1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
|
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import functools
import inspect
import logging
import math
import re
from typing import Dict, List, TYPE_CHECKING
import torch._C
import torch._refs
import torch.fx
import torch.nn
from torch._guards import TracingContext
from torch._logging import warning_once
from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type
from .. import config, polyfills, variables
from ..codegen import PyCodegen
from ..create_parameter_op import (
can_convert_to_tracable_parameter,
new_parameter_placeholder,
tracable_create_parameter,
)
from ..device_interface import get_registered_device_interfaces
from ..exc import unimplemented
from ..guards import GuardBuilder, install_guard
from ..source import CallFunctionNoArgsSource, SyntheticLocalSource
from ..utils import (
check_unspec_or_constant_args,
guard_if_dyn,
has_torch_function,
hashable,
product,
proxy_args_kwargs,
unwrap_if_wrapper,
)
from .base import VariableTracker
from .ctx_manager import (
AutocastModeVariable,
NullContextVariable,
TorchFunctionDisableVariable,
)
from .distributed import DistributedVariable, ProcessGroupVariable
from .lists import ListVariable, TupleVariable
from .torch_function import (
can_dispatch_torch_function,
dispatch_torch_function,
TorchFunctionModeStackVariable,
)
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
try:
from torch.distributed.fsdp._fully_shard import _fsdp_param_group
except ModuleNotFoundError:
_fsdp_param_group = None # type: ignore[assignment]
if TYPE_CHECKING:
from torch._dynamo.symbolic_convert import InstructionTranslator
log = logging.getLogger(__name__)
supported_ctx_manager_classes = dict.fromkeys(
[
torch.profiler.profiler.profile,
torch.autograd.forward_ad._set_fwd_grad_enabled,
torch.autograd.forward_ad.dual_level,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
torch._C.DisableTorchFunctionSubclass,
torch._functorch.vmap.vmap_increment_nesting,
torch._functorch.eager_transforms.grad_increment_nesting,
torch._functorch.eager_transforms.jvp_increment_nesting,
torch._functorch.eager_transforms.enable_inplace_requires_grad,
torch.amp.autocast_mode.autocast,
torch.autograd.grad_mode.enable_grad,
torch.autograd.grad_mode.inference_mode,
torch.autograd.grad_mode.no_grad,
torch.autograd.grad_mode.set_grad_enabled,
torch.autograd.graph.disable_saved_tensors_hooks,
torch.cpu.amp.autocast_mode.autocast,
torch.cuda.amp.autocast_mode.autocast,
torch.nn.attention.sdpa_kernel,
torch.nn.attention._sdpa_kernel_variadic,
]
)
REWRITE_OPS_TO_TENSOR_SIZE_METHOD = dict.fromkeys(
[
torch._shape_as_tensor,
]
)
constant_fold_functions_need_guards = [
torch.cuda.current_device,
]
constant_fold_functions = [
torch._assert,
torch._utils._get_device_index,
torch._C._get_cublas_allow_tf32,
torch._C._is_any_autocast_enabled,
torch.cuda.get_device_properties,
torch.cuda.is_available,
torch.distributed.is_available,
torch.get_autocast_dtype,
torch.get_autocast_gpu_dtype,
torch.get_default_dtype,
torch.is_autocast_cache_enabled,
torch.is_autocast_cpu_enabled,
torch.is_autocast_enabled,
torch.is_complex,
torch.is_floating_point,
torch.nn.functional._Reduction.get_enum, # type: ignore[attr-defined]
torch.promote_types,
torch._C._get_privateuse1_backend_name,
torch.autograd._is_checkpoint_valid,
] + constant_fold_functions_need_guards
if torch.distributed.is_available():
constant_fold_functions.extend(
[
torch.distributed.is_initialized,
torch.distributed.get_rank,
torch.distributed.get_world_size,
]
)
# Convert to dict for O(1) access times
constant_fold_functions_need_guards = dict.fromkeys(constant_fold_functions_need_guards)
constant_fold_functions = dict.fromkeys(constant_fold_functions)
tracing_state_functions = {
torch.jit.is_scripting: False,
torch.jit.is_tracing: False,
torch._C._get_tracing_state: None,
torch.fx._symbolic_trace.is_fx_tracing: False,
torch.onnx.is_in_onnx_export: False,
torch._dynamo.external_utils.is_compiling: True,
torch._utils.is_compiling: True,
torch.compiler.is_compiling: True,
torch.compiler.is_dynamo_compiling: True,
torch.nn.modules.activation._is_make_fx_tracing: False,
}
bin_ops = dict.fromkeys(["add", "sub", "mul", "div", "sqrt"])
@functools.lru_cache(None)
def get_overridable_functions():
from itertools import chain
from torch.overrides import get_overridable_functions as get_overridable_functions_
funcs = set(chain(*get_overridable_functions_().values()))
more = {
torch.ones,
torch.ones_like,
torch.zeros,
torch.zeros_like,
torch.empty,
torch.full,
}
funcs.update(more)
return funcs
class BaseTorchVariable(VariableTracker):
"""common base for all torch.* functions, classes, modules and other things"""
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
return cls(value, source=source)
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
def reconstruct(self, codegen):
try:
name = f"{self.value.__module__}.{self.value.__name__}"
except Exception:
name = f"torch_obj_{id(self.value)}"
unique_var_name = "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name)
codegen.extend_output(
codegen.setup_globally_cached(unique_var_name, self.value)
)
def as_proxy(self):
return self.value
def as_python_constant(self):
return self.value
def call_hasattr(self, tx: "InstructionTranslator", name):
result = hasattr(self.value, name)
return variables.ConstantVariable.create(result)
def can_constant_fold_through(self):
if self.value in constant_fold_functions:
return True
return getattr(self.value, "__module__", None) == "math"
class TorchCtxManagerClassVariable(BaseTorchVariable):
"""Points to a context manager class in torch.* that dynamo has implementations"""
def __repr__(self) -> str:
return f"TorchCtxManagerClassVariable({self.value})"
@staticmethod
def is_matching_cls(value):
# Unwrap if it's a functools.lru_cache wrapper
value = unwrap_if_wrapper(value)
# We can't do isinstance(value, type) check because some ctx managers
# are implemented as a function decorated by contextlib.contextmanager,
# E.g., torch._functorch.vmap.vmap_increment_nesting.
return (
# Context manager type or function with @contextmanager is callable
callable(value)
and (
hashable(value) # accesses value.__hash__()
and value in supported_ctx_manager_classes
)
)
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from . import (
DisabledSavedTensorsHooksVariable,
DualLevelContextManager,
FSDPParamGroupUseTrainingStateVariable,
GradIncrementNestingCtxManagerVariable,
GradInplaceRequiresGradCtxManagerVariable,
GradModeVariable,
InferenceModeVariable,
JvpIncrementNestingCtxManagerVariable,
SDPAKernelVariable,
SetFwdGradEnabledContextManager,
StreamVariable,
VmapIncrementNestingCtxManagerVariable,
)
if self.value is torch.no_grad:
if len(args) == 1 and isinstance(
args[0], variables.functions.BaseUserFunctionVariable
):
ctx = GradModeVariable.create(tx, False)
return ctx.call_function(tx, args, kwargs)
else:
return GradModeVariable.create(tx, False)
elif self.value is torch.enable_grad:
if len(args) == 1 and isinstance(
args[0], variables.functions.BaseUserFunctionVariable
):
ctx = GradModeVariable.create(tx, True)
return ctx.call_function(tx, args, kwargs)
return GradModeVariable.create(tx, True)
elif self.value is torch.set_grad_enabled and len(args) == 1:
return GradModeVariable.create(
tx, args[0].as_python_constant(), initialized=True
)
elif self.value is torch.inference_mode:
assert len(args) <= 1 and len(kwargs) == 0
inf_mode = args[0].as_python_constant() if len(args) == 1 else True
return InferenceModeVariable.create(tx, inf_mode)
elif inspect.isclass(self.value) and issubclass(self.value, torch.Stream):
from torch._dynamo.variables.builder import wrap_fx_proxy_cls
return wrap_fx_proxy_cls(
StreamVariable,
tx,
tx.output.create_proxy(
"call_function",
self.value,
(),
{},
),
)
elif self.value in (
torch.amp.autocast_mode.autocast,
torch.cuda.amp.autocast,
torch.cpu.amp.autocast,
):
return AutocastModeVariable.create(self.value, args, kwargs)
elif self.value in (
torch.profiler.profile,
torch.profiler.record_function,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
):
warning_once(log, "Profiler function %s will be ignored", self.value)
return NullContextVariable()
elif self.value is torch._C.DisableTorchFunctionSubclass:
assert not (args or kwargs)
return TorchFunctionDisableVariable.create(tx)
elif self.value is torch._functorch.vmap.vmap_increment_nesting:
assert len(args) == 2
return VmapIncrementNestingCtxManagerVariable.create(
tx,
args,
)
elif self.value is torch._functorch.eager_transforms.jvp_increment_nesting:
assert len(args) == 0
return JvpIncrementNestingCtxManagerVariable.create(tx)
elif self.value is torch.autograd.forward_ad._set_fwd_grad_enabled:
assert len(args) == 1
return SetFwdGradEnabledContextManager.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch.autograd.forward_ad.dual_level:
assert len(args) == 0
return DualLevelContextManager.create(tx)
elif self.value is torch._functorch.eager_transforms.grad_increment_nesting:
assert len(args) == 0
return GradIncrementNestingCtxManagerVariable.create(tx)
elif (
self.value is torch._functorch.eager_transforms.enable_inplace_requires_grad
):
assert len(args) == 1
return GradInplaceRequiresGradCtxManagerVariable.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch.autograd.graph.disable_saved_tensors_hooks:
assert len(args) == 1
return DisabledSavedTensorsHooksVariable.create(
tx, args[0].as_python_constant()
)
elif (
_fsdp_param_group is not None
and self.value is _fsdp_param_group.FSDPParamGroup.use_training_state
):
assert len(args) == 2
return FSDPParamGroupUseTrainingStateVariable.create(
tx, args[0], args[1].as_python_constant()
)
elif self.value is torch.nn.attention.sdpa_kernel:
assert len(args) == 1 or (len(kwargs) == 1 and "backends" in kwargs)
backends = args[0] if len(args) == 1 else kwargs["backends"]
return SDPAKernelVariable.create(tx, backends.as_python_constant())
elif self.value is torch.nn.attention._sdpa_kernel_variadic:
return SDPAKernelVariable.create(
tx, [arg.as_python_constant() for arg in args]
)
return super().call_function(tx, args, kwargs)
class TorchInGraphFunctionVariable(BaseTorchVariable):
"""Points to a torch function/method that should be put in FX graph"""
def __repr__(self) -> str:
return f"TorchInGraphFunctionVariable({self.value})"
def get_function(self):
return self.value
@staticmethod
@functools.lru_cache(None)
def _get_handlers():
"""Build a dict from function -> method to handle it so that we are O(1)
in terms of the number of function with special handling."""
handlers = {}
def register(*fns):
def _register(handler):
for fn in fns:
assert fn not in handlers, fn
handlers[fn] = handler
return handler
assert callable(fns[0])
return _register
from torch.backends.cuda import SDPAParams
from . import (
ConstantVariable,
DeterministicAlgorithmsVariable,
GradModeVariable,
StreamContextVariable,
SymNodeVariable,
TensorVariable,
UserDefinedObjectVariable,
)
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
@register(*tracing_state_functions)
def handle_tracing_state_functions(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not args and not kwargs
# See: https://github.com/pytorch/pytorch/issues/110765
if self.value in (
torch._utils.is_compiling,
torch._dynamo.external_utils.is_compiling,
torch.compiler.is_compiling,
torch.compiler.is_dynamo_compiling,
):
tx.mark_inconsistent_side_effects()
return ConstantVariable.create(tracing_state_functions[self.value])
@register(torch.overrides.get_default_nowrap_functions.__wrapped__)
def handle_get_default_nowrap_functions(
self, tx: "InstructionTranslator", *args, **kwargs
):
# [Note: __torch_function__] we return empty here because we restrict
# the set of functions that we trace __torch_function__ on to
# functions outside of the actual set. Implementing this properly will require implementing
# some variable types to track and compare tensor getset descriptors
return VariableTracker.build(
tx, torch.overrides.get_default_nowrap_functions()
)
@register(torch.ops.inductor.accumulate_grad_.default)
def handle_accumulate_grad_(self, tx: "InstructionTranslator", *args, **kwargs):
return tx.inline_user_function_return(
VariableTracker.build(tx, polyfills.accumulate_grad), args, kwargs
)
@register(math.radians)
def handle_radians(self, tx: "InstructionTranslator", *args, **kwargs):
if not check_unspec_or_constant_args(args, kwargs):
# Use polyfill to convert math.radians(x) into math.pi * x / 180.0
return tx.inline_user_function_return(
VariableTracker.build(tx, polyfills.radians), args, kwargs
)
@register(torch.is_tensor, torch.overrides.is_tensor_like)
def handle_is_tensor(self, tx: "InstructionTranslator", arg):
if isinstance(arg, TensorVariable) or (
self.value is torch.overrides.is_tensor_like
and isinstance(arg, UserDefinedObjectVariable)
and hasattr(arg.value, "__torch_function__")
):
return ConstantVariable.create(True)
else:
return ConstantVariable.create(False)
@register(
torch.is_floating_point,
torch.is_complex,
)
def handle_is_floating_point(self, tx: "InstructionTranslator", input):
input_arg = input
if isinstance(input_arg, TensorVariable) and input_arg.dtype is not None:
if self.value is torch.is_floating_point:
return ConstantVariable.create(input_arg.dtype.is_floating_point)
elif self.value is torch.is_complex:
return ConstantVariable.create(input_arg.dtype.is_complex)
else:
raise AssertionError(f"calling {self.value}")
@register(torch.numel)
def handle_numel(self, tx: "InstructionTranslator", input):
if isinstance(input, TensorVariable) and input.valid_size():
return ConstantVariable.create(product(input.size))
elif isinstance(input, TensorVariable):
# Workaround dynamic shapes issue
return input.call_method(tx, "numel", [], {})
@register(torch.compile)
def handle_torch_compile(self, tx: "InstructionTranslator", *args, **kwargs):
if len(args) == 1:
# torch.compile is a no-op in dynamo
return args[0]
unimplemented("torch.compile is used as a decorator in the compiled frame")
@register(*REWRITE_OPS_TO_TENSOR_SIZE_METHOD)
def handle_tensor_size_rewrites(self, tx: "InstructionTranslator", input):
assert isinstance(input, TensorVariable)
return input.call_method(tx, "size", [], {})
@register(
torch.nn.modules.utils._single,
torch.nn.modules.utils._pair,
torch.nn.modules.utils._triple,
torch.nn.modules.utils._quadruple,
torch.nn.modules.utils._ntuple,
)
def handle_ntuple(self, tx: "InstructionTranslator", *args, **kwargs):
return self._call_ntuple(tx, args, kwargs)
@register(torch.is_grad_enabled)
def handle_is_grad_enabled(self, tx):
install_guard(GradModeVariable._guards_singleton)
return ConstantVariable.create(torch.is_grad_enabled())
@register(torch.use_deterministic_algorithms)
def handle_use_deterministic_algorithms(
self, tx: "InstructionTranslator", mode, warn_only=False
):
if warn_only and warn_only.as_python_constant():
unimplemented("torch.use_deterministic_algorithms(warn_only=True)")
return DeterministicAlgorithmsVariable.create(tx, mode.as_python_constant())
@register(torch.are_deterministic_algorithms_enabled)
def handle_are_deterministic_algorithms_enabled(self, tx):
install_guard(DeterministicAlgorithmsVariable._guards_singleton)
return ConstantVariable.create(torch.are_deterministic_algorithms_enabled())
@register(torch._C._is_torch_function_enabled)
def handle_is_torch_function_enabled(self, tx):
install_guard(TorchFunctionDisableVariable._guards_singleton)
return ConstantVariable.create(tx.output.torch_function_enabled)
@register(
torch.overrides.has_torch_function,
torch.overrides.has_torch_function_variadic,
torch.overrides.has_torch_function_unary,
)
def handle_has_torch_function(self, tx: "InstructionTranslator", *args):
elems = (
args[0].unpack_var_sequence(tx)
if len(args) == 1 and isinstance(args[0], TupleVariable)
else args
)
return ConstantVariable.create(
any(has_torch_function(x) for x in elems),
)
@register(
*dict.fromkeys( # remove duplicates
device_interface.stream
for _, device_interface in get_registered_device_interfaces()
)
)
def handle_device_interface_stream(self, tx: "InstructionTranslator", stream):
return StreamContextVariable.create(tx, stream)
@register(torch.from_numpy)
def handle_from_numpy(self, tx: "InstructionTranslator", *args):
if not config.trace_numpy:
unimplemented("torch.from_numpy. config.trace_numpy is False")
if not np:
unimplemented("torch.from_numpy. NumPy is not available")
return wrap_fx_proxy_cls(
target_cls=TensorVariable,
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.as_tensor,
*proxy_args_kwargs(args, {}),
),
example_value=None,
)
@register(torch.jit.annotate)
def handle_jit_annotate(self, tx: "InstructionTranslator", the_type, the_value):
return the_value
@register(torch.backends.cudnn.is_acceptable)
def handle_cudnn_is_acceptable(
self, tx: "InstructionTranslator", tensor, *extra
):
# is_acceptable(tensor) returns true if
# (a) tensor dtype/device are supported by cudnn
# (b) cudnn is available
# (c) some initialization has completed
# technically, it depends on some global state from (c) (torch.backends.cudnn.__cudnn_version)
assert not extra, "Expect 1 input to cudnn.is_acceptable"
assert isinstance(
tensor, TensorVariable
), "Expect input to cudnn.is_acceptable to be a tensor"
tensor_inp = torch.tensor(0, dtype=tensor.dtype, device=tensor.device)
return ConstantVariable.create(
torch.backends.cudnn.is_acceptable(tensor_inp)
)
@register(torch.utils.hooks.BackwardHook)
def handle_backward_hook(self, tx: "InstructionTranslator", *args, **kwargs):
return variables.BackwardHookVariable.create(tx, *args, **kwargs)
@register(torch.nn.Parameter)
def handle_parameter(self, tx: "InstructionTranslator", *args, **kwargs):
return self.call_nn_parameter(tx, *args, **kwargs)
@register(torch.ops.aten.sym_size, torch.ops.aten.sym_size.int)
def handle_sym_size(self_, tx, self, dim=None):
# we see this when retracing already traced code
if dim is not None:
return self.call_method(tx, "size", [dim], {})
@register(torch.ops.aten.sym_stride, torch.ops.aten.sym_stride.int)
def handle_sym_stride(self_, tx, self, dim=None):
if dim is not None:
return self.call_method(tx, "stride", [dim], {})
@register(torch.addcdiv)
def handle_addcdiv(self, tx: "InstructionTranslator", *args, **kwargs):
if len(args) == 3 and "value" in kwargs and len(kwargs) == 1:
# decompose addcdiv into constituent ops, prevents a graph break due to converting
# value to a scalar
result = TorchInGraphFunctionVariable(torch.div).call_function(
tx, [*args[1:]], {}
)
result = TorchInGraphFunctionVariable(torch.mul).call_function(
tx, [result, kwargs["value"]], {}
)
return TorchInGraphFunctionVariable(torch.add).call_function(
tx, [args[0], result], {}
)
@register(torch._foreach_lerp_)
def handle_inplace_foreach_lerp_scalar(
self, tx: "InstructionTranslator", *args, **kwargs
):
if len(args) == 3 and not isinstance(args[2], ListVariable) and not kwargs:
return tx.inline_user_function_return(
VariableTracker.build(tx, polyfills.foreach_lerp_inplace),
args,
kwargs,
)
@register(torch._foreach_pow)
def handle_foreach_pow_scalar(
self, tx: "InstructionTranslator", *args, **kwargs
):
# In eager it's more performant to call item() from within the C op implementation
# in compile, it's more performant to not graph break.
if len(args) == 2 and isinstance(args[0], TensorVariable) and not kwargs:
return tx.inline_user_function_return(
VariableTracker.build(tx, polyfills.foreach_pow_scalar),
args,
kwargs,
)
@register(torch._assert)
def handle_assert(self, tx: "InstructionTranslator", condition, message):
if (condition.is_python_constant() and condition.as_python_constant()) or (
isinstance(condition, variables.SymNodeVariable)
and condition.evaluate_expr()
):
return ConstantVariable(None)
@register(SDPAParams)
def handle_sdpa_params(self, tx: "InstructionTranslator", *args, **kwargs):
return wrap_fx_proxy(
tx,
proxy=tx.output.create_proxy(
"call_function",
torch._C._SDPAParams,
*proxy_args_kwargs(args, kwargs),
),
param_vars=args,
)
if DistributedVariable.is_available():
from torch.distributed.distributed_c10d import (
_get_group_size_by_name,
_get_group_tag,
_rank_not_in_group,
_resolve_group_name_by_ranks_and_tag,
get_process_group_ranks,
)
from torch.distributed.tensor import DTensor
@register(
_get_group_size_by_name,
_get_group_tag,
_rank_not_in_group,
get_process_group_ranks,
_resolve_group_name_by_ranks_and_tag,
)
def handle_constant_processgroup_functions(
self, tx: "InstructionTranslator", *args
):
# because the input is a "ProcessGroupVariable", we'll be guarding on its
# ID_MATCH based on how it was constructed.
# We desugar it at trace-time into ranks by directly calling util
# bake the result into the trace
if len(args) == 1:
# group or group name
assert isinstance(args[0], (ProcessGroupVariable, ConstantVariable))
elif len(args) == 2:
# ranks + tag
assert isinstance(args[0], ListVariable) and isinstance(
args[1], ConstantVariable
)
else:
raise AssertionError(
f"Invalid group value ({args}) for constant pg "
f"function {self.value}"
)
args_as_value = [arg.as_python_constant() for arg in args]
invocation_result = self.value(*args_as_value)
# Note - while we *could* cook up sources around invocations, like a FunctionSource
# the space of invoking functions in the middle of the guard chain is very iffy. As such,
# guard propagation via options is the best we can do.
return VariableTracker.build(tx, invocation_result)
@register(DTensor.from_local)
def handle_from_local(self, tx: "InstructionTranslator", *args, **kwargs):
# rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
# and rewrite args to have only proxyable args, then insert call_function
args_as_value = [x.as_python_constant() for x in args[1:]]
kwargs_as_value = {
k: v.as_python_constant()
for k, v in kwargs.items()
if k not in ["shape", "stride"]
}
kwargs_to_be_proxied = {
k: kwargs[k] for k in ["shape", "stride"] if k in kwargs
}
def fn_with_prim_types(x, shape=None, stride=None):
return self.value(
x, *args_as_value, **kwargs_as_value, shape=shape, stride=stride
)
# attach the same function name for better debugging
fn_with_prim_types.__name__ = "prim " + self.value.__name__
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_with_prim_types,
*proxy_args_kwargs(
[args[0]],
kwargs_to_be_proxied,
),
),
)
@register(torch.nested.nested_tensor)
def handle_nested_tensor(
self,
tx: "InstructionTranslator",
tensor_list=None,
*args,
layout=None,
**kwargs,
):
from .lists import BaseListVariable
if layout and layout.as_python_constant() == torch.strided:
unimplemented("torch.compile does not support strided NestedTensor")
if not isinstance(tensor_list, BaseListVariable):
unimplemented("nested_tensor with non-list input")
@register(torch.nn.functional.one_hot)
def handle_one_hot(self, tx: "InstructionTranslator", *args, **kwargs):
if len(args) + len(kwargs) == 1 or (
len(args) == 2
and args[1].is_python_constant()
and args[1].as_python_constant() == -1
):
unimplemented(
"torch.nn.functional.one_hot with data-dependent output shape"
)
@register(torch.fx.experimental.symbolic_shapes.guard_size_oblivious)
def handle_guard_size_oblivious(self, tx: "InstructionTranslator", expr):
if isinstance(expr, SymNodeVariable):
# TODO: this probably should be folded somewhere else but I'm not sure where
# TODO: some of the other symbolic_shapes special tools can also get this treatment too
return variables.ConstantVariable.create(
torch.fx.experimental.symbolic_shapes.guard_size_oblivious(
expr.sym_num
)
)
elif isinstance(expr, ConstantVariable):
return expr
@register(torch._C._autograd._unsafe_set_version_counter)
def handle_unsafe_set_version_counter(
self, tx: "InstructionTranslator", *args, **kwargs
):
from ..tensor_version_op import _unsafe_set_version_counter
return TorchInGraphFunctionVariable(
_unsafe_set_version_counter
).call_function(tx, [*args], kwargs)
@register(torch.tensor)
def handle_torch_tensor(self, tx: "InstructionTranslator", *args, **kwargs):
def check_any_unspec(x):
# NB: This includes UnspecializedPythonVariable
if isinstance(x, (TensorVariable, SymNodeVariable)):
return True
elif isinstance(x, (ListVariable, TupleVariable)):
return any(check_any_unspec(y) for y in x.items)
# TODO: there maybe other recursive structures you need to
# check
else:
return False
data_arg = None
if args:
data_arg = args[0]
elif "data" in kwargs:
data_arg = kwargs["data"]
# NB: OK to pass torch.tensor(tensor), this will trace fine
if not isinstance(data_arg, TensorVariable) and check_any_unspec(data_arg):
# This is slower and less canonical, so only use it if we
# have to
return TorchInGraphFunctionVariable(torch._refs.tensor).call_function(
tx, [*args], kwargs
)
@register(torch._C._pop_torch_function_stack)
def handle_pop_torch_function(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not args and not kwargs
if not tx.symbolic_torch_function_state.mode_stack:
raise unimplemented("Popping from an empty torch function mode stack")
TorchFunctionModeStackVariable.register_mutation(tx)
return tx.symbolic_torch_function_state.pop_torch_function_mode()
@register(torch._C._push_on_torch_function_stack)
def handle_push_torch_function(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert len(args) == 1 and not kwargs
TorchFunctionModeStackVariable.register_mutation(tx)
tx.symbolic_torch_function_state.push_torch_function_mode(args[0])
return ConstantVariable.create(None)
@register(torch._C._len_torch_function_stack)
def handle_len_torch_function(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not args and not kwargs
return ConstantVariable.create(
len(tx.symbolic_torch_function_state.mode_stack)
)
@register(torch._C._get_function_stack_at)
def handle_get_stack_at(self, tx: "InstructionTranslator", *args, **kwargs):
assert len(args) == 1 and not kwargs
ind = args[0].as_python_constant()
assert ind >= 0 and ind < len(tx.symbolic_torch_function_state.mode_stack)
return tx.symbolic_torch_function_state.mode_stack[ind]
@register(torch.set_default_device)
def handle_set_default_device(
self, tx: "InstructionTranslator", *args, **kwargs
):
# Today this is inserted in the graph, once TF mode
# handling is complete, we can trace the device context
# like any other TF mode and remove this special handling
# Insert the TF mode representing the device context at
# the bottom of the stack to match the eager semantics
# Running the graph will ensure that the DeviceContext mode is
# at the correct position in the stack
TorchFunctionModeStackVariable.register_mutation(tx)
if args[0].is_python_constant() and args[0].as_python_constant() is None:
TorchFunctionModeStackVariable.clear_default_device(tx)
else:
TorchFunctionModeStackVariable.register_device_context_insertion(tx)
return ConstantVariable.create(None)
return handlers
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from . import ConstantVariable, SymNodeVariable, TensorVariable
from .builder import wrap_fx_proxy
if self.torch_function_override_enabled(tx, args, kwargs):
return dispatch_torch_function(tx, self, args, kwargs)
if self.can_constant_fold_through() and check_unspec_or_constant_args(
args, kwargs
):
# constant fold functions need to be guarded.
if self.value in constant_fold_functions_need_guards:
source = CallFunctionNoArgsSource(self.source)
install_guard(source.make_guard(GuardBuilder.EQUALS_MATCH))
# constant fold
return ConstantVariable.create(
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
)
if self.is_tensor_method():
return self.call_tensor_method(tx, args, kwargs)
special_handler = self._get_handlers().get(self.value)
if special_handler:
result = special_handler(self, tx, *args, **kwargs)
if result:
return result
any_symints_or_symfloats = any(isinstance(x, SymNodeVariable) for x in args)
all_ints_or_floats = all(
isinstance(x, (variables.ConstantVariable, variables.SymNodeVariable))
for x in args
)
if (
getattr(self.value, "__module__", "") == "torch"
and self.value.__name__ in bin_ops
and any_symints_or_symfloats
and all_ints_or_floats
):
msg = f"""\
Calling {str(self.value)} on only torch.SymInt arguments is not yet supported.
To support this behavior, we need to allow const-propping tensors that store symint data.
For now, dynamo will explicitly graph break when it encounters user code with this behavior.
"""
log.warning(msg)
unimplemented(msg)
# TODO(voz): Replace w/ dynamic shape rewrite table.
# Ideally, we would be able to do this at ctor time, but alas we need a combination
# of value + args to determine this.
fn_ = self.value
if any_symints_or_symfloats:
torch_sym_op = f"_sym_{self.value.__name__}"
if getattr(self.value, "__module__", None) == "math" and hasattr(
torch, torch_sym_op
):
fn_ = getattr(torch, torch_sym_op)
fake_out_shape = None
if "out" in kwargs and isinstance(kwargs["out"], variables.TensorVariable):
# Calling fake tensor propagation can mutate the out= tensor in
# tx.output.tracked_fakes. tracked_fakes are used to apply
# symbolic_shape guards. Mutating them destroys the information
# prior to tracing, which is essential for creating right
# guards. So save the shape now, and check later if it has
# changed. If it has, graph break.
fake_out_shape = kwargs["out"].proxy.node.meta["example_value"].shape
tensor_variable = wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_,
*proxy_args_kwargs(args, kwargs),
),
)
if (
isinstance(tensor_variable, TensorVariable)
and "requires_grad" in kwargs
and kwargs["requires_grad"].as_python_constant()
):
unimplemented(
"""factory functions that return tensors that require grad are not supported.
Either create the tensor outside the compiled region, or do not set the tensor to require_grad"""
)
if "out" in kwargs and not (
isinstance(kwargs["out"], variables.ConstantVariable)
and kwargs["out"].as_python_constant() is None
):
# out variants of torch operators like torch.sort and torch.sigmoid
# mutate the tensors in the out field.
#
# However, it's non-trivial to update all references of the old
# `TensorVariable` to the new one returned (`result_var`), so we
# take the conservative approach to graph break on size changes, and
# assume other cases can fall through soundly.
#
# Note that although these tensor variablels would hold different
# proxies, the in-place mutation semantics is preserved in the FX
# graph, so we won't have correctness issues.
if isinstance(tensor_variable, TupleVariable):
assert isinstance(kwargs["out"], (TupleVariable, ListVariable))
for out_tensor, result_tensor in zip(
kwargs["out"].items, tensor_variable.items
):
if (
isinstance(out_tensor, variables.TensorVariable)
and isinstance(result_tensor, variables.TensorVariable)
and out_tensor._size
!= result_tensor._size # we actually want to compare None values here
):
# It's hard to get out variants with resizing on graph inputs work
# properly across dynamo/aot/inductor, just fall back.
unimplemented("out variants with resizing on graph inputs")
elif isinstance(tensor_variable, TensorVariable):
assert isinstance(kwargs["out"], TensorVariable)
assert "example_value" in kwargs["out"].proxy.node.meta
fake_tensor = tensor_variable.proxy.node.meta["example_value"]
fake_out = kwargs["out"].proxy.node.meta["example_value"]
if fake_out_shape != fake_tensor.shape:
# It's hard to get out variants with resizing on graph inputs work
# properly across dynamo/aot/inductor, just fall back.
unimplemented("out variants with resizing on graph inputs")
if not torch._prims_common.is_contiguous(fake_out):
# It's difficult to handle strides correctly in functionalization
# when calling an out= op with a non-contiguous out argument
unimplemented(
"out= op was called where output tensor was non-contiguous"
)
elif (
isinstance(tensor_variable, ConstantVariable)
and tensor_variable.value is None
):
# Handle out-variant custom ops that return None.
if isinstance(kwargs["out"], TensorVariable):
assert "example_value" in kwargs["out"].proxy.node.meta
fake_out = kwargs["out"].proxy.node.meta["example_value"]
if not torch._prims_common.is_contiguous(fake_out):
# It's difficult to handle strides correctly in functionalization
# when calling an out= op with a non-contiguous out argument
unimplemented(
"out= op was called where output tensor was non-contiguous"
)
elif isinstance(kwargs["out"], ListVariable):
for idx, x in enumerate(kwargs["out"].items):
assert "example_value" in x.proxy.node.meta # type: ignore[attr-defined]
fake_out = x.proxy.node.meta["example_value"] # type: ignore[attr-defined]
if not torch._prims_common.is_contiguous(fake_out):
# It's difficult to handle strides correctly in functionalization
# when calling an out= op with a non-contiguous out argument
unimplemented(
"out= op was called where some of the output tensors were non-contiguous"
)
else:
unimplemented(f"out variant of {type(kwargs['out'])}")
return tensor_variable
def _call_ntuple(self, tx: "InstructionTranslator", args, kwargs):
"""inline behavior of torch.nn.modules.utils._ntuple"""
if self.value is torch.nn.modules.utils._ntuple:
count = args[0].as_python_constant()
else:
count = self.value.__closure__[0].cell_contents
assert isinstance(count, int)
assert not kwargs
def handle_ntuple(value):
if value.has_unpack_var_sequence(tx):
return variables.TupleVariable(
list(value.unpack_var_sequence(tx)),
)
elif value.is_python_constant():
# constant prop through it
return variables.ConstantVariable.create(
torch.nn.modules.utils._ntuple(count)(value.as_python_constant()),
)
else:
unimplemented(f"torch.nn.modules.utils._ntuple({value})")
if self.value is torch.nn.modules.utils._ntuple:
return variables.LambdaVariable(handle_ntuple)
else:
return handle_ntuple(args[0])
@classmethod
def call_nn_parameter(cls, tx, data=None, requires_grad=True):
"""A call to torch.nn.Parameter() gets lifted to before the graph"""
if tx.export:
unimplemented("nn parameter construction not supported with export")
if isinstance(requires_grad, variables.VariableTracker):
try:
requires_grad = requires_grad.as_python_constant()
except NotImplementedError:
unimplemented("Parameter(requires_grad=...) not constant")
if not isinstance(data, variables.TensorVariable):
unimplemented(f"Parameter(data={data}) not implemented")
# this results in cleaner graphs, but only works for inputs
if data.source:
return cls._nn_param_via_prefix_insert(tx, data, requires_grad)
if is_traceable_wrapper_subclass_type(data.class_type):
unimplemented("Parameter constructor with tensor subclass NYI")
if not can_convert_to_tracable_parameter():
unimplemented("Workaround for issues with nn_parameter construction")
try:
shape = tuple(data.var_getattr(tx, "shape").as_python_constant())
dtype = data.var_getattr(tx, "dtype").as_python_constant()
device = data.var_getattr(tx, "device").as_python_constant()
except NotImplementedError as e:
unimplemented(f"Parameter not python_constant: {e}")
placeholder = tx.output.synthetic_graph_input(
new_parameter_placeholder, [shape, dtype, device, requires_grad]
)
if data.requires_grad:
data = data.call_method(tx, "detach", [], {})
from .builder import wrap_fx_proxy
result = wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function",
tracable_create_parameter,
(data.as_proxy(), placeholder.as_proxy()),
{},
),
# In reconstruct() we should use the original parameter. The one
# returned by the graph will be an alias.
source=placeholder.source,
)
assert isinstance(result, variables.TensorVariable)
result.class_type = torch.nn.Parameter
# TODO(jansel/bdhirsh) - There is some issue with
# tracable_create_paramter. It does not seem to use the right
# grad_enabled. Since this is parameter, we can just override the
# has_grad_fn field to False to workaround the issue.
result.has_grad_fn = False
# TODO(jansel): if the new param falls out of scope, currently it won't get freed until
# the end of the graph. We should fix this.
return result
@staticmethod
def _nn_param_via_prefix_insert(tx: "InstructionTranslator", data, requires_grad):
# Alternate version if we have a .source
varname = tx.output.new_var()
# construct the nn.Parmeter before the graph save it to varname
cg = PyCodegen(tx)
cg.add_push_null(lambda: cg.load_import_from("torch.nn", "Parameter"))
cg(data.source)
cg(variables.ConstantVariable(requires_grad))
cg.call_function(2, False)
cg.store(varname)
tx.output.pregraph_bytecode.extend(cg.get_instructions())
data_node = data.as_proxy().node
if data_node.op not in ("placeholder", "get_attr"):
unimplemented(
"Unexpected type of data placeholder op for parameter construction"
)
# add the newly constructed nn.Parameter as a graph input
source = SyntheticLocalSource(varname)
example_value = torch.nn.Parameter(
tx.output.example_value_from_input_node(data.as_proxy().node)
)
result = VariableTracker.build(tx, example_value, source)
# No need to guard on this since we already guarded on `data`.
# These guards would fail since varname doesn't exist until after the function starts
TracingContext.get().guards_context.dynamo_guards.remove_guards_with_source(
source
)
return result
def call_tensor_method(self, tx, args, kwargs):
return args[0].call_method(tx, self.get_function().__name__, args[1:], kwargs)
def is_tensor_method(self):
from ..trace_rules import get_tensor_method
return (
inspect.ismethoddescriptor(self.get_function())
and hasattr(self.get_function(), "__objclass__")
and self.get_function().__objclass__ == torch._C.TensorBase
) or self.get_function() in get_tensor_method()
def torch_function_override_enabled(self, tx, args, kwargs):
return (
self.get_function() in get_overridable_functions()
or isinstance(
self.get_function(),
(torch._ops.OpOverload, torch._ops.OpOverloadPacket),
)
) and can_dispatch_torch_function(tx, args, kwargs)
|