File: tensor.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1488 lines) | stat: -rw-r--r-- 54,803 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
# mypy: ignore-errors

import functools
import inspect
import logging
import operator
import textwrap
import traceback
import types
import unittest
from typing import Dict, List, TYPE_CHECKING

import sympy

import torch._numpy as tnp
import torch.fx
import torch.random
from torch._dynamo import compiled_autograd
from torch._subclasses.meta_utils import is_sparse_any
from torch.fx.experimental.symbolic_shapes import (
    guard_scalar,
    GuardOnDataDependentSymNode,
    has_free_symbols,
    is_symbolic,
    SymTypes,
)
from torch.utils._python_dispatch import is_traceable_wrapper_subclass

from .. import config, variables
from .._trace_wrapped_higher_order_op import trace_wrapped
from ..exc import unimplemented, UserError, UserErrorType
from ..external_utils import call_hook_from_backward_state
from ..guards import GuardBuilder, install_guard
from ..source import AttrSource
from ..utils import (
    fqn,
    get_custom_getattr,
    get_fake_value,
    get_real_value,
    guard_if_dyn,
    object_has_getattribute,
    product,
    proxy_args_kwargs,
    set_example_value,
    tensortype_to_dtype,
)
from .base import VariableTracker
from .constant import ConstantVariable
from .lists import SizeVariable


try:
    import numpy as np
except ModuleNotFoundError:
    np = None


if TYPE_CHECKING:
    from torch._dynamo.symbolic_convert import InstructionTranslator


log = logging.getLogger(__name__)

# Ops that allow tensor <op> tensor
supported_tensor_comparison_ops = {
    ">": operator.gt,
    "<": operator.lt,
    ">=": operator.ge,
    "<=": operator.le,
    "==": operator.eq,
    "!=": operator.ne,
    "is": operator.is_,
    "is not": operator.is_not,
}
# Ops that allow tensor <op> None
supported_const_comparison_ops = {
    "is": operator.is_,
    "is not": operator.is_not,
    "==": operator.eq,
    "!=": operator.ne,
}
supported_comparison_ops = {
    **supported_tensor_comparison_ops,
    **supported_const_comparison_ops,
}
supported_tensor_comparison_op_values = dict.fromkeys(
    supported_tensor_comparison_ops.values()
)
supported_const_comparison_op_values = dict.fromkeys(
    supported_const_comparison_ops.values()
)


def is_bound_tensor_method(value):
    return (
        callable(value)
        and not torch._dynamo.utils.object_has_getattribute(value)
        and hasattr(value, "__self__")
        and isinstance(value.__self__, torch.Tensor)
        and getattr(value.__self__, value.__name__, None)
    )


class TensorVariable(VariableTracker):
    """A torch.Tensor input or an intermediate value in the FX graph"""

    _nonvar_fields = {
        "proxy",
        "dtype",
        "device",
        "layout",
        "ndim",
        "size",
        "stride",
        "requires_grad",
        "is_quantized",
        "is_contiguous",
        "is_nested",
        "is_sparse",
        "class_type",
        "specialized_value",
        "_is_name_set",
        *VariableTracker._nonvar_fields,
    }

    def get_real_value(self):
        """
        Get the actual value represented by this variable if computation is run
        using the user-provided inputs.
        NOTE: this runs actual tensor computation and may be
        slow and memory-intensive.
        """
        return get_real_value(self.proxy.node, self.proxy.tracer)

    def __init__(
        self,
        proxy: torch.fx.Proxy,
        *,
        dtype,
        device,
        layout,
        ndim,
        requires_grad,
        is_nested,
        is_quantized,
        is_sparse,
        class_type,
        has_grad_fn,
        _size=None,
        stride=None,
        is_contiguous=None,
        _is_name_set=None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.proxy = proxy
        self.dtype = dtype
        self.device = device
        self.layout = layout
        self.ndim = ndim
        self._size = _size  # this is accessed as a property for validation
        self.stride = stride
        self.requires_grad = requires_grad
        self.is_quantized = is_quantized
        self.is_contiguous = is_contiguous
        self.is_nested = is_nested
        self.is_sparse = is_sparse
        self.class_type = class_type
        self.has_grad_fn = has_grad_fn
        if _is_name_set is None:
            # no need to rename inputs
            _is_name_set = self.proxy.node.op == "placeholder"
        self._is_name_set: bool = _is_name_set

    def debug_repr(self):
        # TODO: strip off fake tensor from repr here
        return repr(self.proxy.node.meta["example_value"])

    def as_proxy(self):
        return self.proxy

    def python_type(self):
        return self.class_type

    @staticmethod
    def specialize(value: torch.Tensor):
        props = {
            "dtype": value.dtype,
            "device": value.device,
            "layout": value.layout,
            "ndim": int(value.ndim),
            "requires_grad": value.requires_grad,
            "is_nested": value.is_nested,
            "is_quantized": value.is_quantized,
            "is_sparse": value.is_sparse,
            "class_type": type(value),
        }
        try:
            props["has_grad_fn"] = value.grad_fn is not None
        except Exception:
            # Workaround for issues with create_parameter_op in Dynamo. Reading
            # grad_fn should never cause an issue.
            props["has_grad_fn"] = False

        if is_sparse_any(value) and not has_free_symbols(value):
            props["_size"] = tuple(
                [int(s) if is_symbolic(s) else s for s in value.size()]
            )
        elif not has_free_symbols(value):
            # this is a fully static shape, and the keys on props here inform specialization.
            # We have to cast to int here, because these might get accessed as ConstantVariable, which has
            # a strict no-symint policy. If we got here due to not having free symbols, this is a known constant
            # already. We could remove the discrepancy here, by having ConstantVariable be more permissive for
            # constant backed SymInts, but that assert being strict has led to some good signal in hunting bugs, and
            # I'd like to keep it around for now.
            props["_size"] = tuple(
                # the non is_symbolic case applies to the jagged layout
                # NestedTensor case as singleton ints are not symbolic
                [int(s) if is_symbolic(s) else s for s in value.size()]
            )
            props["stride"] = tuple(value.stride())
            if torch._C._functorch.is_batchedtensor(value):
                # Batched tensors does not support contiguity patterns, so
                # we refrain from computing the `is_contiguous` property
                props["is_contiguous"] = None
            else:
                props["is_contiguous"] = tuple(
                    [
                        x
                        for x in torch._prims_common._memory_formats
                        if value.is_contiguous(memory_format=x)
                    ]
                )
        return props

    def dynamic_getattr(self, tx: "InstructionTranslator", name):
        fake_val = self.proxy.node.meta["example_value"]
        # For getattrs on tensors without sources,
        # we can do better than the default (creating a GetAttrVariable)
        # if:
        # (1) the tensor is a traceable tensor subclass
        # (2) We are getattr'ing an inner tensor from that subclass
        if not self.source and is_traceable_wrapper_subclass(fake_val):
            fake_val = self.proxy.node.meta["example_value"]
            attrs, ctx = fake_val.__tensor_flatten__()
            proxy = getattr(self.as_proxy(), name)
            example_value = getattr(fake_val, name)
            if name in attrs:
                # attrs returned from tensor_flatten are always tensors
                assert isinstance(example_value, torch.Tensor)
                from .builder import wrap_fx_proxy

                return wrap_fx_proxy(tx=tx, proxy=proxy, example_value=example_value)
            # any other attributes on the subclass (that are not methods)
            # are assumed to be constant metadata.
            elif not callable(example_value):
                return VariableTracker.build(tx, example_value)

        if not (self.source and self.source.subguards_allowed()):
            raise NotImplementedError

        # For local source, we associate the real value. We use this real value
        # for implementing getattr fallthrough on the variable tracker base class.

        # Note - this scope construction is mirrored in guards
        # A subsequent PR will introduce a util.
        scope = {"L": tx.output.local_scope, "G": tx.output.global_scope}
        try:
            # We raise in case we get a typerror bug w/ SuperSource.
            # SuperSource has bugs in it atm, and can produce code like
            # eval("super(L['mod'].model.model.encoder.embed_positions.forward__class__,
            # L['mod'].model.model.encoder.embed_positions)", scope)
            # Which is incorrect, and violates the invariant that all sources should be eval()-able against the scope.
            _input_associated_real_value = eval(self.source.name(), scope)
        except Exception as exc:
            raise NotImplementedError from exc

        if _input_associated_real_value is None:
            raise NotImplementedError

        if object_has_getattribute(_input_associated_real_value):
            raise NotImplementedError

        if get_custom_getattr(_input_associated_real_value):
            raise NotImplementedError

        real_value = getattr(_input_associated_real_value, name)

        attr_source = AttrSource(self.source, name)
        install_guard(attr_source.make_guard(GuardBuilder.HASATTR))

        # Typically we'd want to use variable builder here
        # but unfortunately id(real_value.__self__) is not id(<original value>)
        if is_bound_tensor_method(real_value):
            from .misc import GetAttrVariable

            return GetAttrVariable(
                self, name, source=attr_source, py_type=type(real_value)
            )

        return VariableTracker.build(tx, real_value, attr_source)

    def method_attr_ndim(self, tx):
        if self.ndim is not None:
            return ConstantVariable.create(self.ndim)
        else:
            return self.call_method(tx, "dim", [], {})

    def method_attr_dtype(self, tx):
        if self.dtype is not None:
            return ConstantVariable.create(self.dtype)

    def method_attr_device(self, tx):
        if self.device is not None:
            return ConstantVariable.create(self.device)

    def method_attr_layout(self, tx):
        if self.layout is not None:
            return ConstantVariable.create(self.layout)

    def method_attr_is_cuda(self, tx):
        if self.device is not None:
            return ConstantVariable.create(self.device.type == "cuda")

    def method_attr_shape(self, tx):
        if self.valid_size():
            sizes = [variables.ConstantVariable.create(x) for x in self.size]
            return SizeVariable(sizes)
        else:
            return self.call_method(tx, "size", [], {})

    def method_attr_requires_grad(self, tx):
        if self.requires_grad is not None:
            return ConstantVariable.create(self.requires_grad)

    def method_attr_is_quantized(self, tx):
        if self.is_quantized is not None:
            return ConstantVariable.create(self.is_quantized)

    def method_attr_is_sparse(self, tx):
        if self.is_sparse is not None:
            return ConstantVariable.create(self.is_sparse)

    def method_attr_is_nested(self, tx):
        if self.is_nested is not None:
            return ConstantVariable.create(self.is_nested)

    def method_attr_data(self, tx):
        return variables.TorchInGraphFunctionVariable(
            torch._C._autograd._get_data_attr
        ).call_function(tx, [self], {})

    def method_attr_grad_fn(self, tx):
        if self.has_grad_fn:
            unimplemented("TensorVariable has a grad_fn")
        else:
            return variables.ConstantVariable(None)

    def method_attr__version(self, tx):
        from ..tensor_version_op import _tensor_version

        return variables.TorchInGraphFunctionVariable(_tensor_version).call_function(
            tx, [self], {}
        )

    def call_hasattr(self, tx: "InstructionTranslator", name):
        from . import GetAttrVariable
        from .builtin import BuiltinVariable

        try:
            var = BuiltinVariable(getattr).call_function(
                tx, [self, ConstantVariable(name)], {}
            )
            # in the event that TensorVariable returns NotImplemented
            # BuiltinVariable.call_getattr returns GetAttrVariable
            ret_val = not isinstance(var, GetAttrVariable)
        except AttributeError:
            ret_val = False

        if self.source:
            install_guard(
                AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
            )

        return ConstantVariable(ret_val)

    def var_getattr(self, tx: "InstructionTranslator", name):
        from . import UserDefinedClassVariable

        if self.is_strict_mode(tx) and name in self._strict_mode_banned_ops():
            unimplemented(f"Illegal getattr invocation {name} in strict mode")

        if name == "__class__":
            return UserDefinedClassVariable(self.python_type())

        handler = getattr(self, f"method_attr_{name}", None)
        result = handler(tx) if handler is not None else None

        # Add a guard for type matching, these guards are checked before tensor guards
        # In some cases, a <tensor>.<attr> guard can be evaluated first, and break if
        # <tensor> is later changed to another type
        if (
            result is not None
            and self.source
            and self.source.subguards_allowed()
            and not (
                name not in ("grad", "requires_grad") and result.is_python_constant()
            )
        ):
            install_guard(self.make_guard(GuardBuilder.TYPE_MATCH))
            result.source = AttrSource(self.source, name)

        # It's hard to get inplace view (metadata mutation) on graph input work properly across
        # dynamo/aot/inductor, just fall back.
        if self.source is not None and hasattr(torch.ops.aten, name):
            fn = getattr(torch.ops.aten, name)
            if (
                hasattr(fn, "overloads")
                and hasattr(fn, fn.overloads()[0])
                and torch.Tag.inplace_view in getattr(fn, fn.overloads()[0]).tags
            ):
                # Delay the graph break to the actual call of unsqueeze_/resize_/resize_as_ etc.
                return variables.misc.DelayGraphBreakVariable(
                    source=AttrSource(self.source, name)
                )

        # For attributes (not methods) that were not caught in the special handling above,
        # (e.g. tensor.real), we handle these generically, assuming that the output type is
        # a tensor.
        if result is None and name != "grad":

            def try_generic_attr_handling():
                from .builder import wrap_fx_proxy
                from .misc import GetAttrVariable

                try:
                    static_attr = inspect.getattr_static(torch.Tensor, name)
                except AttributeError:
                    return None

                # Make sure this is an attribute, not a method.
                # type(torch.Tensor.H) should be "getset_descriptor"
                # This is a because of CPython implementation, see THPVariableType:
                # these attributes are implemented under tp_getset, which appear
                # as `getset_descriptor`s, (compared to, say, methods which appear
                # as `method_descriptor`s)
                if type(static_attr) != types.GetSetDescriptorType:
                    return None

                proxy = GetAttrVariable.create_getattr_proxy(self.as_proxy(), name)
                if self.source is not None:
                    return wrap_fx_proxy(
                        tx=tx, proxy=proxy, source=AttrSource(self.source, name)
                    )
                else:
                    return wrap_fx_proxy(tx=tx, proxy=proxy)

            result = try_generic_attr_handling()

        if result is None:
            result = self.dynamic_getattr(tx, name)

        if result is None:
            raise NotImplementedError
        return result

    def call_id(self, tx):
        if not self.source:
            unimplemented("call_id not supported for sourceless TensorVariable")

        # For local source, we associate the real value. We use this real value
        scope = {"L": tx.output.local_scope, "G": tx.output.global_scope}
        try:
            _input_associated_real_value = eval(self.source.name(), scope)
        except Exception as exc:
            unimplemented(f"error getting associated real value: {exc}")

        if _input_associated_real_value is None:
            unimplemented("call_id without associated real value")

        install_guard(self.source.make_guard(GuardBuilder.ID_MATCH))
        id_value = id(_input_associated_real_value)
        return ConstantVariable.create(id_value)

    def has_unpack_var_sequence(self, tx):
        return self.ndim > 0

    def unpack_var_sequence(self, tx: "InstructionTranslator", idxes=None):
        from .builder import wrap_fx_proxy_cls

        if self.valid_size():
            size_len = len(self.size)
        else:
            size_var = self.call_method(tx, "size", [], {})
            assert isinstance(size_var, SizeVariable)
            size_len = len(size_var.items)
        # Ensure we don't unpack a scalar tensor.
        assert size_len != 0, "Can't unpack scalar tensors."

        if self.valid_size():
            length = self.size[0]
        else:
            dyn_length = self.call_method(tx, "size", [ConstantVariable.create(0)], {})
            # SymNodeVariable for symbolic sizes, ConstantVariable for constants OR values produced through
            # symbolic_shapes, but that end up as int/sympy.Integer
            assert isinstance(dyn_length, (SymNodeVariable, ConstantVariable))
            if isinstance(dyn_length, SymNodeVariable):
                length = dyn_length.evaluate_expr(tx.output)
            else:
                length = dyn_length.value

        if idxes is None:
            idxes = range(length)
        else:
            assert (
                len(idxes) == length
            ), f"Can't unpack a tensor of {length} rows into a tuple of {len(idxes)} elements."
        return [
            wrap_fx_proxy_cls(target_cls=type(self), tx=tx, proxy=self.as_proxy()[i])
            for i in idxes
        ]

    def valid_size(self):
        return self._size is not None

    @property
    def size(self):
        assert self._size is not None, "accessing None size in TensorVariable"
        return self._size

    def _strict_mode_banned_ops(self):
        return torch._dynamo.config._autograd_backward_strict_mode_banned_ops

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from .builder import SourcelessBuilder, VariableBuilder
        from .torch_function import can_dispatch_torch_function, dispatch_torch_function

        if self.is_strict_mode(tx) and name in self._strict_mode_banned_ops():
            unimplemented(f"Illegal method invocation {name} in strict mode")

        # Only override builtin tensor methods
        # The user can manually add override handling
        # with a decorator for other methods (e.g. a dispatch subclass with other methods)
        is_base_tensor_method = False
        try:
            inspect.getattr_static(torch.Tensor, name)
            is_base_tensor_method = True
        except AttributeError:
            is_base_tensor_method = False

        if (
            can_dispatch_torch_function(tx, tuple([self] + list(args)), kwargs)
            and is_base_tensor_method
        ):
            if self.source:
                func_var = VariableBuilder(
                    tx, AttrSource(AttrSource(self.source, "__class__"), name)
                )(inspect.getattr_static(torch.Tensor, name))
            else:
                func_var = SourcelessBuilder.create(tx, getattr(torch.Tensor, name))

            return dispatch_torch_function(
                tx, func_var, tuple([self] + list(args)), kwargs
            )

        """
        Dispatch to a method-specific handler defined below.  If the
        handler returns None (or doesn't exist) we put the method call
        in the graph.
        """
        try:
            handler_method = getattr(self, f"method_{name}")
        except AttributeError:
            pass
        else:
            try:
                result = handler_method(*args, **kwargs)
                if result:
                    return result
            except TypeError as e:
                unimplemented(f"unhandled args for {name}: {e}")

        from .builder import wrap_fx_proxy

        return wrap_fx_proxy(
            tx,
            tx.output.create_proxy(
                "call_method",
                name,
                *proxy_args_kwargs([self, *args], kwargs),
            ),
        )

    def method_size(self, *args, **kwargs):
        return self._method_size_stride("size", *args, **kwargs)

    def method_stride(self, *args, **kwargs):
        return self._method_size_stride("stride", *args, **kwargs)

    def _method_size_stride(self, name, dim=None):
        dim = guard_if_dyn(dim)

        def make_const_size_variable(x, **options):
            return SizeVariable(
                [ConstantVariable.create(y, **options) for y in x], **options
            )

        RetVariable = (
            make_const_size_variable if name == "size" else ConstantVariable.create
        )

        # Technically, this should not be necessary, but I'm including it
        # for enhanced BC, in case example_value is sometimes not set
        # (it really should always be set though!)
        if name != "size":
            r = getattr(self, name)
        elif name == "size" and self.valid_size():
            r = self.size
        else:
            r = None

        if r is not None:
            if dim is None:
                return RetVariable(r)
            else:
                return ConstantVariable.create(r[dim])

        # It might still be constant!  Consult the fake tensor and see
        if (fake := self.proxy.node.meta.get("example_value")) is not None:
            if dim is None:
                fake_r = getattr(fake, name)()
                if not has_free_symbols(fake_r):
                    # int conversion for safety, in case a SymInt refined
                    # to constant
                    return RetVariable(tuple(int(r) for r in fake_r))
            else:
                fake_r = getattr(fake, name)(dim)
                if not has_free_symbols(fake_r):
                    return ConstantVariable.create(int(fake_r))

    def method_numel(self):
        if self.valid_size():
            return ConstantVariable.create(product(self.size))

        # It might still be constant!  Consult the fake tensor and see
        if (fake := self.proxy.node.meta.get("example_value")) is not None:
            fake_r = fake.numel()
            if not has_free_symbols(fake_r):
                return ConstantVariable.create(int(fake_r))

    method_nelement = method_numel

    def method_dim(self):
        if self.ndim is not None:
            return ConstantVariable.create(self.ndim)

    method_ndimension = method_dim

    def method_is_floating_point(self):
        if self.dtype is not None:
            return ConstantVariable.create(self.dtype.is_floating_point)

    def method_is_inference(self):
        if (fake := self.proxy.node.meta.get("example_value")) is not None:
            return ConstantVariable.create(fake.is_inference())

    def method_is_complex(self):
        if self.dtype is not None:
            return ConstantVariable.create(self.dtype.is_complex)

    def method_is_contiguous(self, memory_format=None):
        memory_format = (
            memory_format.as_python_constant()
            if memory_format is not None
            else torch.contiguous_format
        )
        if self.is_contiguous is not None:
            return ConstantVariable.create(memory_format in self.is_contiguous)
        elif (fake := self.proxy.node.meta.get("example_value")) is not None:
            return ConstantVariable.create(
                fake.is_contiguous(memory_format=memory_format)
            )

    def method_type(self, dtype=None, non_blocking=False, **kwargs):
        if (
            dtype is None
            and self.dtype is not None
            and isinstance(self.device, torch.device)
        ):
            tensortype = next(
                k for k, v in tensortype_to_dtype.items() if self.dtype in v
            )
            if self.device.type == "cpu":
                return ConstantVariable.create(f"torch.{tensortype.__name__}")
            else:
                return ConstantVariable.create(
                    f"torch.{self.device.type}.{tensortype.__name__}"
                )
        elif (
            dtype is not None
            and fqn(type(dtype.as_python_constant())) == "torch.tensortype"
        ):
            # torch.FloatTensor, etc. are all of type "torch.tensortype".
            # torch.fx's tracer fails on these types, because it doesn't support arguments of torch.tensortype type.
            # So, we pass it in as a string (which is also supported, see above implementation for .type() with 0 args)
            tensor_type = dtype.as_python_constant()
            tensor_type_const = ConstantVariable.create(fqn(tensor_type))

            from ..symbolic_convert import InstructionTranslator
            from .builder import wrap_fx_proxy

            tx = InstructionTranslator.current_tx()

            if non_blocking:
                kwargs = {"non_blocking": non_blocking, **kwargs}

            return wrap_fx_proxy(
                tx,
                tx.output.create_proxy(
                    "call_method",
                    "type",
                    *proxy_args_kwargs([self, tensor_type_const], kwargs),
                ),
            )

    def method_as_subclass(self, cls):
        if isinstance(cls, TensorSubclassVariable) and cls.source:
            from ..symbolic_convert import InstructionTranslator
            from .torch_function import TensorWithTFOverrideVariable

            tx = InstructionTranslator.current_tx()

            # [Note: __torch_function__] coerce this tensor variable into a TensorWithTFOverrideVariable
            # in eager, this is just a type change. This isn't sound if a __torch_function__ tensor subclass
            # defines a constructor, but if only a __torch_function__ impl is defined, this is okay to call.
            # It is up to the user whether this is correct behavior or not.
            py_cls = cls.as_python_constant()
            torch_fn = VariableTracker.build(
                tx,
                py_cls.__torch_function__.__func__,
                AttrSource(AttrSource(cls.source, "__torch_function__"), "__func__"),
            )

            return TensorWithTFOverrideVariable.from_tensor_var(
                tx, self, py_cls, torch_fn
            )

    def method_get_device(self):
        if isinstance(self.device, torch.device):
            index = self.device.index if self.device.type != "cpu" else -1
            return ConstantVariable.create(index)

    def method_element_size(self):
        return ConstantVariable.create(self.dtype.itemsize)

    def method_numpy(self, *, force=False):
        if not config.trace_numpy:
            unimplemented("Tensor.numpy(). config.trace_numpy is False")
        if not np:
            unimplemented("Tensor.numpy(). NumPy is not available")
        if self.layout != torch.strided:
            raise TypeError(
                f"can't convert {self.layout} layout tensor to numpy. Use Tensor.dense() first"
            )
        from ..symbolic_convert import InstructionTranslator

        tx = InstructionTranslator.current_tx()

        # We don't check that the tensor is on CPU when force is False, as this
        # allows us to execute NumPy code on CUDA. Same for requires_grad=True
        if force and force.as_python_constant():
            # If the user set force=True we try to preserve the semantics (no gradients, move to CPU...)
            t = self.call_method(tx, "detach", [], {})
            proxy = tx.output.create_proxy("call_method", "cpu", (t.as_proxy(),), {})
        else:
            # Hacky way to create a view of self that will be marked as NumpyNdarrayVariable
            proxy = tx.output.create_proxy(
                "call_method", "view_as", *proxy_args_kwargs([self, self], {})
            )
        return NumpyNdarrayVariable.create(tx, proxy)

    def method_tolist(self):
        from ..symbolic_convert import InstructionTranslator
        from .builder import wrap_fx_proxy

        tx = InstructionTranslator.current_tx()

        def tolist(tensor, sub_proxy):
            def wrap(i, sub_proxy):
                # Sigh, we forgot to gate this, so this data dependent is on
                # by default and is load bearing in CI
                with unittest.mock.patch.object(
                    tx.fake_mode, "allow_scalar_outputs", True
                ):
                    return wrap_fx_proxy(
                        tx,
                        sub_proxy.item(),
                    )

            if tensor.dtype not in [
                torch.int8,
                torch.int16,
                torch.int32,
                torch.int64,
            ]:
                unimplemented("Input tensor for tolist must be an integer tensor")

            if tensor.dim() == 0:
                return wrap(tensor, sub_proxy)

            if tensor.dim() == 1:
                return [wrap(val, sub_proxy[i]) for i, val in enumerate(tensor)]

            return [
                tolist(sub_tensor, sub_proxy=sub_proxy[i])
                for i, sub_tensor in enumerate(tensor)
            ]

        tensor = self.as_proxy().node.meta["example_value"]
        out = tolist(tensor, self.as_proxy())
        return VariableTracker.build(tx, out)

    def method_backward(self, *args, **kwargs):
        unimplemented("Tensor.backward")

    def method_data_ptr(self, *args, **kwargs):
        return DataPtrVariable(self)

    def method_item(self, *args, **kwargs):
        if not config.capture_scalar_outputs:
            self._warn_capture_scalar_outputs()
            unimplemented("Tensor.item")

    def method___getitem__(self, *args, **kwargs):
        from ..symbolic_convert import InstructionTranslator
        from .builder import wrap_fx_proxy

        tx = InstructionTranslator.current_tx()
        if isinstance(args[0], SymNodeVariable):
            # Standard indexing will force specialization due to
            # __index__.  Rewrite as a regular torch op which will
            # trace fine
            fn, args = torch.select, [
                variables.ConstantVariable.create(0),
                args[0],
            ]
        else:
            fn = operator.getitem

        proxy = tx.output.create_proxy(
            "call_function",
            fn,
            *proxy_args_kwargs([self] + list(args), kwargs),
        )

        return wrap_fx_proxy(tx, proxy)

    @staticmethod
    @functools.lru_cache(None)
    def _warn_capture_scalar_outputs():
        user_stack = torch._guards.TracingContext.extract_stack()
        user_stack_formatted = "".join(traceback.format_list(user_stack))
        log.warning(
            textwrap.dedent(
                """\
                    Graph break from `Tensor.item()`, consider setting:
                        torch._dynamo.config.capture_scalar_outputs = True
                    or:
                        env TORCHDYNAMO_CAPTURE_SCALAR_OUTPUTS=1
                    to include these operations in the captured graph.

                    Graph break: from user code at:
                    %s
                """
            ),
            user_stack_formatted,
        )

    def method___len__(self):
        from ..symbolic_convert import InstructionTranslator

        tx = InstructionTranslator.current_tx()
        return self.call_method(tx, "size", [ConstantVariable.create(0)], {})

    def method_addcmul_(self, tensor1, tensor2, *, value=None):
        from ..symbolic_convert import InstructionTranslator

        tx = InstructionTranslator.current_tx()
        if value is not None:
            from .. import polyfills

            return tx.inline_user_function_return(
                VariableTracker.build(tx, polyfills.addcmul_inplace),
                [self, tensor1, tensor2, value],
                {},
            )

    def method___setitem__(self, key, value):
        def has_bool_key(v):
            if isinstance(v, TensorVariable):
                return v.dtype in (torch.bool, torch.int8)
            elif isinstance(v, variables.TupleVariable):
                return any(has_bool_key(item) for item in v.items)
            else:
                return False

        from ..symbolic_convert import InstructionTranslator

        tx = InstructionTranslator.current_tx()
        tx.output.create_proxy(
            "call_function",
            operator.setitem,
            *proxy_args_kwargs([self, key, value], {}),
        )
        return ConstantVariable.create(None)

    def method_resize_(self, *args, **kwargs):
        unimplemented("Tensor.resize_")

    def method_resize_as_(self, *args, **kwargs):
        unimplemented("Tensor.resize_as_")

    def method_sparse_resize_(self, *args, **kwargs):
        unimplemented("Tensor.sparse_resize_")

    def method_sparse_resize_and_clear_(self, *args, **kwargs):
        unimplemented("Tensor.sparse_resize_and_clear_")

    def method_set_(self, *args, **kwargs):
        if len(args) > 1:
            # torch.Tensor.set_() has several overloads.
            # aten::set_.source_Tensor(Tensor) gets special handling
            # in AOTAutograd and functionalization, because it is the most common
            # overload and is used by FSDP.
            # graph-breaking on aten::set_source_Tensor_storage_offset for now,
            # unless we find that we need to make it work.
            unimplemented("Tensor.set_.source_Tensor_storage_offset")

    def method_add_(self, other, *, alpha=None):
        if alpha is not None:
            from ..symbolic_convert import InstructionTranslator

            tx = InstructionTranslator.current_tx()
            result = variables.TorchInGraphFunctionVariable(torch.mul).call_function(
                tx, [other, alpha], {}
            )
            return self.call_method(tx, "add_", [result], {})

    def method_addcdiv_(self, tensor1, tensor2, *, value=None):
        from ..symbolic_convert import InstructionTranslator

        tx = InstructionTranslator.current_tx()
        if value is not None:
            result = variables.TorchInGraphFunctionVariable(torch.div).call_function(
                tx, [tensor1, tensor2], {}
            )
            result = variables.TorchInGraphFunctionVariable(torch.mul).call_function(
                tx, [result, value], {}
            )
            return self.call_method(tx, "add_", [result], {})

    def method___contains__(self, arg):
        from ..symbolic_convert import InstructionTranslator

        tx = InstructionTranslator.current_tx()

        # Rewrite __contains__ here so that downstream passes can trace through
        # without dealing with unbacked symbool. Roughly the code we translate is:
        # def __contains__(self, x):
        #     return (x == self).any().item()
        result = variables.TorchInGraphFunctionVariable(torch.eq).call_function(
            tx, [self, arg], {}
        )
        result = variables.TorchInGraphFunctionVariable(torch.any).call_function(
            tx, [result], {}
        )
        return result.call_method(tx, "item", [], {})

    def method_redistribute(self, *args, **kwargs):
        from ..symbolic_convert import InstructionTranslator

        tx = InstructionTranslator.current_tx()
        # rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
        # and rewrite args to have only proxyable args, then insert call_function
        args_as_value = [x.as_python_constant() for x in args]
        kwargs_as_value = {k: v.as_python_constant() for k, v in kwargs.items()}

        def redistribute_fn_with_prim_types(x):
            return x.redistribute(*args_as_value, **kwargs_as_value)

        # attach the same function name for better debugging
        redistribute_fn_with_prim_types.__name__ = "prim_redistribute"

        from .builder import wrap_fx_proxy

        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                redistribute_fn_with_prim_types,
                *proxy_args_kwargs([self], {}),
            ),
        )

    def method_to_local(self, *args, **kwargs):
        from ..symbolic_convert import InstructionTranslator

        tx = InstructionTranslator.current_tx()
        # rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
        # and rewrite args to have only proxyable args, then insert call_function
        args_as_value = [x.as_python_constant() for x in args]
        kwargs_as_value = {k: v.as_python_constant() for k, v in kwargs.items()}

        def to_local_fn_with_prim_types(x):
            return x.to_local(*args_as_value, **kwargs_as_value)

        # attach the same function name for better debugging
        to_local_fn_with_prim_types.__name__ = "prim_to_local"

        from .builder import wrap_fx_proxy

        return wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                to_local_fn_with_prim_types,
                *proxy_args_kwargs([self], {}),
            ),
        )

    def method_register_hook(self, *args, **kwargs):
        return self._method_register_hook("register_hook", *args, **kwargs)

    def method_register_post_accumulate_grad_hook(self, *args, **kwargs):
        return self._method_register_hook(
            "register_post_accumulate_grad_hook", *args, **kwargs
        )

    def _method_register_hook(self, name: str, hook: VariableTracker):
        # Note - do not arbitrarily add hooks here - make sure they match the same contract
        # see [On tensor.register_hook]
        from ..symbolic_convert import InstructionTranslator

        tx = InstructionTranslator.current_tx()

        if not self.source:
            if not compiled_autograd.compiled_autograd_enabled:
                # TODO(voz):
                # We can relax this by speculating the callable and ensuring that it doesn't modify arbitrary
                # python state.
                # We *Must* be in compiled_autograd here because backward hooks can contain anything, and it is unsafe to run
                # them in a compiled bwd without re-entering dynamo as compiled_autograd does.
                #
                # Discussion point 1 - Should we bypass this if nopython/fullgraph = True?
                #   No. Because this was going to be a graph break anyway - this check does not
                # introduce new graph breaks where there were none.
                #
                # Discussion point 2 - Should we defer this check to backwards?
                #   No. Because compiled autograd is not yet ready for prime time. As such, if we defer, a user
                # would have no recourse - their forward traces just fine, but will fail at backwards unless
                # compiled_autograd is enabled. If compiled_autograd fails (there are a lot of failures today)
                # then they have nothing they can do except disable compile.
                unimplemented(
                    "Compilation of intermediate hooks requires compiled autograd"
                )

            hook_name, bw_state_proxy = tx.output.add_backward_state_hook(hook)

            def _register_hook_trampoline(tensor, bw_state):
                register_hook = getattr(tensor, name)
                register_hook(
                    functools.partial(
                        trace_wrapped,
                        fn=call_hook_from_backward_state,
                        bw_state=bw_state,
                        hook_name=hook_name,
                    )
                )
                # TODO(jansel): returning None here is wrong, it should be
                # RemovableHandle, but we need some extra work to support
                # this properly.
                return None

            from .builder import wrap_fx_proxy

            self_proxy = self.as_proxy()
            self_proxy.node.meta["has_backward_hook"] = True

            return wrap_fx_proxy(
                tx,
                tx.output.create_proxy(
                    "call_function",
                    _register_hook_trampoline,
                    (self_proxy, bw_state_proxy),
                    {},
                ),
            )

        handle_variable = variables.RemovableHandleVariable(
            mutation_type=variables.base.ValueMutationNew(),
        )
        tx.output.side_effects.register_hook(self, hook, handle_variable, name)
        return handle_variable

    def method_requires_grad_(self, requires_grad=True):
        if requires_grad is not True:
            requires_grad = requires_grad.as_python_constant()

        if self.as_proxy().node.meta["example_value"].requires_grad != requires_grad:
            unimplemented("Tensor.requires_grad_")
        else:
            return self

    def method_new(self, *args, **kwargs):
        # Convert x.new(torch.Size) into x.new_empty(torch.Size),
        # as Tensor.new acts differently with a Size input versus a tuple input.
        if (len(args) == 1 and isinstance(args[0], SizeVariable)) or (
            len(args) >= 1
            and all(
                isinstance(a, ConstantVariable) and a.python_type() == int for a in args
            )
        ):
            from ..symbolic_convert import InstructionTranslator

            return self.call_method(
                InstructionTranslator.current_tx(), "new_empty", args, kwargs
            )

    def method_untyped_storage(self):
        return UntypedStorageVariable(
            self, self.as_proxy().node.meta["example_value"].untyped_storage()
        )

    def set_name_hint(self, name: str):
        if not self._is_name_set:
            self.proxy.node._rename(name)
            self._is_name_set = True


class SymNodeVariable(VariableTracker):
    """
    Represents a symbolic scalar, either int, float or bool.  This is most commonly used to
    handle symbolic size computation, e.g., tensor.size(0), but it is also used to
    handle logic like float_tensor.item() or unspecialized float inputs.
    """

    _nonvar_fields = {
        "proxy",
        "sym_num",
        *VariableTracker._nonvar_fields,
    }

    def debug_repr(self):
        return repr(self.sym_num)

    @classmethod
    def create(cls, tx, proxy, sym_num=None, **options):
        if sym_num is None:
            sym_num = get_fake_value(proxy.node, tx)
        if "example_value" in proxy.node.meta:
            assert proxy.node.meta["example_value"] == sym_num
        set_example_value(proxy.node, sym_num)

        if isinstance(sym_num, (sympy.Integer, int, bool)):
            sym_num = int(sym_num) if isinstance(sym_num, sympy.Integer) else sym_num
            return ConstantVariable.create(sym_num)

        return SymNodeVariable(proxy, sym_num, **options)

    def __init__(self, proxy, sym_num, **kwargs) -> None:
        super().__init__(**kwargs)
        self.proxy = proxy
        # TODO: Should we allow non SymTypes here?  Today it is allowed
        self.sym_num = sym_num
        self._tensor_var = None

    def python_type(self):
        if isinstance(self.sym_num, SymTypes):
            return self.sym_num.node.pytype
        else:
            return type(self.sym_num)

    def as_proxy(self):
        return self.proxy

    def as_tensor(self, tx, dtype):
        if self._tensor_var is None:
            self._tensor_var = VariableTracker.build(
                tx, torch.scalar_tensor
            ).call_function(tx, [self], {"dtype": VariableTracker.build(tx, dtype)})
        return self._tensor_var

    def evaluate_expr(self, output_graph=None):
        try:
            return guard_scalar(self.sym_num)
        except GuardOnDataDependentSymNode as e:
            raise UserError(  # noqa: B904
                UserErrorType.ANTI_PATTERN,
                f"Consider annotating your code using torch._check*(). {str(e)}",
                case_name="constrain_as_size_example",
            )

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from .builder import wrap_fx_proxy

        return wrap_fx_proxy(
            tx,
            tx.output.create_proxy(
                "call_method",
                name,
                *proxy_args_kwargs([self, *args], kwargs),
            ),
        )


class NumpyNdarrayVariable(TensorVariable):
    """
    Represents a np.ndarray, but backed by torch Tensor via torch._numpy.ndarray.
    Use this for Tensor.numpy() call.
    """

    @staticmethod
    def create(tx: "InstructionTranslator", proxy, **options):
        from .builder import wrap_fx_proxy_cls

        return wrap_fx_proxy_cls(
            target_cls=NumpyNdarrayVariable,
            tx=tx,
            proxy=proxy,
            **options,
        )

    def var_getattr(self, tx: "InstructionTranslator", name):
        # NB: This INTENTIONALLY does not call super(), because there is
        # no intrinsic reason ndarray properties are related to Tensor
        # properties.  The inheritance here is for implementation sharing.

        from ..utils import numpy_attr_wrapper
        from .builder import wrap_fx_proxy

        result = None

        example_value = self.as_proxy().node.meta["example_value"]
        example_ndarray = tnp.ndarray(example_value)

        def insert_into_graph():
            return wrap_fx_proxy(
                tx,
                tx.output.create_proxy(
                    "call_function", numpy_attr_wrapper, (self.as_proxy(), name), {}
                ),
            )

        if name in ["T", "real", "imag"]:
            proxy = tx.output.create_proxy(
                "call_function",
                numpy_attr_wrapper,
                (self.as_proxy(), name),
                {},
            )
            result = NumpyNdarrayVariable.create(tx, proxy)

        # These are awkward to implement.  The standard playbook for torch._numpy
        # interop is to trace a call into the torch._numpy wrapper which works for
        # Tensor operations.  However, we don't want to do this for calls
        # that don't return Tensors, because in those cases we may not want
        # to trace the attribute access into the graph at all (it is sort
        # of harmless to do so, because AOTAutograd will eliminate them,
        # but it's best not to trace them in to begin with.)  But in any
        # case, tracing these into the graph is like trying to fit a square
        # peg into a round hole; best not to do it.  So instead we
        # painstakingly implement these by hand
        #
        # NB: only ALWAYS specialized attributes can go here; notably,
        # size/shape not allowed!
        elif name in ("ndim", "itemsize"):
            return ConstantVariable.create(getattr(example_ndarray, name))
        elif name in ("shape", "stride"):
            if not has_free_symbols(r := getattr(example_ndarray, name)):
                return ConstantVariable.create(tuple(int(r) for r in r))
            return insert_into_graph()
        elif name == "size":
            if not has_free_symbols(r := example_ndarray.size):
                return ConstantVariable.create(int(r))
            return insert_into_graph()
        elif name in ["base", "flags", "dtype"]:
            unimplemented(f"TODO: add support for ndarray.{name}")
        elif name in ["__version__"]:
            unimplemented("delegate np.__version__ to NumPy")
        if result is None:
            raise NotImplementedError
        return result

    @staticmethod
    def patch_args(name, args, kwargs):
        if name == "clip":
            kwargs_rename = {"a_min": "min", "a_max": "max"}
            kwargs = {kwargs_rename.get(k, k): v for k, v in kwargs.items()}
        return args, kwargs

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from ..utils import numpy_method_wrapper

        args, kwargs = self.patch_args(name, args, kwargs)

        if name in ["__len__", "size", "tolist"]:
            # delegate back to TensorVariable
            return super().call_method(tx, name, args, kwargs)
        if name in ("tostring", "tobytes"):
            unimplemented(f"{name} is not modelled in torch._numpy")
        proxy = tx.output.create_proxy(
            "call_function",
            numpy_method_wrapper(name),
            *proxy_args_kwargs([self] + list(args), kwargs),
        )
        return NumpyNdarrayVariable.create(tx, proxy)

    def python_type(self):
        return np.ndarray


class UnspecializedPythonVariable(TensorVariable):
    """
    This is a 1-element tensor represents unspecialized python float/int.
    """

    _nonvar_fields = {
        "raw_value",
        "need_unwrap",
        *TensorVariable._nonvar_fields,
    }

    def __init__(
        self, proxy: torch.fx.Proxy, *, raw_value=None, need_unwrap=True, **kwargs
    ) -> None:
        super().__init__(proxy, **kwargs)
        self.raw_value = raw_value
        self.need_unwrap = need_unwrap

    @classmethod
    def from_tensor_variable(cls, tensor_variable, raw_value, need_unwrap=True):
        # Convert a `TensorVariable` instance into an `UnspecializedPythonVariable` instance.
        return UnspecializedPythonVariable(
            **dict(tensor_variable.__dict__),
            raw_value=raw_value,
            need_unwrap=need_unwrap,
        )


class FakeItemVariable(TensorVariable):
    """An unspecialized python variable which prevents access to the underlying raw value.
    This is needed if item is called on a FakeTensor."""

    _nonvar_fields = {
        "need_unwrap",
        *TensorVariable._nonvar_fields,
    }

    def __init__(self, proxy: torch.fx.Proxy, **kwargs) -> None:
        need_unwrap = kwargs.pop("need_unwrap", False)
        super().__init__(proxy, **kwargs)
        self.need_unwrap = need_unwrap

    @classmethod
    def from_tensor_variable(cls, tensor_variable):
        return FakeItemVariable(**dict(tensor_variable.__dict__))


class TensorSubclassVariable(VariableTracker):
    def __init__(self, value, *args, **kwargs) -> None:
        self.value = value
        super().__init__(*args, **kwargs)

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        if len(args) == 1 and isinstance(args[0], TensorVariable):
            from .torch_function import TensorWithTFOverrideVariable

            source = AttrSource(self.source, "__torch_function__")
            torch_fn = VariableTracker.build(tx, self.value.__torch_function__, source)

            return TensorWithTFOverrideVariable.from_tensor_var(
                tx, args[0], self.value, torch_fn
            )

        return super().call_function(tx, args, kwargs)

    def as_python_constant(self):
        return self.value


class UntypedStorageVariable(VariableTracker):
    _nonvar_fields = {
        "example_value",
        *VariableTracker._nonvar_fields,
    }

    def __init__(
        self,
        from_tensor: TensorVariable,
        example_value: torch.UntypedStorage,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs),
        self.from_tensor = from_tensor
        # Example_value will always have device="meta"
        self.example_value = example_value

    def call_method(
        self,
        tx,
        name,
        args: List[VariableTracker],
        kwargs: Dict[str, VariableTracker],
    ) -> VariableTracker:
        if name == "size":
            assert not args
            assert not kwargs
            result = self.example_value.size()
            if not has_free_symbols(result):
                # avoid creating a node in the graph
                return ConstantVariable.create(int(result))
            else:
                from ..external_utils import untyped_storage_size
                from .builder import wrap_fx_proxy

                return wrap_fx_proxy(
                    tx,
                    tx.output.create_proxy(
                        "call_function",
                        untyped_storage_size,
                        (self.from_tensor.as_proxy(),),
                        {},
                    ),
                )
        if name == "resize_" and len(args) == 1:
            assert not kwargs
            tx.output.create_proxy(
                "call_function",
                torch.ops.inductor.resize_storage_bytes_,
                (self.from_tensor.as_proxy(), args[0].as_proxy()),
                {},
            )
            return self

        return super().call_method(tx, name, args, kwargs)

    def reconstruct(self, codegen):
        codegen(self.from_tensor)
        codegen.load_method("untyped_storage")
        codegen.call_method(0)


class DataPtrVariable(VariableTracker):
    def __init__(
        self,
        from_tensor: TensorVariable,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs),
        self.from_tensor = from_tensor

    def reconstruct(self, codegen):
        codegen(self.from_tensor)
        codegen.load_method("data_ptr")
        codegen.call_method(0)