File: torch.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1189 lines) | stat: -rw-r--r-- 49,999 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import functools
import inspect
import logging
import math
import re
from typing import Dict, List, TYPE_CHECKING

import torch._C
import torch._refs
import torch.fx
import torch.nn
from torch._guards import TracingContext
from torch._logging import warning_once
from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type

from .. import config, polyfills, variables
from ..codegen import PyCodegen
from ..create_parameter_op import (
    can_convert_to_tracable_parameter,
    new_parameter_placeholder,
    tracable_create_parameter,
)
from ..device_interface import get_registered_device_interfaces
from ..exc import unimplemented
from ..guards import GuardBuilder, install_guard
from ..source import CallFunctionNoArgsSource, SyntheticLocalSource
from ..utils import (
    check_unspec_or_constant_args,
    guard_if_dyn,
    has_torch_function,
    hashable,
    product,
    proxy_args_kwargs,
    unwrap_if_wrapper,
)
from .base import VariableTracker
from .ctx_manager import (
    AutocastModeVariable,
    NullContextVariable,
    TorchFunctionDisableVariable,
)
from .distributed import DistributedVariable, ProcessGroupVariable
from .lists import ListVariable, TupleVariable
from .torch_function import (
    can_dispatch_torch_function,
    dispatch_torch_function,
    TorchFunctionModeStackVariable,
)


try:
    import numpy as np
except ModuleNotFoundError:
    np = None  # type: ignore[assignment]

try:
    from torch.distributed.fsdp._fully_shard import _fsdp_param_group
except ModuleNotFoundError:
    _fsdp_param_group = None  # type: ignore[assignment]


if TYPE_CHECKING:
    from torch._dynamo.symbolic_convert import InstructionTranslator


log = logging.getLogger(__name__)

supported_ctx_manager_classes = dict.fromkeys(
    [
        torch.profiler.profiler.profile,
        torch.autograd.forward_ad._set_fwd_grad_enabled,
        torch.autograd.forward_ad.dual_level,
        torch.autograd.profiler.profile,
        torch.autograd.profiler.record_function,
        torch._C.DisableTorchFunctionSubclass,
        torch._functorch.vmap.vmap_increment_nesting,
        torch._functorch.eager_transforms.grad_increment_nesting,
        torch._functorch.eager_transforms.jvp_increment_nesting,
        torch._functorch.eager_transforms.enable_inplace_requires_grad,
        torch.amp.autocast_mode.autocast,
        torch.autograd.grad_mode.enable_grad,
        torch.autograd.grad_mode.inference_mode,
        torch.autograd.grad_mode.no_grad,
        torch.autograd.grad_mode.set_grad_enabled,
        torch.autograd.graph.disable_saved_tensors_hooks,
        torch.cpu.amp.autocast_mode.autocast,
        torch.cuda.amp.autocast_mode.autocast,
        torch.nn.attention.sdpa_kernel,
        torch.nn.attention._sdpa_kernel_variadic,
    ]
)


REWRITE_OPS_TO_TENSOR_SIZE_METHOD = dict.fromkeys(
    [
        torch._shape_as_tensor,
    ]
)

constant_fold_functions_need_guards = [
    torch.cuda.current_device,
]

constant_fold_functions = [
    torch._assert,
    torch._utils._get_device_index,
    torch._C._get_cublas_allow_tf32,
    torch._C._is_any_autocast_enabled,
    torch.cuda.get_device_properties,
    torch.cuda.is_available,
    torch.distributed.is_available,
    torch.get_autocast_dtype,
    torch.get_autocast_gpu_dtype,
    torch.get_default_dtype,
    torch.is_autocast_cache_enabled,
    torch.is_autocast_cpu_enabled,
    torch.is_autocast_enabled,
    torch.is_complex,
    torch.is_floating_point,
    torch.nn.functional._Reduction.get_enum,  # type: ignore[attr-defined]
    torch.promote_types,
    torch._C._get_privateuse1_backend_name,
    torch.autograd._is_checkpoint_valid,
] + constant_fold_functions_need_guards
if torch.distributed.is_available():
    constant_fold_functions.extend(
        [
            torch.distributed.is_initialized,
            torch.distributed.get_rank,
            torch.distributed.get_world_size,
        ]
    )
# Convert to dict for O(1) access times
constant_fold_functions_need_guards = dict.fromkeys(constant_fold_functions_need_guards)
constant_fold_functions = dict.fromkeys(constant_fold_functions)


tracing_state_functions = {
    torch.jit.is_scripting: False,
    torch.jit.is_tracing: False,
    torch._C._get_tracing_state: None,
    torch.fx._symbolic_trace.is_fx_tracing: False,
    torch.onnx.is_in_onnx_export: False,
    torch._dynamo.external_utils.is_compiling: True,
    torch._utils.is_compiling: True,
    torch.compiler.is_compiling: True,
    torch.compiler.is_dynamo_compiling: True,
    torch.nn.modules.activation._is_make_fx_tracing: False,
}

bin_ops = dict.fromkeys(["add", "sub", "mul", "div", "sqrt"])


@functools.lru_cache(None)
def get_overridable_functions():
    from itertools import chain

    from torch.overrides import get_overridable_functions as get_overridable_functions_

    funcs = set(chain(*get_overridable_functions_().values()))
    more = {
        torch.ones,
        torch.ones_like,
        torch.zeros,
        torch.zeros_like,
        torch.empty,
        torch.full,
    }
    funcs.update(more)
    return funcs


class BaseTorchVariable(VariableTracker):
    """common base for all torch.* functions, classes, modules and other things"""

    @classmethod
    def create_with_source(cls, value, source):
        install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
        return cls(value, source=source)

    def __init__(self, value, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value

    def reconstruct(self, codegen):
        try:
            name = f"{self.value.__module__}.{self.value.__name__}"
        except Exception:
            name = f"torch_obj_{id(self.value)}"
        unique_var_name = "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name)
        codegen.extend_output(
            codegen.setup_globally_cached(unique_var_name, self.value)
        )

    def as_proxy(self):
        return self.value

    def as_python_constant(self):
        return self.value

    def call_hasattr(self, tx: "InstructionTranslator", name):
        result = hasattr(self.value, name)
        return variables.ConstantVariable.create(result)

    def can_constant_fold_through(self):
        if self.value in constant_fold_functions:
            return True
        return getattr(self.value, "__module__", None) == "math"


class TorchCtxManagerClassVariable(BaseTorchVariable):
    """Points to a context manager class in torch.* that dynamo has implementations"""

    def __repr__(self) -> str:
        return f"TorchCtxManagerClassVariable({self.value})"

    @staticmethod
    def is_matching_cls(value):
        # Unwrap if it's a functools.lru_cache wrapper
        value = unwrap_if_wrapper(value)
        # We can't do isinstance(value, type) check because some ctx managers
        # are implemented as a function decorated by contextlib.contextmanager,
        # E.g., torch._functorch.vmap.vmap_increment_nesting.
        return (
            # Context manager type or function with @contextmanager is callable
            callable(value)
            and (
                hashable(value)  # accesses value.__hash__()
                and value in supported_ctx_manager_classes
            )
        )

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from . import (
            DisabledSavedTensorsHooksVariable,
            DualLevelContextManager,
            FSDPParamGroupUseTrainingStateVariable,
            GradIncrementNestingCtxManagerVariable,
            GradInplaceRequiresGradCtxManagerVariable,
            GradModeVariable,
            InferenceModeVariable,
            JvpIncrementNestingCtxManagerVariable,
            SDPAKernelVariable,
            SetFwdGradEnabledContextManager,
            StreamVariable,
            VmapIncrementNestingCtxManagerVariable,
        )

        if self.value is torch.no_grad:
            if len(args) == 1 and isinstance(
                args[0], variables.functions.BaseUserFunctionVariable
            ):
                ctx = GradModeVariable.create(tx, False)
                return ctx.call_function(tx, args, kwargs)
            else:
                return GradModeVariable.create(tx, False)
        elif self.value is torch.enable_grad:
            if len(args) == 1 and isinstance(
                args[0], variables.functions.BaseUserFunctionVariable
            ):
                ctx = GradModeVariable.create(tx, True)
                return ctx.call_function(tx, args, kwargs)
            return GradModeVariable.create(tx, True)
        elif self.value is torch.set_grad_enabled and len(args) == 1:
            return GradModeVariable.create(
                tx, args[0].as_python_constant(), initialized=True
            )
        elif self.value is torch.inference_mode:
            assert len(args) <= 1 and len(kwargs) == 0
            inf_mode = args[0].as_python_constant() if len(args) == 1 else True
            return InferenceModeVariable.create(tx, inf_mode)
        elif inspect.isclass(self.value) and issubclass(self.value, torch.Stream):
            from torch._dynamo.variables.builder import wrap_fx_proxy_cls

            return wrap_fx_proxy_cls(
                StreamVariable,
                tx,
                tx.output.create_proxy(
                    "call_function",
                    self.value,
                    (),
                    {},
                ),
            )
        elif self.value in (
            torch.amp.autocast_mode.autocast,
            torch.cuda.amp.autocast,
            torch.cpu.amp.autocast,
        ):
            return AutocastModeVariable.create(self.value, args, kwargs)
        elif self.value in (
            torch.profiler.profile,
            torch.profiler.record_function,
            torch.autograd.profiler.profile,
            torch.autograd.profiler.record_function,
        ):
            warning_once(log, "Profiler function %s will be ignored", self.value)
            return NullContextVariable()
        elif self.value is torch._C.DisableTorchFunctionSubclass:
            assert not (args or kwargs)
            return TorchFunctionDisableVariable.create(tx)
        elif self.value is torch._functorch.vmap.vmap_increment_nesting:
            assert len(args) == 2
            return VmapIncrementNestingCtxManagerVariable.create(
                tx,
                args,
            )
        elif self.value is torch._functorch.eager_transforms.jvp_increment_nesting:
            assert len(args) == 0
            return JvpIncrementNestingCtxManagerVariable.create(tx)
        elif self.value is torch.autograd.forward_ad._set_fwd_grad_enabled:
            assert len(args) == 1
            return SetFwdGradEnabledContextManager.create(
                tx,
                [guard_if_dyn(x) for x in args],
            )
        elif self.value is torch.autograd.forward_ad.dual_level:
            assert len(args) == 0
            return DualLevelContextManager.create(tx)
        elif self.value is torch._functorch.eager_transforms.grad_increment_nesting:
            assert len(args) == 0
            return GradIncrementNestingCtxManagerVariable.create(tx)
        elif (
            self.value is torch._functorch.eager_transforms.enable_inplace_requires_grad
        ):
            assert len(args) == 1
            return GradInplaceRequiresGradCtxManagerVariable.create(
                tx,
                [guard_if_dyn(x) for x in args],
            )
        elif self.value is torch.autograd.graph.disable_saved_tensors_hooks:
            assert len(args) == 1
            return DisabledSavedTensorsHooksVariable.create(
                tx, args[0].as_python_constant()
            )
        elif (
            _fsdp_param_group is not None
            and self.value is _fsdp_param_group.FSDPParamGroup.use_training_state
        ):
            assert len(args) == 2
            return FSDPParamGroupUseTrainingStateVariable.create(
                tx, args[0], args[1].as_python_constant()
            )
        elif self.value is torch.nn.attention.sdpa_kernel:
            assert len(args) == 1 or (len(kwargs) == 1 and "backends" in kwargs)
            backends = args[0] if len(args) == 1 else kwargs["backends"]
            return SDPAKernelVariable.create(tx, backends.as_python_constant())
        elif self.value is torch.nn.attention._sdpa_kernel_variadic:
            return SDPAKernelVariable.create(
                tx, [arg.as_python_constant() for arg in args]
            )

        return super().call_function(tx, args, kwargs)


class TorchInGraphFunctionVariable(BaseTorchVariable):
    """Points to a torch function/method that should be put in FX graph"""

    def __repr__(self) -> str:
        return f"TorchInGraphFunctionVariable({self.value})"

    def get_function(self):
        return self.value

    @staticmethod
    @functools.lru_cache(None)
    def _get_handlers():
        """Build a dict from function -> method to handle it so that we are O(1)
        in terms of the number of function with special handling."""
        handlers = {}

        def register(*fns):
            def _register(handler):
                for fn in fns:
                    assert fn not in handlers, fn
                    handlers[fn] = handler
                return handler

            assert callable(fns[0])
            return _register

        from torch.backends.cuda import SDPAParams

        from . import (
            ConstantVariable,
            DeterministicAlgorithmsVariable,
            GradModeVariable,
            StreamContextVariable,
            SymNodeVariable,
            TensorVariable,
            UserDefinedObjectVariable,
        )
        from .builder import wrap_fx_proxy, wrap_fx_proxy_cls

        @register(*tracing_state_functions)
        def handle_tracing_state_functions(
            self, tx: "InstructionTranslator", *args, **kwargs
        ):
            assert not args and not kwargs
            # See: https://github.com/pytorch/pytorch/issues/110765
            if self.value in (
                torch._utils.is_compiling,
                torch._dynamo.external_utils.is_compiling,
                torch.compiler.is_compiling,
                torch.compiler.is_dynamo_compiling,
            ):
                tx.mark_inconsistent_side_effects()
            return ConstantVariable.create(tracing_state_functions[self.value])

        @register(torch.overrides.get_default_nowrap_functions.__wrapped__)
        def handle_get_default_nowrap_functions(
            self, tx: "InstructionTranslator", *args, **kwargs
        ):
            # [Note: __torch_function__] we return empty here because we restrict
            # the set of functions that we trace __torch_function__ on to
            # functions outside of the actual set. Implementing this properly will require implementing
            # some variable types to track and compare tensor getset descriptors
            return VariableTracker.build(
                tx, torch.overrides.get_default_nowrap_functions()
            )

        @register(torch.ops.inductor.accumulate_grad_.default)
        def handle_accumulate_grad_(self, tx: "InstructionTranslator", *args, **kwargs):
            return tx.inline_user_function_return(
                VariableTracker.build(tx, polyfills.accumulate_grad), args, kwargs
            )

        @register(math.radians)
        def handle_radians(self, tx: "InstructionTranslator", *args, **kwargs):
            if not check_unspec_or_constant_args(args, kwargs):
                # Use polyfill to convert math.radians(x) into math.pi * x / 180.0
                return tx.inline_user_function_return(
                    VariableTracker.build(tx, polyfills.radians), args, kwargs
                )

        @register(torch.is_tensor, torch.overrides.is_tensor_like)
        def handle_is_tensor(self, tx: "InstructionTranslator", arg):
            if isinstance(arg, TensorVariable) or (
                self.value is torch.overrides.is_tensor_like
                and isinstance(arg, UserDefinedObjectVariable)
                and hasattr(arg.value, "__torch_function__")
            ):
                return ConstantVariable.create(True)
            else:
                return ConstantVariable.create(False)

        @register(
            torch.is_floating_point,
            torch.is_complex,
        )
        def handle_is_floating_point(self, tx: "InstructionTranslator", input):
            input_arg = input
            if isinstance(input_arg, TensorVariable) and input_arg.dtype is not None:
                if self.value is torch.is_floating_point:
                    return ConstantVariable.create(input_arg.dtype.is_floating_point)
                elif self.value is torch.is_complex:
                    return ConstantVariable.create(input_arg.dtype.is_complex)
                else:
                    raise AssertionError(f"calling {self.value}")

        @register(torch.numel)
        def handle_numel(self, tx: "InstructionTranslator", input):
            if isinstance(input, TensorVariable) and input.valid_size():
                return ConstantVariable.create(product(input.size))
            elif isinstance(input, TensorVariable):
                # Workaround dynamic shapes issue
                return input.call_method(tx, "numel", [], {})

        @register(torch.compile)
        def handle_torch_compile(self, tx: "InstructionTranslator", *args, **kwargs):
            if len(args) == 1:
                # torch.compile is a no-op in dynamo
                return args[0]

            unimplemented("torch.compile is used as a decorator in the compiled frame")

        @register(*REWRITE_OPS_TO_TENSOR_SIZE_METHOD)
        def handle_tensor_size_rewrites(self, tx: "InstructionTranslator", input):
            assert isinstance(input, TensorVariable)
            return input.call_method(tx, "size", [], {})

        @register(
            torch.nn.modules.utils._single,
            torch.nn.modules.utils._pair,
            torch.nn.modules.utils._triple,
            torch.nn.modules.utils._quadruple,
            torch.nn.modules.utils._ntuple,
        )
        def handle_ntuple(self, tx: "InstructionTranslator", *args, **kwargs):
            return self._call_ntuple(tx, args, kwargs)

        @register(torch.is_grad_enabled)
        def handle_is_grad_enabled(self, tx):
            install_guard(GradModeVariable._guards_singleton)
            return ConstantVariable.create(torch.is_grad_enabled())

        @register(torch.use_deterministic_algorithms)
        def handle_use_deterministic_algorithms(
            self, tx: "InstructionTranslator", mode, warn_only=False
        ):
            if warn_only and warn_only.as_python_constant():
                unimplemented("torch.use_deterministic_algorithms(warn_only=True)")
            return DeterministicAlgorithmsVariable.create(tx, mode.as_python_constant())

        @register(torch.are_deterministic_algorithms_enabled)
        def handle_are_deterministic_algorithms_enabled(self, tx):
            install_guard(DeterministicAlgorithmsVariable._guards_singleton)
            return ConstantVariable.create(torch.are_deterministic_algorithms_enabled())

        @register(torch._C._is_torch_function_enabled)
        def handle_is_torch_function_enabled(self, tx):
            install_guard(TorchFunctionDisableVariable._guards_singleton)
            return ConstantVariable.create(tx.output.torch_function_enabled)

        @register(
            torch.overrides.has_torch_function,
            torch.overrides.has_torch_function_variadic,
            torch.overrides.has_torch_function_unary,
        )
        def handle_has_torch_function(self, tx: "InstructionTranslator", *args):
            elems = (
                args[0].unpack_var_sequence(tx)
                if len(args) == 1 and isinstance(args[0], TupleVariable)
                else args
            )
            return ConstantVariable.create(
                any(has_torch_function(x) for x in elems),
            )

        @register(
            *dict.fromkeys(  # remove duplicates
                device_interface.stream
                for _, device_interface in get_registered_device_interfaces()
            )
        )
        def handle_device_interface_stream(self, tx: "InstructionTranslator", stream):
            return StreamContextVariable.create(tx, stream)

        @register(torch.from_numpy)
        def handle_from_numpy(self, tx: "InstructionTranslator", *args):
            if not config.trace_numpy:
                unimplemented("torch.from_numpy. config.trace_numpy is False")
            if not np:
                unimplemented("torch.from_numpy. NumPy is not available")
            return wrap_fx_proxy_cls(
                target_cls=TensorVariable,
                tx=tx,
                proxy=tx.output.create_proxy(
                    "call_function",
                    torch.as_tensor,
                    *proxy_args_kwargs(args, {}),
                ),
                example_value=None,
            )

        @register(torch.jit.annotate)
        def handle_jit_annotate(self, tx: "InstructionTranslator", the_type, the_value):
            return the_value

        @register(torch.backends.cudnn.is_acceptable)
        def handle_cudnn_is_acceptable(
            self, tx: "InstructionTranslator", tensor, *extra
        ):
            # is_acceptable(tensor) returns true if
            #   (a) tensor dtype/device are supported by cudnn
            #   (b) cudnn is available
            #   (c) some initialization has completed
            # technically, it depends on some global state from (c) (torch.backends.cudnn.__cudnn_version)
            assert not extra, "Expect 1 input to cudnn.is_acceptable"
            assert isinstance(
                tensor, TensorVariable
            ), "Expect input to cudnn.is_acceptable to be a tensor"
            tensor_inp = torch.tensor(0, dtype=tensor.dtype, device=tensor.device)
            return ConstantVariable.create(
                torch.backends.cudnn.is_acceptable(tensor_inp)
            )

        @register(torch.utils.hooks.BackwardHook)
        def handle_backward_hook(self, tx: "InstructionTranslator", *args, **kwargs):
            return variables.BackwardHookVariable.create(tx, *args, **kwargs)

        @register(torch.nn.Parameter)
        def handle_parameter(self, tx: "InstructionTranslator", *args, **kwargs):
            return self.call_nn_parameter(tx, *args, **kwargs)

        @register(torch.ops.aten.sym_size, torch.ops.aten.sym_size.int)
        def handle_sym_size(self_, tx, self, dim=None):
            # we see this when retracing already traced code
            if dim is not None:
                return self.call_method(tx, "size", [dim], {})

        @register(torch.ops.aten.sym_stride, torch.ops.aten.sym_stride.int)
        def handle_sym_stride(self_, tx, self, dim=None):
            if dim is not None:
                return self.call_method(tx, "stride", [dim], {})

        @register(torch.addcdiv)
        def handle_addcdiv(self, tx: "InstructionTranslator", *args, **kwargs):
            if len(args) == 3 and "value" in kwargs and len(kwargs) == 1:
                # decompose addcdiv into constituent ops, prevents a graph break due to converting
                # value to a scalar
                result = TorchInGraphFunctionVariable(torch.div).call_function(
                    tx, [*args[1:]], {}
                )
                result = TorchInGraphFunctionVariable(torch.mul).call_function(
                    tx, [result, kwargs["value"]], {}
                )
                return TorchInGraphFunctionVariable(torch.add).call_function(
                    tx, [args[0], result], {}
                )

        @register(torch._foreach_lerp_)
        def handle_inplace_foreach_lerp_scalar(
            self, tx: "InstructionTranslator", *args, **kwargs
        ):
            if len(args) == 3 and not isinstance(args[2], ListVariable) and not kwargs:
                return tx.inline_user_function_return(
                    VariableTracker.build(tx, polyfills.foreach_lerp_inplace),
                    args,
                    kwargs,
                )

        @register(torch._foreach_pow)
        def handle_foreach_pow_scalar(
            self, tx: "InstructionTranslator", *args, **kwargs
        ):
            # In eager it's more performant to call item() from within the C op implementation
            # in compile, it's more performant to not graph break.
            if len(args) == 2 and isinstance(args[0], TensorVariable) and not kwargs:
                return tx.inline_user_function_return(
                    VariableTracker.build(tx, polyfills.foreach_pow_scalar),
                    args,
                    kwargs,
                )

        @register(torch._assert)
        def handle_assert(self, tx: "InstructionTranslator", condition, message):
            if (condition.is_python_constant() and condition.as_python_constant()) or (
                isinstance(condition, variables.SymNodeVariable)
                and condition.evaluate_expr()
            ):
                return ConstantVariable(None)

        @register(SDPAParams)
        def handle_sdpa_params(self, tx: "InstructionTranslator", *args, **kwargs):
            return wrap_fx_proxy(
                tx,
                proxy=tx.output.create_proxy(
                    "call_function",
                    torch._C._SDPAParams,
                    *proxy_args_kwargs(args, kwargs),
                ),
                param_vars=args,
            )

        if DistributedVariable.is_available():
            from torch.distributed.distributed_c10d import (
                _get_group_size_by_name,
                _get_group_tag,
                _rank_not_in_group,
                _resolve_group_name_by_ranks_and_tag,
                get_process_group_ranks,
            )
            from torch.distributed.tensor import DTensor

            @register(
                _get_group_size_by_name,
                _get_group_tag,
                _rank_not_in_group,
                get_process_group_ranks,
                _resolve_group_name_by_ranks_and_tag,
            )
            def handle_constant_processgroup_functions(
                self, tx: "InstructionTranslator", *args
            ):
                # because the input is a "ProcessGroupVariable", we'll be guarding on its
                # ID_MATCH based on how it was constructed.

                # We desugar it at trace-time into ranks by directly calling util
                # bake the result into the trace
                if len(args) == 1:
                    # group or group name
                    assert isinstance(args[0], (ProcessGroupVariable, ConstantVariable))
                elif len(args) == 2:
                    # ranks + tag
                    assert isinstance(args[0], ListVariable) and isinstance(
                        args[1], ConstantVariable
                    )
                else:
                    raise AssertionError(
                        f"Invalid group value ({args}) for constant pg "
                        f"function {self.value}"
                    )
                args_as_value = [arg.as_python_constant() for arg in args]
                invocation_result = self.value(*args_as_value)

                # Note - while we *could* cook up sources around invocations, like a FunctionSource
                # the space of invoking functions in the middle of the guard chain is very iffy. As such,
                # guard propagation via options is the best we can do.
                return VariableTracker.build(tx, invocation_result)

            @register(DTensor.from_local)
            def handle_from_local(self, tx: "InstructionTranslator", *args, **kwargs):
                # rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
                # and rewrite args to have only proxyable args, then insert call_function
                args_as_value = [x.as_python_constant() for x in args[1:]]
                kwargs_as_value = {
                    k: v.as_python_constant()
                    for k, v in kwargs.items()
                    if k not in ["shape", "stride"]
                }
                kwargs_to_be_proxied = {
                    k: kwargs[k] for k in ["shape", "stride"] if k in kwargs
                }

                def fn_with_prim_types(x, shape=None, stride=None):
                    return self.value(
                        x, *args_as_value, **kwargs_as_value, shape=shape, stride=stride
                    )

                # attach the same function name for better debugging
                fn_with_prim_types.__name__ = "prim " + self.value.__name__

                return wrap_fx_proxy(
                    tx=tx,
                    proxy=tx.output.create_proxy(
                        "call_function",
                        fn_with_prim_types,
                        *proxy_args_kwargs(
                            [args[0]],
                            kwargs_to_be_proxied,
                        ),
                    ),
                )

        @register(torch.nested.nested_tensor)
        def handle_nested_tensor(
            self,
            tx: "InstructionTranslator",
            tensor_list=None,
            *args,
            layout=None,
            **kwargs,
        ):
            from .lists import BaseListVariable

            if layout and layout.as_python_constant() == torch.strided:
                unimplemented("torch.compile does not support strided NestedTensor")
            if not isinstance(tensor_list, BaseListVariable):
                unimplemented("nested_tensor with non-list input")

        @register(torch.nn.functional.one_hot)
        def handle_one_hot(self, tx: "InstructionTranslator", *args, **kwargs):
            if len(args) + len(kwargs) == 1 or (
                len(args) == 2
                and args[1].is_python_constant()
                and args[1].as_python_constant() == -1
            ):
                unimplemented(
                    "torch.nn.functional.one_hot with data-dependent output shape"
                )

        @register(torch.fx.experimental.symbolic_shapes.guard_size_oblivious)
        def handle_guard_size_oblivious(self, tx: "InstructionTranslator", expr):
            if isinstance(expr, SymNodeVariable):
                # TODO: this probably should be folded somewhere else but I'm not sure where
                # TODO: some of the other symbolic_shapes special tools can also get this treatment too
                return variables.ConstantVariable.create(
                    torch.fx.experimental.symbolic_shapes.guard_size_oblivious(
                        expr.sym_num
                    )
                )
            elif isinstance(expr, ConstantVariable):
                return expr

        @register(torch._C._autograd._unsafe_set_version_counter)
        def handle_unsafe_set_version_counter(
            self, tx: "InstructionTranslator", *args, **kwargs
        ):
            from ..tensor_version_op import _unsafe_set_version_counter

            return TorchInGraphFunctionVariable(
                _unsafe_set_version_counter
            ).call_function(tx, [*args], kwargs)

        @register(torch.tensor)
        def handle_torch_tensor(self, tx: "InstructionTranslator", *args, **kwargs):
            def check_any_unspec(x):
                # NB: This includes UnspecializedPythonVariable
                if isinstance(x, (TensorVariable, SymNodeVariable)):
                    return True
                elif isinstance(x, (ListVariable, TupleVariable)):
                    return any(check_any_unspec(y) for y in x.items)
                # TODO: there maybe other recursive structures you need to
                # check
                else:
                    return False

            data_arg = None
            if args:
                data_arg = args[0]
            elif "data" in kwargs:
                data_arg = kwargs["data"]

            # NB: OK to pass torch.tensor(tensor), this will trace fine
            if not isinstance(data_arg, TensorVariable) and check_any_unspec(data_arg):
                # This is slower and less canonical, so only use it if we
                # have to
                return TorchInGraphFunctionVariable(torch._refs.tensor).call_function(
                    tx, [*args], kwargs
                )

        @register(torch._C._pop_torch_function_stack)
        def handle_pop_torch_function(
            self, tx: "InstructionTranslator", *args, **kwargs
        ):
            assert not args and not kwargs
            if not tx.symbolic_torch_function_state.mode_stack:
                raise unimplemented("Popping from an empty torch function mode stack")
            TorchFunctionModeStackVariable.register_mutation(tx)
            return tx.symbolic_torch_function_state.pop_torch_function_mode()

        @register(torch._C._push_on_torch_function_stack)
        def handle_push_torch_function(
            self, tx: "InstructionTranslator", *args, **kwargs
        ):
            assert len(args) == 1 and not kwargs
            TorchFunctionModeStackVariable.register_mutation(tx)
            tx.symbolic_torch_function_state.push_torch_function_mode(args[0])
            return ConstantVariable.create(None)

        @register(torch._C._len_torch_function_stack)
        def handle_len_torch_function(
            self, tx: "InstructionTranslator", *args, **kwargs
        ):
            assert not args and not kwargs
            return ConstantVariable.create(
                len(tx.symbolic_torch_function_state.mode_stack)
            )

        @register(torch._C._get_function_stack_at)
        def handle_get_stack_at(self, tx: "InstructionTranslator", *args, **kwargs):
            assert len(args) == 1 and not kwargs
            ind = args[0].as_python_constant()
            assert ind >= 0 and ind < len(tx.symbolic_torch_function_state.mode_stack)
            return tx.symbolic_torch_function_state.mode_stack[ind]

        @register(torch.set_default_device)
        def handle_set_default_device(
            self, tx: "InstructionTranslator", *args, **kwargs
        ):
            # Today this is inserted in the graph, once TF mode
            # handling is complete, we can trace the device context
            # like any other TF mode and remove this special handling
            # Insert the TF mode representing the device context at
            # the bottom of the stack to match the eager semantics
            # Running the graph will ensure that the DeviceContext mode is
            # at the correct position in the stack
            TorchFunctionModeStackVariable.register_mutation(tx)
            if args[0].is_python_constant() and args[0].as_python_constant() is None:
                TorchFunctionModeStackVariable.clear_default_device(tx)
            else:
                TorchFunctionModeStackVariable.register_device_context_insertion(tx)

            return ConstantVariable.create(None)

        return handlers

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from . import ConstantVariable, SymNodeVariable, TensorVariable
        from .builder import wrap_fx_proxy

        if self.torch_function_override_enabled(tx, args, kwargs):
            return dispatch_torch_function(tx, self, args, kwargs)

        if self.can_constant_fold_through() and check_unspec_or_constant_args(
            args, kwargs
        ):
            # constant fold functions need to be guarded.
            if self.value in constant_fold_functions_need_guards:
                source = CallFunctionNoArgsSource(self.source)
                install_guard(source.make_guard(GuardBuilder.EQUALS_MATCH))
            # constant fold
            return ConstantVariable.create(
                self.as_python_constant()(
                    *[x.as_python_constant() for x in args],
                    **{k: v.as_python_constant() for k, v in kwargs.items()},
                ),
            )

        if self.is_tensor_method():
            return self.call_tensor_method(tx, args, kwargs)

        special_handler = self._get_handlers().get(self.value)
        if special_handler:
            result = special_handler(self, tx, *args, **kwargs)
            if result:
                return result

        any_symints_or_symfloats = any(isinstance(x, SymNodeVariable) for x in args)

        all_ints_or_floats = all(
            isinstance(x, (variables.ConstantVariable, variables.SymNodeVariable))
            for x in args
        )
        if (
            getattr(self.value, "__module__", "") == "torch"
            and self.value.__name__ in bin_ops
            and any_symints_or_symfloats
            and all_ints_or_floats
        ):
            msg = f"""\
Calling {str(self.value)} on only torch.SymInt arguments is not yet supported.
To support this behavior, we need to allow const-propping tensors that store symint data.
For now, dynamo will explicitly graph break when it encounters user code with this behavior.
"""
            log.warning(msg)
            unimplemented(msg)

        # TODO(voz): Replace w/ dynamic shape rewrite table.
        # Ideally, we would be able to do this at ctor time, but alas we need a combination
        # of value + args to determine this.
        fn_ = self.value
        if any_symints_or_symfloats:
            torch_sym_op = f"_sym_{self.value.__name__}"
            if getattr(self.value, "__module__", None) == "math" and hasattr(
                torch, torch_sym_op
            ):
                fn_ = getattr(torch, torch_sym_op)

        fake_out_shape = None
        if "out" in kwargs and isinstance(kwargs["out"], variables.TensorVariable):
            # Calling fake tensor propagation can mutate the out= tensor in
            # tx.output.tracked_fakes. tracked_fakes are used to apply
            # symbolic_shape guards. Mutating them destroys the information
            # prior to tracing, which is essential for creating right
            # guards. So save the shape now, and check later if it has
            # changed. If it has, graph break.
            fake_out_shape = kwargs["out"].proxy.node.meta["example_value"].shape

        tensor_variable = wrap_fx_proxy(
            tx=tx,
            proxy=tx.output.create_proxy(
                "call_function",
                fn_,
                *proxy_args_kwargs(args, kwargs),
            ),
        )

        if (
            isinstance(tensor_variable, TensorVariable)
            and "requires_grad" in kwargs
            and kwargs["requires_grad"].as_python_constant()
        ):
            unimplemented(
                """factory functions that return tensors that require grad are not supported.
Either create the tensor outside the compiled region, or do not set the tensor to require_grad"""
            )

        if "out" in kwargs and not (
            isinstance(kwargs["out"], variables.ConstantVariable)
            and kwargs["out"].as_python_constant() is None
        ):
            # out variants of torch operators like torch.sort and torch.sigmoid
            # mutate the tensors in the out field.
            #
            # However, it's non-trivial to update all references of the old
            # `TensorVariable` to the new one returned (`result_var`), so we
            # take the conservative approach to graph break on size changes, and
            # assume other cases can fall through soundly.
            #
            # Note that although these tensor variablels would hold different
            # proxies, the in-place mutation semantics is preserved in the FX
            # graph, so we won't have correctness issues.
            if isinstance(tensor_variable, TupleVariable):
                assert isinstance(kwargs["out"], (TupleVariable, ListVariable))
                for out_tensor, result_tensor in zip(
                    kwargs["out"].items, tensor_variable.items
                ):
                    if (
                        isinstance(out_tensor, variables.TensorVariable)
                        and isinstance(result_tensor, variables.TensorVariable)
                        and out_tensor._size
                        != result_tensor._size  # we actually want to compare None values here
                    ):
                        # It's hard to get out variants with resizing on graph inputs work
                        # properly across dynamo/aot/inductor, just fall back.
                        unimplemented("out variants with resizing on graph inputs")
            elif isinstance(tensor_variable, TensorVariable):
                assert isinstance(kwargs["out"], TensorVariable)
                assert "example_value" in kwargs["out"].proxy.node.meta
                fake_tensor = tensor_variable.proxy.node.meta["example_value"]
                fake_out = kwargs["out"].proxy.node.meta["example_value"]
                if fake_out_shape != fake_tensor.shape:
                    # It's hard to get out variants with resizing on graph inputs work
                    # properly across dynamo/aot/inductor, just fall back.
                    unimplemented("out variants with resizing on graph inputs")
                if not torch._prims_common.is_contiguous(fake_out):
                    # It's difficult to handle strides correctly in functionalization
                    # when calling an out= op with a non-contiguous out argument
                    unimplemented(
                        "out= op was called where output tensor was non-contiguous"
                    )
            elif (
                isinstance(tensor_variable, ConstantVariable)
                and tensor_variable.value is None
            ):
                # Handle out-variant custom ops that return None.
                if isinstance(kwargs["out"], TensorVariable):
                    assert "example_value" in kwargs["out"].proxy.node.meta
                    fake_out = kwargs["out"].proxy.node.meta["example_value"]
                    if not torch._prims_common.is_contiguous(fake_out):
                        # It's difficult to handle strides correctly in functionalization
                        # when calling an out= op with a non-contiguous out argument
                        unimplemented(
                            "out= op was called where output tensor was non-contiguous"
                        )
                elif isinstance(kwargs["out"], ListVariable):
                    for idx, x in enumerate(kwargs["out"].items):
                        assert "example_value" in x.proxy.node.meta  # type: ignore[attr-defined]
                        fake_out = x.proxy.node.meta["example_value"]  # type: ignore[attr-defined]
                        if not torch._prims_common.is_contiguous(fake_out):
                            # It's difficult to handle strides correctly in functionalization
                            # when calling an out= op with a non-contiguous out argument
                            unimplemented(
                                "out= op was called where some of the output tensors were non-contiguous"
                            )
            else:
                unimplemented(f"out variant of {type(kwargs['out'])}")

        return tensor_variable

    def _call_ntuple(self, tx: "InstructionTranslator", args, kwargs):
        """inline behavior of torch.nn.modules.utils._ntuple"""
        if self.value is torch.nn.modules.utils._ntuple:
            count = args[0].as_python_constant()
        else:
            count = self.value.__closure__[0].cell_contents
        assert isinstance(count, int)
        assert not kwargs

        def handle_ntuple(value):
            if value.has_unpack_var_sequence(tx):
                return variables.TupleVariable(
                    list(value.unpack_var_sequence(tx)),
                )
            elif value.is_python_constant():
                # constant prop through it
                return variables.ConstantVariable.create(
                    torch.nn.modules.utils._ntuple(count)(value.as_python_constant()),
                )
            else:
                unimplemented(f"torch.nn.modules.utils._ntuple({value})")

        if self.value is torch.nn.modules.utils._ntuple:
            return variables.LambdaVariable(handle_ntuple)
        else:
            return handle_ntuple(args[0])

    @classmethod
    def call_nn_parameter(cls, tx, data=None, requires_grad=True):
        """A call to torch.nn.Parameter() gets lifted to before the graph"""
        if tx.export:
            unimplemented("nn parameter construction not supported with export")

        if isinstance(requires_grad, variables.VariableTracker):
            try:
                requires_grad = requires_grad.as_python_constant()
            except NotImplementedError:
                unimplemented("Parameter(requires_grad=...) not constant")

        if not isinstance(data, variables.TensorVariable):
            unimplemented(f"Parameter(data={data}) not implemented")

        # this results in cleaner graphs, but only works for inputs
        if data.source:
            return cls._nn_param_via_prefix_insert(tx, data, requires_grad)

        if is_traceable_wrapper_subclass_type(data.class_type):
            unimplemented("Parameter constructor with tensor subclass NYI")

        if not can_convert_to_tracable_parameter():
            unimplemented("Workaround for issues with nn_parameter construction")

        try:
            shape = tuple(data.var_getattr(tx, "shape").as_python_constant())
            dtype = data.var_getattr(tx, "dtype").as_python_constant()
            device = data.var_getattr(tx, "device").as_python_constant()
        except NotImplementedError as e:
            unimplemented(f"Parameter not python_constant: {e}")

        placeholder = tx.output.synthetic_graph_input(
            new_parameter_placeholder, [shape, dtype, device, requires_grad]
        )
        if data.requires_grad:
            data = data.call_method(tx, "detach", [], {})

        from .builder import wrap_fx_proxy

        result = wrap_fx_proxy(
            tx,
            tx.output.create_proxy(
                "call_function",
                tracable_create_parameter,
                (data.as_proxy(), placeholder.as_proxy()),
                {},
            ),
            # In reconstruct() we should use the original parameter. The one
            # returned by the graph will be an alias.
            source=placeholder.source,
        )
        assert isinstance(result, variables.TensorVariable)
        result.class_type = torch.nn.Parameter

        # TODO(jansel/bdhirsh) - There is some issue with
        # tracable_create_paramter. It does not seem to use the right
        # grad_enabled. Since this is parameter, we can just override the
        # has_grad_fn field to False to workaround the issue.
        result.has_grad_fn = False

        # TODO(jansel): if the new param falls out of scope, currently it won't get freed until
        # the end of the graph.  We should fix this.
        return result

    @staticmethod
    def _nn_param_via_prefix_insert(tx: "InstructionTranslator", data, requires_grad):
        # Alternate version if we have a .source
        varname = tx.output.new_var()

        # construct the nn.Parmeter before the graph save it to varname
        cg = PyCodegen(tx)
        cg.add_push_null(lambda: cg.load_import_from("torch.nn", "Parameter"))
        cg(data.source)
        cg(variables.ConstantVariable(requires_grad))
        cg.call_function(2, False)
        cg.store(varname)
        tx.output.pregraph_bytecode.extend(cg.get_instructions())

        data_node = data.as_proxy().node
        if data_node.op not in ("placeholder", "get_attr"):
            unimplemented(
                "Unexpected type of data placeholder op for parameter construction"
            )

        # add the newly constructed nn.Parameter as a graph input
        source = SyntheticLocalSource(varname)
        example_value = torch.nn.Parameter(
            tx.output.example_value_from_input_node(data.as_proxy().node)
        )
        result = VariableTracker.build(tx, example_value, source)
        # No need to guard on this since we already guarded on `data`.
        # These guards would fail since varname doesn't exist until after the function starts
        TracingContext.get().guards_context.dynamo_guards.remove_guards_with_source(
            source
        )
        return result

    def call_tensor_method(self, tx, args, kwargs):
        return args[0].call_method(tx, self.get_function().__name__, args[1:], kwargs)

    def is_tensor_method(self):
        from ..trace_rules import get_tensor_method

        return (
            inspect.ismethoddescriptor(self.get_function())
            and hasattr(self.get_function(), "__objclass__")
            and self.get_function().__objclass__ == torch._C.TensorBase
        ) or self.get_function() in get_tensor_method()

    def torch_function_override_enabled(self, tx, args, kwargs):
        return (
            self.get_function() in get_overridable_functions()
            or isinstance(
                self.get_function(),
                (torch._ops.OpOverload, torch._ops.OpOverloadPacket),
            )
        ) and can_dispatch_torch_function(tx, args, kwargs)