

    def _wrap_source(self, attr_source):
        if not isinstance(attr_source, UnspecializedBuiltinNNModuleSource):
            return UnspecializedBuiltinNNModuleSource(attr_source)
        return attr_source


class FSDPManagedNNModuleVariable(UnspecializedNNModuleVariable):
    """
    Tracing behavior: trace into submodules and treat them as Unspecialized, do not
    register parameters to the top-level, treat them as function inputs.

    Guards behavior: if 'skip_fsdp_guards', many guards that would be installed
    by a vanilla UnspecializedNNModuleVariable are simply dropped, on the basis
    that a user wrapping their model in FSDP(model) is already opting into a
    requirement to not modify internal model state, which would already break FSDP without
    compilation.
    """

    def __init__(self, value, **kwargs) -> None:
        source = kwargs.get("source", None)
        assert (
            source is not None
        ), "FSDPManagedNNModule depends on having an accurate source to control guarding."

        super().__init__(value=value, **kwargs)
        self.source = source

    def _wrap_source(self, attr_source):
        if not isinstance(
            attr_source, (FSDPNNModuleSource, UnspecializedNNModuleSource)
        ):
            if torch._dynamo.config.skip_fsdp_guards:
                return FSDPNNModuleSource(attr_source)
            else:
                return UnspecializedNNModuleSource(attr_source)
        return attr_source