1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
|
# mypy: ignore-errors
import functools
import inspect
import itertools
import types
from contextlib import contextmanager, nullcontext
from typing import Dict, List, TYPE_CHECKING
import torch.nn
from .. import trace_rules, variables
from ..exc import (
raise_observed_exception,
unimplemented,
UnspecializeRestartAnalysis,
Unsupported,
)
from ..guards import GuardBuilder, install_guard
from ..mutation_guard import GenerationTracker
from ..source import (
AttrSource,
ConstDictKeySource,
FSDPNNModuleSource,
GetItemSource,
NNModuleSource,
UnspecializedBuiltinNNModuleSource,
UnspecializedNNModuleSource,
)
from ..utils import (
get_custom_getattr,
get_fake_value,
is_lazy_module,
is_namedtuple,
is_safe_constant,
istensor,
istype,
nnmodule_has_hooks,
object_has_getattribute,
proxy_args_kwargs,
set_example_value,
unpatched_nn_module_call,
unpatched_nn_module_call_impl,
)
from .base import typestr, ValueMutationNew, VariableTracker
from .functions import invoke_and_store_as_constant
from .lazy import LazyVariableTracker
from .lists import SliceVariable
from .user_defined import UserDefinedObjectVariable
if TYPE_CHECKING:
from torch._dynamo.symbolic_convert import InstructionTranslator
def initialize_lazy_module(tx: "InstructionTranslator", mod, args, kwargs):
"""
Fairly coupled helper used by NNModuleVariable and UnspecializedNNModuleVariable.
Used to cause lazy module to be initialized (and delete its init hook) before tracing. Especially
useful now that 'allowed' modules graph-break on hooks, calling this first ensures there is no hook
by the time we trace __call__ and thus no graph-break for lazy allowed modules.
"""
if hasattr(mod, "_initialize_hook"):
def convert_to_fake(x):
if is_namedtuple(x):
return type(x)(*(convert_to_fake(elem) for elem in x))
elif isinstance(x, dict):
return {k: convert_to_fake(v) for k, v in x.items()}
elif isinstance(x, (list, tuple, set)):
return type(x)(convert_to_fake(elem) for elem in x)
elif isinstance(x, torch.fx.Proxy):
return get_fake_value(x.node, tx)
else:
return x
proxy_args, proxy_kwargs = proxy_args_kwargs(args, kwargs)
fake_args = [convert_to_fake(arg) for arg in proxy_args]
fake_kwargs = {k: convert_to_fake(v) for k, v in proxy_kwargs.items()}
mod._infer_parameters(mod, fake_args, fake_kwargs)
@contextmanager
def record_nn_module_stack(module_key: str, source, tx, mod: torch.nn.Module):
fully_qualified_name = source.name()
num_calls = tx.num_calls.get(fully_qualified_name, 0)
module_key = f"{module_key}@{num_calls}" if num_calls > 0 else module_key
try:
tx.nn_module_stack[module_key] = (fully_qualified_name, mod.__class__)
tx.num_calls[fully_qualified_name] = num_calls + 1
yield
finally:
del tx.nn_module_stack[module_key]
def guard_to_detect_forward_monkeypatching(source, mod):
# Users sometimes patch the forward method of a nn module instance to
# perform optimizations like quantization. Though this is not a good
# software practice, but python allows this and Dynamo needs to detect
# this patching.
#
# One way to do this is to add an ID_MATCH guard on every function
# getting inlined (https://github.com/pytorch/pytorch/pull/124975). But
# this increased guard overhead by around 20%.
#
# To keep the guard overhead down, we just guard on the `forward` being
# not present in the mod __dict__. The common case of patching forward
# method adds `forward` in the instance __dict__, whereas the unpatched
# `forward` sits in the type(mod).__dict__
if source:
if "forward" in mod.__dict__ and callable(mod.__dict__["forward"]):
# Monkeypatched forward method, add an ID_MATCH guard on forward function
fwd = mod.__dict__["forward"]
forward_source = AttrSource(source, "forward")
if type(fwd) is types.MethodType:
forward_source = AttrSource(forward_source, "__func__")
install_guard(forward_source.make_guard(GuardBuilder.CLOSURE_MATCH))
else:
# Common case - check that the forward key is absent in mod __dict__
install_guard(
source.make_guard(
functools.partial(
GuardBuilder.NOT_PRESENT_IN_GENERIC_DICT, attr="forward"
)
)
)
class NNModuleVariable(VariableTracker):
_nonvar_fields = {
"module_type",
"module_key",
"module",
"nn_module_stack_source",
*VariableTracker._nonvar_fields,
}
def __init__(
self, module_type: type, module_key: str, module: torch.nn.Module, **kwargs
) -> None:
super().__init__(**kwargs)
self.module_type = module_type
self.module_key = module_key
self.module = module
assert self.source
self.nn_module_stack_source = self.source
def get_nn_module_stack_source(self):
return self.nn_module_stack_source or self.source
def set_nn_module_stack_source(self, source):
self.nn_module_stack_source = source
def python_type(self):
return self.module_type
def _wrap_submodule(
self, tx: "InstructionTranslator", source, submod, *key_extra, **options
):
return
def unpack_var_sequence(self, tx):
# implement list/iter/tuple/etc calls
base = tx.output.get_submodule(self.module_key)
if isinstance(base, torch.nn.ModuleDict):
result = []
for name, submod in base.items():
name_var = variables.ConstantVariable.create(name)
tx.output.register_attr_or_module(
submod,
self.module_key,
name,
source=NNModuleSource(GetItemSource(self.source, name)),
)
result.append(name_var)
return result
assert isinstance(
base, (torch.nn.ModuleList, torch.nn.ParameterList, torch.nn.Sequential)
), typestr(base)
assert self.source
result = []
for idx, submod in enumerate(base):
result.append(
tx.output.register_attr_or_module(
submod,
self.module_key,
idx,
source=NNModuleSource(GetItemSource(self.source, idx)),
)
)
return result
def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
mod = tx.output.get_submodule(self.module_key)
result = hasattr(mod, name)
install_guard(
NNModuleSource(AttrSource(self.source, name)).make_guard(
GuardBuilder.HASATTR
)
)
return variables.ConstantVariable.create(result)
def is_training(self, tx):
mod = tx.output.get_submodule(self.module_key)
return getattr(mod, "training", False)
def convert_to_unspecialized(self, tx):
"""Restart analysis treating this module as an UnspecializedNNModuleVariable"""
mod = tx.output.get_submodule(self.module_key)
GenerationTracker.tag(mod)
# Mark the class dynamic unless its module initialization
if tx.f_code.co_name != "__init__":
GenerationTracker.mark_class_dynamic(type(mod))
raise UnspecializeRestartAnalysis
def has_key_in_generic_dict(self, tx: "InstructionTranslator", key):
base = tx.output.get_submodule(self.module_key)
if object_has_getattribute(base):
unimplemented("NNModuleVariable with custom __getattribute__")
if tx.output.side_effects.has_pending_mutation_of_attr(self, key):
mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True)
return not isinstance(mutated_attr, variables.DeletedVariable)
base_dict = object.__getattribute__(base, "__dict__")
return key in base_dict
def _custom_getattr_fallback(self, base, tx, name, obj_source):
"""Check for a __getattr__ and handle it specially if it is implemented"""
if object_has_getattribute(base):
unimplemented("torch.nn.Module with a custom __getattribute__ defined")
getattr_fn = get_custom_getattr(base, ignore_nn_module_getattr=True)
if getattr_fn is None:
return None
if not isinstance(getattr_fn, types.FunctionType):
unimplemented("torch.nn.Module with a non-function custom __getattr__")
options = {"source": AttrSource(obj_source, "__getattr__")}
return variables.UserMethodVariable(getattr_fn, self, **options).call_function(
tx, [variables.ConstantVariable.create(name)], {}
)
def var_getattr(self, tx: "InstructionTranslator", name):
source = self.source and AttrSource(self.source, name)
base = tx.output.get_submodule(self.module_key)
base_dict = object.__getattribute__(base, "__dict__")
object_member = True
all_class_attribute_names = set()
for x in inspect.getmro(base.__class__):
all_class_attribute_names.update(x.__dict__.keys())
if not self.source:
unimplemented("GETATTR with no source")
if name == "__dict__":
return variables.GetAttrVariable(self, name, source=source)
if name in base_dict:
subobj = base_dict[name]
elif (
"_modules" in base_dict
and name in base_dict["_modules"]
and name not in all_class_attribute_names
):
subobj = base_dict["_modules"][name]
elif "_parameters" in base_dict and name in base_dict["_parameters"]:
subobj = base_dict["_parameters"][name]
elif "_buffers" in base_dict and name in base_dict["_buffers"]:
subobj = base_dict["_buffers"][name]
else:
try:
subobj = inspect.getattr_static(base, name)
object_member = False
except AttributeError:
# see if we can fallback to __getattr__, which is not checked by getattr_static
result = self._custom_getattr_fallback(
base=base, tx=tx, name=name, obj_source=self.source
)
if result is not None:
return result
# if we can't find a __getattr__, just raise the AttributeError
raise
if name == "forward":
guard_to_detect_forward_monkeypatching(self.source, base)
if name == "__class__" and not object_member:
return variables.UserDefinedClassVariable(base.__class__, source=source)
if object_member:
out = VariableTracker.build(tx, subobj, NNModuleSource(source))
if isinstance(out, (NNModuleVariable, UnspecializedNNModuleVariable)):
# nn_module_stack source is BC surface area. Ensure that
# mod._modules["linear"] is reflected as mod.linear for
# nn_module_stack.
out.set_nn_module_stack_source(
AttrSource(self.get_nn_module_stack_source(), name)
)
return out
else:
if istype(subobj, property):
if self.source:
# Read the class attribute to reach the property
source = AttrSource(AttrSource(self.source, "__class__"), name)
# Get the getter function
source = AttrSource(source, "fget")
return variables.UserFunctionVariable(
subobj.fget,
source=source,
).call_function(tx, [(self)], {})
elif istype(subobj, classmethod):
return variables.UserMethodVariable(
subobj.__func__,
variables.UserDefinedObjectVariable(type(base)),
source=source,
)
elif istype(subobj, staticmethod):
return variables.UserFunctionVariable(
subobj.__get__(base), source=source
)
elif istype(subobj, types.FunctionType):
return variables.UserMethodVariable(subobj, self, source=source)
elif is_safe_constant(subobj) or istensor(subobj):
# Support possibly common cases of class members
return VariableTracker.build(tx, subobj, NNModuleSource(source))
else:
unimplemented(
f"class property {name} - {typestr(base)} {typestr(subobj)}"
)
return variables.GetAttrVariable(self, name, source=source)
def call_function(
self,
tx,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
mod = tx.output.get_submodule(self.module_key)
with record_nn_module_stack(
self.module_key, self.get_nn_module_stack_source(), tx, mod
):
is_lazy = is_lazy_module(mod)
if (
isinstance(mod, torch.nn.Sequential)
and mod.__class__.forward is torch.nn.Sequential.forward
):
if nnmodule_has_hooks(mod):
# We do not want to unroll sequential if it has hooks, since evaporating it
# will cause hooks to not fire!
# This terminates and restart the tracing process
self.convert_to_unspecialized(tx)
# Unroll sequential
assert (
not is_lazy
), "Expected lazy sequential isn't a valid combination?"
assert not kwargs
(arg,) = args
# TODO: Use named_children when it supports remove_duplicate=False.
for child_name, submod in mod._modules.items():
tx.call_function(
tx.output.register_attr_or_module(
submod,
self.module_key,
child_name,
source=NNModuleSource(AttrSource(self.source, child_name)),
),
[arg],
{},
)
arg = tx.pop()
return arg
if is_lazy:
# The module type will change after it is called
if mod.cls_to_become is not None:
self.module_type = mod.cls_to_become
# The pre-hook runs to initialize the module shapes, then deletes itself. After this,
# the module is more or less not lazy and can be treated as a normal module regardless of
# is_allowed or other variations.
initialize_lazy_module(tx, mod, args, kwargs)
# If we are tracing the higher order op, we want Dynamo to step
# inside the module call so that Dynamo can see the underlying
# parameters and buffers and raise them as inputs to the graph.
#
# NB: torch.nn.utils.parametrize changes the class type of a
# parametrized module such that its __module__ points to
# "torch.nn.utils.parametrize".
if (
tx.output.is_root_tracer()
and mod.__module__.startswith(("torch.nn.", "torch.ao."))
and mod.__module__ != "torch.nn.utils.parametrize"
):
if nnmodule_has_hooks(
mod, check_forward_hooks=True, check_backward_hooks=True
):
# End of fn, this bubbles up and restarts tracing.
self.convert_to_unspecialized(tx)
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_module",
self.module_key,
*proxy_args_kwargs(args, kwargs),
),
)
else:
assert self.source, (
"Must provide a valid source in order to inline, "
"since inlined function may have default args which must be guarded."
)
if isinstance(mod, torch.fx.GraphModule):
# TODO: do we want to support __call__ for GM's?
# If so at least some changes are needed, we don't allow inlining
# the call_wrapped currently, and maybe other issues too
fn = mod.forward
fn_source = AttrSource(self.source, "forward")
else:
fn = mod._call_impl
fn_source = AttrSource(self.source, "_call_impl")
if istype(fn, types.MethodType):
fn = fn.__func__
fn_source = AttrSource(fn_source, "__func__")
args = [self] + args
else:
assert istype(fn, types.FunctionType)
return tx.inline_user_function_return(
variables.UserFunctionVariable(fn, source=fn_source),
args,
kwargs,
)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
constant=False,
) -> "VariableTracker":
from . import ConstantVariable, ListIteratorVariable, TupleVariable
key = self.module_key
module = tx.output.get_submodule(key)
def generic_call_method_helper(name):
# Helper function to put a `call_method` node in FX graph,
# with nn.Module as the first arg.
mod_proxy = tx.output.create_proxy(
"get_attr",
self.module_key,
(),
{},
)
set_example_value(mod_proxy.node, module)
proxy_args, proxy_kwargs = proxy_args_kwargs(args, kwargs)
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_method",
name,
args=(mod_proxy, *proxy_args),
kwargs=proxy_kwargs,
),
)
if name in ["_call_impl", "_wrapped_call_impl"]:
# Example: `self.layer.__call__(x)`
# This is used for explicit calling `__call__` in a forward function.
# Dynamo inlines `__call__`, includes hooks.
return self.call_function(tx, args, kwargs)
elif name == "forward":
# Example: `self.layer.forward(x)`
# This is used for explicit calling `forward` in a forward function.
# Dynamo puts `call_method` node in FX, doesn't trigger hooks.
with record_nn_module_stack(
self.module_key, self.get_nn_module_stack_source(), tx, module
):
return generic_call_method_helper(name)
if name == "_check_input_dim" and trace_rules.is_torch_inline_allowed(
inspect.getfile(module.__class__._check_input_dim)
):
return ConstantVariable.create(True)
if name == "_get_item_by_idx":
assert args[1].is_python_constant()
assert isinstance(args[0], TupleVariable)
mod_var = args[0].items[args[1].value]
if isinstance(mod_var, UnspecializedNNModuleVariable):
return mod_var
key = mod_var.module_key
submod = tx.output.get_submodule(key)
return tx.output.register_attr_or_module(
submod,
key,
key,
source=NNModuleSource(GetItemSource(self.source, key)),
)
if constant:
fn = getattr(module, name)
name = f"{module.__class__.__name__}_{name}_result"
return invoke_and_store_as_constant(tx, fn, name, args, kwargs)
def assert_all_args_kwargs_const():
if not all(
x.is_python_constant() for x in itertools.chain(args, kwargs.values())
):
unimplemented(f"non-const NNModule method {name}")
def get_kwargs(*names):
assert_all_args_kwargs_const()
fn = getattr(module, name)
bound_args = inspect.signature(fn).bind(
*([x.as_python_constant() for x in args]),
**{k: v.as_python_constant() for k, v in kwargs.items()},
)
bound_args.apply_defaults()
bound_args = bound_args.arguments
return {k: bound_args[k] for k in names}
def wrap_values(items):
result = []
for name, submod in items:
result.append(
tx.output.register_attr_or_module(
submod,
key,
name,
source=NNModuleSource(gen_source(self.source, name)),
)
)
return ListIteratorVariable(result, mutation_type=ValueMutationNew())
def named_embed(name, obj):
return TupleVariable(
[
ConstantVariable.create(name),
tx.output.register_attr_or_module(
obj,
key,
name,
source=NNModuleSource(gen_source(self.source, name)),
),
]
)
def gen_source(source, name):
name_split = name.split(".")
if name_split[0] == "":
return source
while len(name_split) > 0:
x = name_split.pop(0)
source = AttrSource(source, x)
return source
if name == "named_children":
tx.output.guard_on_key_order.add(AttrSource(self.source, "_modules").name())
assert not (args or kwargs)
result = []
for name, submod in module.named_children():
result.append(named_embed(name, submod))
return ListIteratorVariable(result, mutation_type=ValueMutationNew())
elif name == "named_parameters":
tx.output.guard_on_key_order.add(
AttrSource(self.source, "_parameters").name()
)
result = []
for name, param in module.named_parameters(
**get_kwargs("prefix", "recurse")
):
result.append(named_embed(name, param))
return ListIteratorVariable(result, mutation_type=ValueMutationNew())
elif name == "named_buffers":
tx.output.guard_on_key_order.add(AttrSource(self.source, "_buffers").name())
result = []
for name, buffer in module.named_buffers(
**get_kwargs("prefix", "recurse", "remove_duplicate")
):
result.append(named_embed(name, buffer))
return ListIteratorVariable(result, mutation_type=ValueMutationNew())
elif name == "named_modules":
tx.output.guard_on_key_order.add(AttrSource(self.source, "_modules").name())
result = []
for name, submod in module.named_modules(
**get_kwargs("memo", "prefix", "remove_duplicate")
):
result.append(named_embed(name, submod))
return ListIteratorVariable(result, mutation_type=ValueMutationNew())
elif name == "children":
tx.output.guard_on_key_order.add(AttrSource(self.source, "_modules").name())
assert not (args or kwargs)
return wrap_values(module.named_children())
elif name == "modules":
tx.output.guard_on_key_order.add(AttrSource(self.source, "_modules").name())
return wrap_values(module.named_modules())
elif name == "parameters":
tx.output.guard_on_key_order.add(
AttrSource(self.source, "_parameters").name()
)
return wrap_values(module.named_parameters(**get_kwargs("recurse")))
elif name == "buffers":
tx.output.guard_on_key_order.add(AttrSource(self.source, "_buffers").name())
return wrap_values(module.named_buffers(**get_kwargs("recurse")))
elif name == "keys":
assert not (args or kwargs)
result = []
for name in module.keys():
result.append(ConstantVariable.create(name))
return ListIteratorVariable(result, mutation_type=ValueMutationNew())
elif name == "values":
assert not (args or kwargs)
return wrap_values(module.items())
elif name == "items":
assert not (args or kwargs)
result = []
for name, submod in module.items():
result.append(named_embed(name, submod))
return ListIteratorVariable(result, mutation_type=ValueMutationNew())
elif name == "__len__":
assert not (args or kwargs)
return ConstantVariable.create(len(module))
elif (
name == "__contains__"
and isinstance(module, (torch.nn.ModuleDict, torch.nn.ParameterDict))
and args
and args[0].is_python_constant()
):
return ConstantVariable.create(
args[0].as_python_constant() in module._modules
)
elif name == "__getitem__":
assert not kwargs and len(args) == 1
builtin_supported = (
torch.nn.ModuleDict.__getitem__,
torch.nn.ModuleList.__getitem__,
torch.nn.ParameterDict.__getitem__,
torch.nn.ParameterList.__getitem__,
torch.nn.Sequential.__getitem__,
)
if type(module).__getitem__ not in builtin_supported:
assert isinstance(args[0], variables.ConstantVariable), typestr(args[0])
key = args[0].as_python_constant()
assert isinstance(key, (str, int))
fn = getattr(module, name).__func__
assert isinstance(fn, types.FunctionType)
src = AttrSource(AttrSource(self.source, name), "__func__")
return tx.inline_user_function_return(
variables.UserFunctionVariable(fn, source=src),
[self] + list(args),
kwargs,
)
assert self.source
if isinstance(args[0], SliceVariable):
# TODO(anijain2305,export-team) - Remove this if condition when inlining of inbuilt nn modules is
# enabled for export.
if tx.output.export:
# Build a TupleVariable of NNModules
result = []
# Turn the slice into the list of integers
keys = list(range(len(module)))[args[0].as_python_constant()]
for idx, submod in enumerate(module[args[0].as_python_constant()]):
key = keys[idx]
src = NNModuleSource(GetItemSource(self.source, key))
result.append(
tx.output.register_attr_or_module(
submod,
key,
source=src,
)
)
new_module = module[args[0].as_python_constant()]
new_module_variable = tx.output.register_attr_or_module(
new_module,
f"{self}.__getitem__(slice)",
source=NNModuleSource(
GetItemSource(self.source, args[0].as_python_constant())
),
)
return new_module_variable
else:
# slice on nn module results in a creation of new module instance, so we need to make it sourceless.
# Convert to unspecialized so that UnspecializedNNModule variable can take care of it.
self.convert_to_unspecialized(tx)
from .tensor import SymNodeVariable
if isinstance(args[0], SymNodeVariable):
key = args[0].evaluate_expr(tx.output)
elif args[0].is_python_constant():
key = args[0].as_python_constant()
else:
unimplemented(f"getitem on NNModuleVariable with key {args[0]}")
submod = module[key]
return tx.output.register_attr_or_module(
submod,
self.module_key,
key,
source=NNModuleSource(GetItemSource(self.source, key)),
)
elif (
name == "_get_abs_string_index"
or (
isinstance(module, torch.nn.modules.conv._ConvNd)
and name == "_conv_forward"
)
or (
isinstance(module, torch.nn.modules.conv._ConvTransposeNd)
and name == "_output_padding"
)
):
# Inline the function
fn = getattr(module, name).__func__
fn_source = AttrSource(AttrSource(self.source, name), "__func__")
return tx.inline_user_function_return(
variables.UserFunctionVariable(fn, source=fn_source),
[self] + args,
kwargs,
)
# A loose heuristic, but seems to be generally good before we drop into the
# manual handling of inputs
elif (
name in module.__class__.__dict__
and callable(module.__class__.__dict__[name])
and all(
isinstance(x, variables.TensorVariable)
for x in itertools.chain(args, kwargs.values())
)
):
return generic_call_method_helper(name)
else:
return super().call_method(tx, name, args, kwargs)
class UnspecializedNNModuleVariable(UserDefinedObjectVariable):
_nonvar_fields = {
"value_type",
"is_state_mutated",
"nn_module_stack_source",
*UserDefinedObjectVariable._nonvar_fields,
}
"""
The above class will specialize on the id() of a module and place
parameters on the torch.fx.GraphModule. Giving one graph per
module instance. This version treats nn.Modules() like other user
defined objects and will pass parameters into the FX graph as inputs.
Giving one graph per module class.
"""
def __init__(self, value, **kwargs) -> None:
if type(value) is torch.jit._script.RecursiveScriptModule:
raise Unsupported(
"ScriptModules aren't supported in UnspecializedNNModuleVariable"
" becuase their .forward function isn't a static member of their type"
)
if "value_type" in kwargs:
lazy_value_to_become = getattr(kwargs["value_type"], "cls_to_become", None)
if type(value) is lazy_value_to_become:
# We may have cloned a variabletracker for a LazyModule earlier (e.g. tracking side-effects)
# and then later we called and mutated the LazyModule into a MaterializedModule.
# We do not do the mutation upon first seeing a LazyModule since we preserve eager semantics to only
# mutate upon first call, but this requires we update multiple copies of the VariableTracker post-mutation.
kwargs["value_type"] = type(value)
super().__init__(value=value, **kwargs)
self.is_state_mutated = False
# nn_module_stack_source is used to ensure BC for nn_module_stack.
# Downstream users prefer mod.linear instead of mod._modules['linear']
# as the module stack. When Dynamo inlines the __getattr__ method, we
# cannot use self.source for nn_module_stack because it will be similar
# to mod._modules['linear']. In these cases, we set the
# nn_module_stack_source appropriately to resemble mod.linear.
self.nn_module_stack_source = self.source
def _wrap_source(self, attr_source):
if not isinstance(attr_source, UnspecializedNNModuleSource):
return UnspecializedNNModuleSource(attr_source)
return attr_source
def get_nn_module_stack_source(self):
return self.nn_module_stack_source or self.source
def set_nn_module_stack_source(self, source):
self.nn_module_stack_source = source
@staticmethod
@functools.lru_cache(None)
def _nn_module_method_ids():
# Allow __setattr__ to fall through to base class handler
supported = {torch.nn.Module.__setattr__, torch.nn.Module.__init__}
return {
id(x.__code__)
for x in torch.nn.Module.__dict__.values()
if hasattr(x, "__code__") and x not in supported
}
def unpack_var_sequence(self, tx):
try:
fn = inspect.getattr_static(self.value_type, "__iter__")
except AttributeError as e:
raise NotImplementedError from e
if fn in (
torch.nn.ModuleList.__iter__,
torch.nn.ParameterList.__iter__,
torch.nn.Sequential.__iter__,
):
# The program can mutate the nn module object but the saved `value`
# will not reflect the mutations. So, trace through the `__iter__`
# function to reflect any tracked mutations.
return tx.inline_user_function_return(
variables.UserFunctionVariable(fn),
[
self,
],
{},
).unpack_var_sequence(tx)
return super().unpack_var_sequence(tx)
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
mod = self.value
# see comment on lazy module handling in NNModuleVariable.call_function for context
if is_lazy_module(mod):
if mod.cls_to_become is not None:
self.value_type = mod.cls_to_become
initialize_lazy_module(tx, mod, args, kwargs)
if (
not isinstance(mod, torch.fx.GraphModule)
and mod.__call__.__func__ is not unpatched_nn_module_call
):
name = "__call__"
fn = getattr(self.value_type, name)
else:
name = "_call_impl"
fn = getattr(self.value_type, name)
# Check if we can short circuit nn.Module._call_impl to the forward
# method. NB - This is done to reduce the compile time of Dynamo.
if (
istype(mod.__call__, types.MethodType)
and istype(mod._call_impl, types.MethodType)
and mod.__call__.__func__ is unpatched_nn_module_call
and mod._call_impl.__func__ is unpatched_nn_module_call_impl
and "forward" not in mod.__dict__
):
forward_method = inspect.getattr_static(mod, "forward")
if isinstance(forward_method, types.FunctionType):
globals_vt = tx.nn_modules_globals_vt
if not (
self.var_getattr(tx, "_backward_hooks").realize().len()
or self.var_getattr(tx, "_backward_pre_hooks").realize().len()
or self.var_getattr(tx, "_forward_hooks").realize().len()
or self.var_getattr(tx, "_forward_pre_hooks").realize().len()
or globals_vt.var_getattr(tx, "_global_backward_pre_hooks").len()
or globals_vt.var_getattr(tx, "_global_backward_hooks").len()
or globals_vt.var_getattr(tx, "_global_forward_hooks").len()
or globals_vt.var_getattr(tx, "_global_forward_pre_hooks").len()
):
name = "forward"
fn = self.value_type.forward
if self.source:
source = AttrSource(AttrSource(self.source, "__class__"), name)
else:
source = None
guard_to_detect_forward_monkeypatching(self.source, mod)
ctx = (
record_nn_module_stack(
str(id(mod)), self.get_nn_module_stack_source(), tx, mod
)
if self.source
else nullcontext()
)
with ctx:
return variables.UserFunctionVariable(fn, source=source).call_function(
tx, [self] + list(args), kwargs
)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if name in ["_call_impl", "_wrapped_call_impl"]:
fn = getattr(self.value_type, name)
if self.source:
source = AttrSource(AttrSource(self.source, "__class__"), name)
else:
source = None
return variables.UserFunctionVariable(fn, source=source).call_function(
tx, [self] + list(args), kwargs
)
if name not in getattr(self.value, "__dict__", {}):
try:
method = inspect.getattr_static(type(self.value), name)
except AttributeError:
method = None
if isinstance(method, staticmethod):
source = AttrSource(
AttrSource(AttrSource(self.source, "__class__"), name), "__func__"
)
return tx.inline_user_function_return(
variables.UserFunctionVariable(method.__func__, source=source),
args,
kwargs,
)
if (
hasattr(method, "__code__")
and id(method.__code__) in self._nn_module_method_ids()
):
unimplemented(f"UnspecializedNNModuleVariable missing {name}")
# "_parameters" in self.value.__dict__ checks that module is initialized
if name == "__setattr__" and "_parameters" in self.value.__dict__:
# Record if mutations happens on parameters/buffers/modules. The
# mutations on these are not tracked by base class
# UserDefinedObject vt. This will be used later to graph break
# on seeing a paramters() and family calls.
# TODO(anijain2305) - This might not be needed if we let Dynamo
# inline both getattr and setattr. In that case, it should see
# the lowest level dicts - _parameters and family and
# automatically track mutations on those. Investigate if that
# can be done.
attr_name = args[0].as_python_constant()
value = args[1]
# This is reverse engineered by looking at nn module __setattr__
# logic.
if (
isinstance(value, variables.TensorVariable)
and value.python_type() is torch.nn.Parameter
) or attr_name in self.value.__dict__["_parameters"]:
# Handle parameters
self.is_state_mutated = True
elif attr_name in self.value.__dict__["_buffers"]:
# Handle buffers
self.is_state_mutated = True
elif (
isinstance(
value,
(
variables.NNModuleVariable,
variables.UnspecializedNNModuleVariable,
),
)
or attr_name in self.value.__dict__["_modules"]
):
# Handle submodules
self.is_state_mutated = True
if method is torch.nn.Module.__setattr__ and isinstance(
args[1], variables.DeletedVariable
):
# Trace through __delattr__ to track mutations on the module
# members like `_modules``.
return tx.inline_user_function_return(
variables.UserFunctionVariable(torch.nn.Module.__delattr__),
[self, args[0]],
kwargs,
)
return super().call_method(tx, name, args, kwargs)
def getattr_helper(self, tx: "InstructionTranslator", field, name_vt):
dict_vt = self.var_getattr(tx, field)
if isinstance(dict_vt, variables.ConstDictVariable):
return dict_vt.maybe_getitem_const(name_vt)
return None
def var_getattr(self, tx: "InstructionTranslator", name):
# Allow skipping of empty hook dict guards on inbuilt nn modules
if name in (
"_backward_hooks",
"_backward_pre_hooks",
"_forward_hooks",
"_forward_pre_hooks",
):
# For empty hooks, make an EMPTY_NN_MODULE_HOOKS_DICT. This allows us to control the installation of empty
# hooks guard via skip_nnmodule_hook_guards
if not tx.output.side_effects.has_pending_mutation_of_attr(self, name):
hooks_dict = getattr(self.value, name)
if isinstance(hooks_dict, dict) and len(hooks_dict) == 0:
if self.source:
hooks_source = AttrSource(self.source, name)
install_guard(
hooks_source.make_guard(
GuardBuilder.EMPTY_NN_MODULE_HOOKS_DICT
)
)
return variables.ConstDictVariable({})
# For non-empty hook dicts, one way is to just fallback to VariableTracker.build() and create a ConstDictVariable.
# However, ConstDictVariable guards on keys. This can cause recompiles when the same hook is installed for
# differnt nn module instances, because the key keeps changing (look more into RemovableHandle to understand why
# key changes - also related https://github.com/pytorch/pytorch/issues/125836). Here, we carefully craft a
# ConstDictVariable to avoid any guard on the keys.
if (
self.source
and name
in (
"_forward_pre_hooks",
"_forward_hooks",
)
and not tx.output.side_effects.has_pending_mutation_of_attr(self, name)
):
hooks_dict = getattr(self.value, name)
hooks_dict_source = AttrSource(self.source, name)
install_guard(hooks_dict_source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
tx.output.guard_on_key_order.add(hooks_dict_source.name())
def build_key_value(i, k, v):
# Make key sourceless to avoid any guard on it
key = variables.ConstantVariable.create(k)
# Instead of using dict[key] to access the value, use a dict[dict.keys()[index]] to access the
# value. This removes the reliance on the actual key value.
source_key = ConstDictKeySource(hooks_dict_source, i)
source_value = GetItemSource(hooks_dict_source, source_key)
value = LazyVariableTracker.create(v, source_value)
return key, value
result = dict(
build_key_value(i, k, v) for i, (k, v) in enumerate(hooks_dict.items())
)
return variables.ConstDictVariable(
result, type(hooks_dict), source=hooks_dict_source
)
return super().var_getattr(tx, name)
def manually_trace_nn_module_getattr(self, tx: "InstructionTranslator", name):
"""
Dynamo tracing of nn.Module __getattr__ can be expensive if the model
has deep submodule hierarchy. Since the __getattr__ is stable, we can
directly look into the underlying datastructures. This saves a lot of
compilation time.
"""
name_vt = variables.ConstantVariable(name)
out = self.getattr_helper(tx, "_parameters", name_vt)
if out is None:
out = self.getattr_helper(tx, "_modules", name_vt)
if out is None:
out = self.getattr_helper(tx, "_buffers", name_vt)
if out is None:
raise_observed_exception(AttributeError, tx)
return out
class UnspecializedBuiltinNNModuleVariable(UnspecializedNNModuleVariable):
"""
Differentiates between builtin nn modules (e.g. torch.nn.Linear) and user defined nn modules.
"""
def _wrap_source(self, attr_source):
if not isinstance(attr_source, UnspecializedBuiltinNNModuleSource):
return UnspecializedBuiltinNNModuleSource(attr_source)
return attr_source
class FSDPManagedNNModuleVariable(UnspecializedNNModuleVariable):
"""
Tracing behavior: trace into submodules and treat them as Unspecialized, do not
register parameters to the top-level, treat them as function inputs.
Guards behavior: if 'skip_fsdp_guards', many guards that would be installed
by a vanilla UnspecializedNNModuleVariable are simply dropped, on the basis
that a user wrapping their model in FSDP(model) is already opting into a
requirement to not modify internal model state, which would already break FSDP without
compilation.
"""
def __init__(self, value, **kwargs) -> None:
source = kwargs.get("source", None)
assert (
source is not None
), "FSDPManagedNNModule depends on having an accurate source to control guarding."
super().__init__(value=value, **kwargs)
self.source = source
def _wrap_source(self, attr_source):
if not isinstance(
attr_source, (FSDPNNModuleSource, UnspecializedNNModuleSource)
):
if torch._dynamo.config.skip_fsdp_guards:
return FSDPNNModuleSource(attr_source)
else:
return UnspecializedNNModuleSource(attr_source)
return attr_source
|