File: user_defined.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (1446 lines) | stat: -rw-r--r-- 57,308 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
# mypy: ignore-errors

import collections
import contextlib
import dataclasses
import enum
import functools
import inspect
import itertools
import random
import sys
import threading
import types
import warnings
import weakref
from typing import Dict, Generic, List, TYPE_CHECKING
from typing_extensions import is_typeddict

import torch._dynamo.config
import torch.nn
from torch._guards import TracingContext
from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type

from .. import polyfills, variables
from ..bytecode_transformation import create_call_function
from ..create_parameter_op import do_not_convert_to_tracable_parameter
from ..exc import (
    handle_observed_exception,
    ObservedAttributeError,
    raise_observed_exception,
    unimplemented,
)
from ..guards import GuardBuilder, install_guard
from ..source import (
    AttrSource,
    GetItemSource,
    ODictGetItemSource,
    RandomValueSource,
    UnspecializedParamBufferSource,
)
from ..utils import (
    build_checkpoint_variable,
    build_invoke_subgraph_variable,
    check_constant_args,
    get_custom_getattr,
    has_torch_function,
    is_frozen_dataclass,
    is_invoke_subgraph,
    is_namedtuple_cls,
    is_utils_checkpoint,
    is_wrapper_or_member_descriptor,
    istype,
    namedtuple_fields,
    object_has_getattribute,
    proxy_args_kwargs,
    tensortype_to_dtype,
    unpatched_nn_module_getattr,
)
from .base import AttributeMutationExisting, ValueMutationNew, VariableTracker
from .dicts import DefaultDictVariable


try:
    import numpy as np
except ModuleNotFoundError:
    np = None

try:
    from torch.utils._cxx_pytree import PyTreeSpec
except ImportError:
    PyTreeSpec = type(None)


if TYPE_CHECKING:
    from torch._dynamo.symbolic_convert import InstructionTranslator


def is_standard_setattr(val):
    return val in (object.__setattr__,)


def is_forbidden_context_manager(ctx):
    f_ctxs = []

    try:
        from _pytest.python_api import RaisesContext
        from _pytest.recwarn import WarningsChecker

        f_ctxs.append(RaisesContext)
        f_ctxs.append(WarningsChecker)
    except ImportError:
        pass

    try:
        from torch.testing._internal.jit_utils import (
            _AssertRaisesRegexWithHighlightContext,
        )

        f_ctxs.append(_AssertRaisesRegexWithHighlightContext)
    except ImportError:
        pass

    return ctx in f_ctxs


class UserDefinedVariable(VariableTracker):
    pass


class UserDefinedClassVariable(UserDefinedVariable):
    def __init__(self, value, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value

    def as_python_constant(self):
        return self.value

    def as_proxy(self):
        return self.value

    def __repr__(self) -> str:
        return f"UserDefinedClassVariable({self.value})"

    @staticmethod
    @functools.lru_cache(None)
    def _constant_fold_classes():
        return {
            torch.device,
            torch.finfo,
            torch.iinfo,
            torch.Size,
        }

    @staticmethod
    @functools.lru_cache(None)
    def _in_graph_classes():
        _in_graph_class_list = {
            torch.Tensor,
            torch.cuda.Stream,
            torch.cuda.Event,
        }
        if hasattr(torch, "hpu"):
            _in_graph_class_list.update(
                {
                    torch.hpu.Stream,
                    torch.hpu.Event,
                }
            )

        return set(tensortype_to_dtype.keys()) | _in_graph_class_list

    def can_constant_fold_through(self):
        return self.value in self._constant_fold_classes()

    def has_key_in_generic_dict(self, tx: "InstructionTranslator", key):
        if tx.output.side_effects.has_pending_mutation_of_attr(self, key):
            mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True)
            return not isinstance(mutated_attr, variables.DeletedVariable)

        return key in self.value.__dict__

    def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        from . import ConstantVariable, EnumVariable

        source = AttrSource(self.source, name) if self.source is not None else None

        if name == "__name__":
            return ConstantVariable.create(self.value.__name__)
        elif name == "__qualname__":
            return ConstantVariable.create(self.value.__qualname__)
        elif name == "__dict__":
            options = {"source": source}
            return variables.GetAttrVariable(self, name, **options)

        # Special handling of collections.OrderedDict.fromkeys()
        # Wrap it as GetAttrVariable(collections.OrderedDict, "fromkeys") to make it consistent with
        # collections.defaultdict, and both will be handled at UserDefinedClassVariable.call_method().
        # Otherwise, it would be wrapped as UserDefinedObjectVariable(collections.OrderedDict.fromkeys),
        # and we need duplicate code to handle both cases.
        if (
            self.value in {collections.OrderedDict, collections.defaultdict}
            and name == "fromkeys"
        ):
            return super().var_getattr(tx, name)

        try:
            obj = inspect.getattr_static(self.value, name)
        except AttributeError:
            obj = None

        if isinstance(obj, staticmethod):
            return VariableTracker.build(tx, obj.__get__(self.value), source)
        elif isinstance(obj, classmethod):
            if isinstance(obj.__func__, property):
                return variables.UserFunctionVariable(obj.__func__.fget).call_function(
                    tx, [self], {}
                )
            return variables.UserMethodVariable(obj.__func__, self, source=source)
        elif isinstance(obj, types.ClassMethodDescriptorType):
            # e.g.: inspect.getattr_static(dict, "fromkeys")
            #       inspect.getattr_static(itertools.chain, "from_iterable")
            func = obj.__get__(None, self.value)
            return VariableTracker.build(tx, func, source)
        elif source:
            # __mro__ is a member in < 3.12, an attribute in >= 3.12
            if inspect.ismemberdescriptor(obj) or (
                sys.version_info >= (3, 12) and name == "__mro__"
            ):
                return VariableTracker.build(tx, obj.__get__(self.value), source)

        if ConstantVariable.is_literal(obj):
            return ConstantVariable.create(obj)
        elif isinstance(obj, enum.Enum):
            return EnumVariable(obj)
        elif name in getattr(self.value, "__dict__", {}) or (
            self.value.__module__.startswith("torch.")
            or self.value.__module__ == "torch"
        ):
            if source:
                return VariableTracker.build(tx, obj, source)

        if (
            source
            and not inspect.ismethoddescriptor(obj)
            and not is_wrapper_or_member_descriptor(obj)
        ):
            return VariableTracker.build(tx, obj, source)

        return super().var_getattr(tx, name)

    def _call_cross_entropy_loss(self, tx: "InstructionTranslator", args, kwargs):
        """
        functional: input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
        label_smoothing=0.0

        non functional ctor: weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean',
        label_smoothing=0.0

        non functional loss call: input, target, optional_output
        """
        from . import ConstantVariable

        def normalize_args(
            weight=ConstantVariable.create(None),
            size_average=ConstantVariable.create(None),
            ignore_index=ConstantVariable.create(-100),
            reduce=ConstantVariable.create(None),
            reduction=ConstantVariable.create("mean"),
            label_smoothing=ConstantVariable.create(0.0),
        ):
            return (
                weight,
                size_average,
                ignore_index,
                reduce,
                reduction,
                label_smoothing,
            )

        (
            weight,
            size_average,
            ignore_index,
            reduce_arg,
            reduction,
            label_smoothing,
        ) = normalize_args(*args, **kwargs)

        def fake_cross_entropy_loss(input, target):
            from .builder import wrap_fx_proxy

            return wrap_fx_proxy(
                tx=tx,
                proxy=tx.output.create_proxy(
                    "call_function",
                    torch.nn.functional.cross_entropy,
                    *proxy_args_kwargs(
                        [
                            input,
                            target,
                            weight,
                            size_average,
                            ignore_index,
                            reduce_arg,
                            reduction,
                            label_smoothing,
                        ],
                        {},
                    ),
                ),
            )

        return variables.LambdaVariable(fake_cross_entropy_loss)

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        if (
            name == "__subclasses__"
            and len(args) == 0
            and not kwargs
            and "__subclasses__" not in self.value.__dict__
        ):
            options = {"mutation_type": ValueMutationNew()}
            subs_as_vars: List[VariableTracker] = []
            for sub in self.value.__subclasses__():
                source = AttrSource(tx.import_source(sub.__module__), sub.__name__)
                subs_as_vars.append(
                    variables.UserDefinedClassVariable(sub, source=source)
                )

            return variables.ListVariable(subs_as_vars, **options)
        elif (
            self.value in {collections.OrderedDict, collections.defaultdict}
            and name == "fromkeys"
        ):
            from .builtin import BuiltinVariable

            return BuiltinVariable.call_custom_dict_fromkeys(
                tx, self.value, *args, **kwargs
            )
        elif name == "__eq__" and len(args) == 1 and hasattr(args[0], "value"):
            return variables.ConstantVariable(self.value == args[0].value)
        elif name == "__ne__" and len(args) == 1 and hasattr(args[0], "value"):
            return variables.ConstantVariable(self.value != args[0].value)

        return super().call_method(tx, name, args, kwargs)

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from ..side_effects import SideEffects
        from .builder import wrap_fx_proxy
        from .builtin import BuiltinVariable

        constant_args = check_constant_args(args, kwargs)

        if self.can_constant_fold_through() and constant_args:
            # constant fold
            return variables.ConstantVariable.create(
                self.as_python_constant()(
                    *[x.as_python_constant() for x in args],
                    **{k: v.as_python_constant() for k, v in kwargs.items()},
                ),
            )
        elif self.value is torch.nn.CrossEntropyLoss:
            return self._call_cross_entropy_loss(tx, args, kwargs)
        elif self.value is contextlib.nullcontext:
            # import here to avoid circular dependency
            from .ctx_manager import NullContextVariable

            return NullContextVariable()
        elif self.value is collections.OrderedDict:
            return BuiltinVariable.call_custom_dict(
                tx, collections.OrderedDict, *args, **kwargs
            )
        elif (
            self.value is collections.defaultdict
            and len(args) <= 1
            and DefaultDictVariable.is_supported_arg(args[0])
        ):
            return DefaultDictVariable(
                {},
                collections.defaultdict,
                args[0],
                mutation_type=ValueMutationNew(),
            )
        elif is_typeddict(self.value):
            if self.value.__optional_keys__:
                unimplemented("TypedDict with optional keys not supported")
            return variables.BuiltinVariable(dict).call_dict(tx, *args, **kwargs)
        elif self.value is collections.deque:
            maxlen = variables.ConstantVariable.create(None)
            if not kwargs:
                if len(args) == 0:
                    items = []
                elif len(args) == 1 and args[0].has_force_unpack_var_sequence(tx):
                    items = args[0].force_unpack_var_sequence(tx)
                elif len(args) == 2 and args[0].has_force_unpack_var_sequence(tx):
                    items = args[0].force_unpack_var_sequence(tx)
                    maxlen = args[1]
                else:
                    unimplemented("deque() with more than 2 arg not supported")
            elif tuple(kwargs) == ("maxlen",):
                maxlen = kwargs["maxlen"]
                if len(args) == 0:
                    items = []
                if len(args) == 1 and args[0].has_force_unpack_var_sequence(tx):
                    items = args[0].force_unpack_var_sequence(tx)
                else:
                    unimplemented("deque() with more than 1 arg not supported")
            else:
                unimplemented("deque() with invalid kwargs not supported")
            return variables.lists.DequeVariable(
                items, maxlen=maxlen, mutation_type=ValueMutationNew()
            )
        elif self.value is weakref.ref:
            return variables.WeakRefVariable(args[0])
        elif self.value is functools.partial:
            if not args:
                unimplemented("functools.partial malformed")
            # The first arg, a callable (the ctor below will assert on types)
            fn = args[0]
            rest_args = args[1:]
            # guards for the produced FunctoolsPartialVariable are installed in FunctoolsPartialVariable ctor from the
            # args and keywords
            return variables.functions.FunctoolsPartialVariable(
                fn, args=rest_args, keywords=kwargs
            )
        elif self.value is warnings.catch_warnings and not args:
            return variables.CatchWarningsCtxManagerVariable.create(tx, kwargs)
        elif self.value is torch.cuda.device and not kwargs and len(args) == 1:
            assert args[0].is_python_constant()
            return variables.CUDADeviceVariable.create(tx, args[0].as_python_constant())
        elif (
            issubclass(type(self.value), type)
            and hasattr(
                self.value, "__enter__"
            )  # TODO(voz): These can invoke user code!
            and hasattr(
                self.value, "__exit__"
            )  # TODO(voz): These can invoke user code!
            and self.is_standard_new()
            and SideEffects.cls_supports_mutation_side_effects(self.value)
            and self.source
            and not is_forbidden_context_manager(self.value)
        ):
            from torch.overrides import TorchFunctionMode

            from .ctx_manager import GenericContextWrappingVariable
            from .torch_function import TorchFunctionModeVariable

            if issubclass(
                self.value, TorchFunctionMode
            ) and TorchFunctionModeVariable.is_supported_torch_function_mode(
                self.value
            ):
                var_cls = TorchFunctionModeVariable
            else:
                var_cls = GenericContextWrappingVariable

            cm_obj = tx.output.side_effects.track_object_new(
                self.source, self.value, var_cls, {}
            )
            cm_obj.call_method(tx, "__init__", args, kwargs)
            return cm_obj
        elif is_namedtuple_cls(self.value):
            fields = namedtuple_fields(self.value)
            # check if this a quasi-namedtuple or a real one
            if self.value.__module__ == "torch.return_types":
                assert len(args) == 1
                assert not kwargs
                items = args[0].force_unpack_var_sequence(tx)
            else:
                field_defaults = self.value._field_defaults

                items = list(args)
                items.extend([None] * (len(fields) - len(items)))

                var_tracker_kwargs = {}
                for field_name, var_tracker in zip(fields, items):
                    if var_tracker is None:
                        if field_name in kwargs:
                            field_var = kwargs[field_name]
                        else:
                            assert field_name in field_defaults
                            field_var = VariableTracker.build(
                                tx, field_defaults[field_name]
                            )
                        var_tracker_kwargs[field_name] = field_var

                for name, value in var_tracker_kwargs.items():
                    assert name in fields
                    items[fields.index(name)] = value

                assert all(x is not None for x in items)

            return variables.NamedTupleVariable(items, self.value)
        elif is_frozen_dataclass(self.value) and self.is_standard_new():
            fields = dataclasses.fields(self.value)
            items = list(args)
            items.extend([None] * (len(fields) - len(items)))

            default_kwargs = {}
            for field, var_tracker in zip(fields, items):
                if var_tracker is None:
                    if field.name in kwargs:
                        var_tracker = kwargs[field.name]
                    else:
                        if not field.init:
                            continue

                        if field.default is not dataclasses.MISSING:
                            var_tracker = VariableTracker.build(tx, field.default)
                        elif field.default_factory is not dataclasses.MISSING:
                            factory_fn = VariableTracker.build(
                                tx, field.default_factory
                            )
                            var_tracker = factory_fn.call_function(tx, [], {})
                        else:
                            # if we are subclass, the constructor could possibly
                            # be missing args
                            continue

                    default_kwargs[field.name] = var_tracker
            kwargs.update(default_kwargs)

            var = tx.output.side_effects.track_object_new_from_user_defined_class(self)
            var.call_method(tx, "__init__", args, kwargs)
            return var
        elif (
            self.is_standard_new()
            and SideEffects.cls_supports_mutation_side_effects(self.value)
            and self.source
        ):
            var = tx.output.side_effects.track_object_new_from_user_defined_class(self)
            with do_not_convert_to_tracable_parameter():
                var.call_method(tx, "__init__", args, kwargs)
                return var
        elif variables.CustomizedDictVariable.is_matching_cls(self.value):
            options = {"mutation_type": ValueMutationNew()}
            return variables.CustomizedDictVariable.create(
                self.value, args, kwargs, options
            )
        elif (
            variables.RestrictedListSubclassVariable.is_matching_cls(self.value)
            and self.source
        ):
            return variables.RestrictedListSubclassVariable(
                variables.BuiltinVariable(list).call_function(tx, args, kwargs).items,
                user_cls=self.value,
                user_cls_source=self.source,
                mutation_type=ValueMutationNew(),
            )
        elif (
            self.value in self._in_graph_classes()
            or is_traceable_wrapper_subclass_type(self.value)
        ):
            # torch.LongTensor cannot accept a list of FakeTensors.
            # So we stack the list of FakeTensors instead.
            if (
                np
                and self.value in tensortype_to_dtype
                and len(args) == 1
                and isinstance(args[0], variables.ListVariable)
                and len(args[0].items) > 1
                and all(isinstance(x, variables.TensorVariable) for x in args[0].items)
            ):
                # Stack FakeTensor
                stacked = wrap_fx_proxy(
                    tx=tx,
                    proxy=tx.output.create_proxy(
                        "call_function",
                        torch.stack,
                        *proxy_args_kwargs(args, kwargs),
                    ),
                )
                args = [stacked]

            tensor_variable = wrap_fx_proxy(
                tx=tx,
                proxy=tx.output.create_proxy(
                    "call_function",
                    self.value,
                    *proxy_args_kwargs(args, kwargs),
                ),
            )

            return tensor_variable
        elif issubclass(self.value, enum.Enum) and len(args) == 1 and not kwargs:
            options = {"mutation_type": ValueMutationNew()}
            return variables.EnumVariable.create(self.value, args[0], options)
        elif self.value is random.Random:
            if len(args) == 1 and isinstance(args[0], variables.ConstantVariable):
                seed = args[0].value
            else:
                seed = None
            random_object = random.Random(seed)
            return RandomVariable(random_object)
        elif (
            not self.is_standard_new()
            and SideEffects.cls_supports_mutation_side_effects(self.value)
            and self.source
        ):
            return tx.inline_user_function_return(
                VariableTracker.build(
                    tx, polyfills.instantiate_user_defined_class_object
                ),
                [self, *args],
                kwargs,
            )

        return super().call_function(tx, args, kwargs)

    def is_standard_new(self):
        """Check for __new__ being overridden"""
        new_fn = inspect.getattr_static(self.value, "__new__", None)
        if isinstance(new_fn, staticmethod):
            new_fn = new_fn.__func__
        return new_fn in (object.__new__, Generic.__new__)

    def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        if self.source:
            source = AttrSource(self.source, name)
            install_guard(source.make_guard(GuardBuilder.HASATTR))
            return variables.ConstantVariable(hasattr(self.value, name))
        return super().call_hasattr(tx, name)

    def const_getattr(self, tx: "InstructionTranslator", name):
        if name == "__name__":
            return self.value.__name__
        return super().const_getattr(tx, name)


class NO_SUCH_SUBOBJ:
    pass


def call_random_fn(tx, fn, args, kwargs):
    from .builder import VariableBuilder

    args = [x.as_python_constant() for x in args]
    kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
    random_call_index = len(tx.output.random_calls)
    example_value = fn(*args, **kwargs)
    source = RandomValueSource(random_call_index)
    tx.output.random_calls.append((fn, args, kwargs))
    # TODO: arguably, this should route to wrap_symint/wrap_symfloat
    # (currently hypothetical), but I'm not going to poke my hand in
    # this nest for now
    return VariableBuilder(tx, source).wrap_unspecialized_primitive(example_value)


class UserDefinedObjectVariable(UserDefinedVariable):
    """
    Mostly objects of defined type.  Catch-all for something where we only know the type.
    """

    _nonvar_fields = {"value", "value_type", *UserDefinedVariable._nonvar_fields}

    def __init__(self, value, value_type=None, cls_source=None, **kwargs) -> None:
        super().__init__(**kwargs)
        self.value = value
        self.value_type = value_type or type(value)
        assert type(value) is self.value_type
        # This is used with __new__, when the new object is sourceless but the user class can be sourceful.
        self.cls_source = cls_source

    def __str__(self) -> str:
        inner = self.value_type.__name__
        if inner in [
            "builtin_function_or_method",
            "getset_descriptor",
            "method_descriptor",
            "method",
        ]:
            inner = str(getattr(self.value, "__name__", None))
        return f"{self.__class__.__name__}({inner})"

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.value_type.__name__})"

    def python_type(self):
        return self.value_type

    def guard_as_python_constant(self):
        if self.source:
            install_guard(self.source.make_guard(GuardBuilder.ID_MATCH))
            return self.value
        return super().guard_as_python_constant()

    def torch_function_check(self):
        assert has_torch_function(
            self
        ), f"calling torch function on object without __torch_function__ {self}"

    def get_torch_fn(self, tx):
        self.torch_function_check()
        from .torch_function import build_torch_function_fn

        return build_torch_function_fn(tx, self.value, self.source)

    def call_torch_function(self, tx: "InstructionTranslator", fn, types, args, kwargs):
        self.torch_function_check()

        from .torch_function import _get_subclass_type_var, call_torch_function

        return call_torch_function(
            tx,
            _get_subclass_type_var(tx, self),
            self.get_torch_fn(tx),
            fn,
            types,
            args,
            kwargs,
        )

    @staticmethod
    @functools.lru_cache(None)
    def _supported_random_functions():
        fns = {
            random.random,
            random.randint,
            random.randrange,
            random.uniform,
        }
        return fns

    def _maybe_get_baseclass_method(self, name):
        if name not in getattr(self.value, "__dict__", {}):
            try:
                return inspect.getattr_static(type(self.value), name)
            except AttributeError:
                pass
        return None

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from . import (
            BuiltinVariable,
            ConstantVariable,
            TupleVariable,
            UserMethodVariable,
        )

        method = self._maybe_get_baseclass_method(name)
        if method is not None:
            if method is object.__init__:
                return ConstantVariable.create(None)

            if is_standard_setattr(method) or isinstance(self.value, threading.local):
                return self.method_setattr_standard(tx, *args, **kwargs)

            # [NOTE] OrderedDict, dict subtypes must always have source
            # We cannot instantiate such subtypes in-graph due to builtin __new__
            if method is collections.OrderedDict.keys:
                # subclass of OrderedDict
                assert not (args or kwargs)
                assert self.source  # OrderedDict, dict subtypes must always have source
                keys = list(self.value.keys())
                assert all(map(ConstantVariable.is_literal, keys))
                install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
                tx.output.guard_on_key_order.add(self.source.name())
                return TupleVariable([ConstantVariable.create(k) for k in keys])

            if (
                method in (collections.OrderedDict.__contains__, dict.__contains__)
                and len(args) == 1
                and isinstance(args[0], (ConstantVariable, BuiltinVariable))
                and inspect.getattr_static(type(self.value), "keys")
                in (collections.OrderedDict.keys, dict.keys)
            ):
                assert not kwargs
                assert self.source  # OrderedDict, dict subtypes must always have source

                # TODO(anijain2305) - Why do we need to guard on all keys?
                install_guard(self.source.make_guard(GuardBuilder.DICT_CONST_KEYS))
                return ConstantVariable.create(
                    args[0].as_python_constant() in self.value
                )

            if method is collections.OrderedDict.items and isinstance(
                self.value, collections.OrderedDict
            ):
                assert self.source  # OrderedDict, dict subtypes must always have source
                assert not (args or kwargs)
                keys = self.call_method(tx, "keys", [], {})
                items = [
                    TupleVariable(
                        [key, self.odict_getitem(tx, key)],
                    )
                    for key in keys.force_unpack_var_sequence(tx)
                ]
                tx.output.guard_on_key_order.add(self.source.name())
                return TupleVariable(items)

            if method is collections.OrderedDict.__getitem__ and len(args) == 1:
                assert not kwargs
                assert self.source  # OrderedDict, dict subtypes must always have source
                return self.odict_getitem(tx, args[0])

            if len(args) == 1 and not kwargs:
                if method is object.__eq__:
                    func_var = VariableTracker.build(tx, polyfills.object_eq)
                    return func_var.call_function(tx, [self, *args], kwargs)

                if method is object.__ne__:
                    func_var = VariableTracker.build(tx, polyfills.object_ne)
                    return func_var.call_function(tx, [self, *args], kwargs)

            # check for methods implemented in C++
            if isinstance(method, types.FunctionType):
                source = (
                    None
                    if self.source is None
                    else AttrSource(AttrSource(self.source, "__class__"), name)
                )
                # TODO(jansel): add a guard to check for monkey patching?
                from ..mutation_guard import unpatched_nn_module_init

                if method is torch.nn.Module.__init__:
                    method = unpatched_nn_module_init
                return UserMethodVariable(method, self, source=source).call_function(
                    tx, args, kwargs
                )

            if method is list.__len__ and self.source and not (args or kwargs):
                install_guard(self.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
                return ConstantVariable(len(self.value))

        return super().call_method(tx, name, args, kwargs)

    def method_setattr_standard(self, tx: "InstructionTranslator", name, value):
        try:
            name = name.as_python_constant()
        except NotImplementedError:
            unimplemented(f"non-const setattr name: {name}")
        if not tx.output.side_effects.is_attribute_mutation(self):
            unimplemented(f"setattr({self}, {name}, ...)")

        tx.output.side_effects.store_attr(self, name, value)
        return variables.ConstantVariable(None)

    def needs_slow_setattr(self):
        return not is_standard_setattr(
            inspect.getattr_static(self.value, "__setattr__", None)
        ) and not isinstance(self.value, threading.local)

    def unpack_var_sequence(self, tx):
        if (
            self.source
            and self._maybe_get_baseclass_method("__iter__") is list.__iter__
            and self._maybe_get_baseclass_method("__len__") is list.__len__
            and self._maybe_get_baseclass_method("__getitem__") is list.__getitem__
        ):
            install_guard(self.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
            return [
                variables.LazyVariableTracker.create(
                    self.value[k],
                    source=GetItemSource(self.source, k),
                )
                for k in range(len(self.value))
            ]
        return super().unpack_var_sequence(tx)

    def next_variable(self, tx):
        return self.call_method(tx, "__next__", [], {})

    def is_supported_random(self):
        try:
            return self.value in self._supported_random_functions()
        except TypeError:
            # TypeError: unhashable type
            return False

    def call_function(
        self,
        tx: "InstructionTranslator",
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        from .. import trace_rules

        if (
            self.is_supported_random()
            and all(k.is_python_constant() for k in args)
            and all(v.is_python_constant() for v in kwargs.values())
        ):
            return call_random_fn(tx, self.value, args, kwargs)
        elif istype(self.value, types.MethodType):
            func = self.value.__func__
            obj = self.value.__self__
            if (
                func is torch.utils._contextlib._DecoratorContextManager.clone
                and variables.TorchCtxManagerClassVariable.is_matching_cls(
                    obj.__class__
                )
                and not (args or kwargs)
            ):
                return variables.TorchCtxManagerClassVariable(
                    obj.__class__
                ).call_function(tx, args, kwargs)

            if (
                func is torch.autograd.grad_mode.inference_mode.clone
                and obj.__class__ is torch.autograd.grad_mode.inference_mode
            ):
                # simulate the inference_mode.clone implementation
                var = variables.ConstantVariable(obj.mode)
                return variables.TorchCtxManagerClassVariable(
                    obj.__class__
                ).call_function(tx, [var], kwargs)

            if self.source is None:
                unimplemented(
                    "Sourceless UserDefinedObjectVariable method not supported"
                )
            func_src = AttrSource(self.source, "__func__")
            func_var = VariableTracker.build(tx, func, func_src)
            obj_src = AttrSource(self.source, "__self__")
            obj_var = VariableTracker.build(tx, obj, obj_src)
            return func_var.call_function(tx, [obj_var] + args, kwargs)
        elif (
            istype(self.value, functools.partial)
            and trace_rules.lookup(self.value.func)
            == variables.TorchInGraphFunctionVariable
            and all(
                variables.ConstantVariable.is_literal(v)
                for v in itertools.chain(self.value.args, self.value.keywords.values())
            )
        ):
            if self.source:
                install_guard(
                    AttrSource(self.source, "func").make_guard(GuardBuilder.ID_MATCH),
                    AttrSource(self.source, "args").make_guard(
                        GuardBuilder.CONSTANT_MATCH
                    ),
                    AttrSource(self.source, "keywords").make_guard(
                        GuardBuilder.CONSTANT_MATCH
                    ),
                )

            partial_args = [
                variables.ConstantVariable.create(v) for v in self.value.args
            ]
            partial_args.extend(args)
            partial_kwargs = {
                k: variables.ConstantVariable.create(v)
                for k, v in self.value.keywords.items()
            }
            partial_kwargs.update(kwargs)

            # TODO(dynamo-team) - Consider calling VariableBuilder directly here
            if is_utils_checkpoint(self.value.func):
                return build_checkpoint_variable().call_function(
                    tx, partial_args, partial_kwargs
                )
            elif is_invoke_subgraph(self.value.func):
                return build_invoke_subgraph_variable().call_function(
                    tx, partial_args, partial_kwargs
                )
            return variables.TorchInGraphFunctionVariable(
                self.value.func
            ).call_function(tx, partial_args, partial_kwargs)
        elif callable(self.value):
            if self.source:
                install_guard(self.source.make_guard(GuardBuilder.FUNCTION_MATCH))
            return self.call_method(tx, "__call__", args, kwargs)

        return super().call_function(tx, args, kwargs)

    def _check_for_getattribute(self):
        if object_has_getattribute(self.value):
            unimplemented("UserDefinedObjectVariable with custom __getattribute__")

    def _check_for_getattr(self):
        return get_custom_getattr(self.value)

    def _is_c_defined_property(self, subobj):
        if not isinstance(subobj, property):
            return False

        # pybind def_readwrite is implemented via PyCFunction. At the python level, it is visible as a property whose
        # fget is an instancemethod wrapper - https://docs.python.org/3/c-api/method.html#c.PyInstanceMethod_Check

        # If we have a PyCFunction, we make an assumption that there is no side effect.
        return isinstance(
            subobj.fget, types.BuiltinFunctionType
        ) or torch._C._dynamo.utils.is_instancemethod(subobj.fget)

    def _getattr_static(self, name):
        subobj = inspect.getattr_static(self.value, name, NO_SUCH_SUBOBJ)
        import _collections

        # In some cases, we have to do dynamic lookup because getattr_static is not enough. For example, threading.local
        # has side-effect free __getattribute__ and the attribute is not visible without a dynamic lookup.
        if (
            subobj is NO_SUCH_SUBOBJ  # e.g., threading.local
            or isinstance(
                subobj, _collections._tuplegetter
            )  # namedtuple fields are represented by _tuplegetter
            or (
                inspect.ismemberdescriptor(subobj) and name in self.value.__slots__
            )  # handle memberdecriptor and slots
            or self._is_c_defined_property(subobj)
        ):
            # Call __getattribute__, we have already checked that this is not overridden and side-effect free. We don't
            # want to call getattr because it can be user-overridden.
            subobj = self.value.__getattribute__(name)

        return subobj

    def has_key_in_generic_dict(self, tx: "InstructionTranslator", key):
        self._check_for_getattribute()
        if tx.output.side_effects.has_pending_mutation_of_attr(self, key):
            mutated_attr = tx.output.side_effects.load_attr(self, key, deleted_ok=True)
            return not isinstance(mutated_attr, variables.DeletedVariable)

        return key in self.value.__dict__

    def get_source_by_walking_mro(self, name):
        assert self.cls_source is not None

        for idx, klass in enumerate(type(self.value).__mro__):
            if name in klass.__dict__:
                mro_source = AttrSource(self.cls_source, "__mro__")
                klass_source = GetItemSource(mro_source, idx)
                dict_source = AttrSource(klass_source, "__dict__")
                return GetItemSource(dict_source, name)

        unimplemented(f"Could not find {name} in {type(self.value).__mro__}")

    def var_getattr(self, tx: "InstructionTranslator", name):
        from .. import trace_rules
        from . import ConstantVariable

        source = AttrSource(self.source, name) if self.source else None
        self._check_for_getattribute()

        if tx.output.side_effects.has_pending_mutation_of_attr(self, name):
            result = tx.output.side_effects.load_attr(self, name, deleted_ok=True)
            if isinstance(result, variables.DeletedVariable):
                raise_observed_exception(AttributeError, tx)
            return result

        if name == "__dict__":
            options = {"source": source}
            return variables.GetAttrVariable(self, name, **options)

        # TODO(anijain2305) - Investigate if we need specialization for more
        # dunder attrs. inspect.getattr_static does not return correct value for
        # them.
        if name == "__class__":
            cls_source = source
            if cls_source is None:
                cls_source = self.cls_source
            options = {"source": cls_source}
            return UserDefinedClassVariable(type(self.value), **options)

        try:
            subobj = self._getattr_static(name)
        except AttributeError:
            subobj = NO_SUCH_SUBOBJ
            getattr_fn = self._check_for_getattr()
            if isinstance(getattr_fn, types.FunctionType):
                # Dynamo is going to trace the __getattr__ function with
                # args=name. Set the source accordingly.
                if (
                    getattr_fn is unpatched_nn_module_getattr
                    and isinstance(self, variables.UnspecializedNNModuleVariable)
                    # prevent against overwriting of params/buffers/submodules
                    and istype(self.value._parameters, dict)
                    and istype(self.value._buffers, dict)
                    and istype(self.value._modules, dict)
                ):
                    # Manually trace out the nn module __getattr__ to avoid large compilation latency.
                    out = self.manually_trace_nn_module_getattr(tx, name)
                else:
                    new_source = None
                    if self.source:
                        new_source = AttrSource(self.source, "__getattr__")
                    out = variables.UserMethodVariable(
                        getattr_fn, self, source=new_source
                    ).call_function(tx, [ConstantVariable.create(name)], {})

                if self.source and getattr_fn is torch.nn.Module.__getattr__:
                    if isinstance(
                        out,
                        (
                            variables.UnspecializedNNModuleVariable,
                            variables.NNModuleVariable,
                        ),
                    ):
                        # nn_module_stack source is BC surface area. Ensure that
                        # mod._modules["linear"] is reflected as mod.linear for
                        # nn_module_stack.
                        out.set_nn_module_stack_source(
                            AttrSource(self.get_nn_module_stack_source(), name)
                        )
                return out

            elif getattr_fn is not None:
                unimplemented("UserDefined with non-function __getattr__")

        if isinstance(subobj, property):
            if self.source:
                # Read the class attribute to reach the property
                source = AttrSource(AttrSource(self.source, "__class__"), name)
                # Get the getter function
                source = AttrSource(source, "fget")
            return variables.UserMethodVariable(
                subobj.fget, self, source=source
            ).call_function(tx, [], {})
        elif isinstance(subobj, staticmethod):
            func = subobj.__get__(self.value)
            if source is not None:
                return trace_rules.lookup(func).create_with_source(func, source=source)
            else:
                return trace_rules.lookup(func)(func)
        elif isinstance(subobj, classmethod):
            return variables.UserMethodVariable(
                subobj.__func__, self.var_getattr(tx, "__class__"), source=source
            )
        elif isinstance(subobj, types.ClassMethodDescriptorType):
            # e.g.: inspect.getattr_static({}, "fromkeys")
            func = subobj.__get__(self.value, None)
            return VariableTracker.build(tx, func, source)
        elif inspect.ismethoddescriptor(subobj) and not is_wrapper_or_member_descriptor(
            subobj.__get__
        ):
            # Attribute has a __get__ method. Create a user defined object vt
            # for the subobj, and then trace the __get__ method.
            descriptor_source = None
            descriptor_get_source = None
            if self.cls_source:
                # To access the method descriptor from the udf object w/o using
                # inspect.getattr_static, we can look into the class mro
                descriptor_source = self.get_source_by_walking_mro(name)
                descriptor_get_source = AttrSource(descriptor_source, "__get__")
                descriptor_var = VariableTracker.build(tx, subobj, descriptor_source)
            else:
                # Sourceless Builder does not support user defined objects
                descriptor_var = UserDefinedObjectVariable(subobj)

            # The arguments of the __get__ function are (self, instance, owner)
            # self - descriptor_var
            # instance - instance of the class, represented by self here
            # owner - class object
            owner_var = UserDefinedClassVariable(type(self.value))
            return variables.UserMethodVariable(
                subobj.__get__.__func__, descriptor_var, source=descriptor_get_source
            ).call_function(tx, [self, owner_var], {})
        elif isinstance(subobj, types.FunctionType) or (
            isinstance(subobj, types.MethodType)
            and isinstance(self.value, torch.nn.Module)
        ):
            # Since we get subobj via self._getattr_static, which may not trigger dynamic lookup.
            # Static lookup can't tell us it's a method or function correctly,
            # so we trigger dynamic lookup here to get the correct type.
            dynamic_subobj = getattr(self.value, name)

            while dynamic_subobj is subobj and hasattr(subobj, "_torchdynamo_inline"):
                subobj = subobj._torchdynamo_inline
                dynamic_subobj = subobj
                source = AttrSource(source, "_torchdynamo_inline") if source else None

            if isinstance(subobj, types.MethodType):
                if dynamic_subobj.__self__ is not self.value:
                    if not isinstance(dynamic_subobj.__func__, types.FunctionType):
                        unimplemented(
                            f"Found a method whose __func__ is not of FunctionType - {dynamic_subobj}"
                        )

                    from .builder import SourcelessUserDefinedObjectBuilder

                    # This means that we are calling a method of some other object here.
                    object_vt = SourcelessUserDefinedObjectBuilder.create(
                        tx, dynamic_subobj.__self__
                    )
                    return variables.UserMethodVariable(
                        dynamic_subobj.__func__, object_vt
                    )
                func = subobj.__func__
            else:
                assert isinstance(subobj, types.FunctionType)
                func = subobj

            if inspect.ismethod(dynamic_subobj):
                return variables.UserMethodVariable(func, self, source=source)
            elif inspect.isfunction(dynamic_subobj):
                if is_utils_checkpoint(func):
                    return build_checkpoint_variable(source=source)
                elif source is not None:
                    return trace_rules.lookup(func).create_with_source(
                        func, source=source
                    )
                else:
                    return trace_rules.lookup(func)(func)

        if (
            # wrap the source only if inline_inbuilt_nn_modules is set or fsdp modules. This is a temporary solution to
            # keep Dynamo behavior compatible with no inlining, as there will be some delay to turn on the flag in
            # fbcode.
            (
                torch._dynamo.config.inline_inbuilt_nn_modules
                or isinstance(self, variables.FSDPManagedNNModuleVariable)
            )
            and source
            and isinstance(self, variables.UnspecializedNNModuleVariable)
            # export has some awkwardness around specialized and unspecialized modules. Skip wrapping source for export
            # usecase for now.
            and not tx.output.export
        ):
            # Recalculate source for params/buffers
            if name in ("_buffers", "_parameters"):
                source = UnspecializedParamBufferSource(self.source, name)
            source = self._wrap_source(source)

        if subobj is not NO_SUCH_SUBOBJ:
            if is_wrapper_or_member_descriptor(subobj):
                options = {"source": source}
                return variables.GetAttrVariable(self, name, **options)
            if source:
                return variables.LazyVariableTracker.create(subobj, source)
            else:
                # Check if the subobj is accessible from the class itself. If the class source is known, we can create a
                # sourceful variable tracker.
                if self.cls_source is not None:
                    subobj_from_class = inspect.getattr_static(
                        self.value.__class__, name, NO_SUCH_SUBOBJ
                    )
                    if subobj_from_class is subobj:
                        src_from_class = AttrSource(self.cls_source, name)
                        return variables.LazyVariableTracker.create(
                            subobj_from_class, src_from_class
                        )

                return VariableTracker.build(tx, subobj)

        # Earlier we were returning GetAttrVariable but its incorrect. In absence of attr, Python raises AttributeError.
        raise_observed_exception(AttributeError, tx)

    def call_hasattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        if self._check_for_getattribute():
            unimplemented("hasattr with custom __getattribute__")

        if self.source:
            install_guard(
                AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
            )

        try:
            var_vt = self.var_getattr(tx, name)
            return variables.ConstantVariable.create(
                not isinstance(var_vt, variables.DeletedVariable)
            )
        except ObservedAttributeError:
            handle_observed_exception(tx)
            return variables.ConstantVariable.create(False)

    def odict_getitem(self, tx: "InstructionTranslator", key):
        from .dicts import is_hashable

        # TODO this should probably be merged with the dict handling

        index = (
            key.source
            if is_hashable(key) and key.source is not None
            else key.as_python_constant()
        )

        return VariableTracker.build(
            tx,
            collections.OrderedDict.__getitem__(self.value, key.as_python_constant()),
            self.source and ODictGetItemSource(self.source, index),
        )


class FrozenDataClassVariable(UserDefinedObjectVariable):
    @staticmethod
    def create(tx, value, source):
        from dataclasses import fields

        assert is_frozen_dataclass(value)

        field_map = {}
        for field in fields(value):
            if hasattr(value, field.name):
                field_map[field.name] = VariableTracker.build(
                    tx,
                    getattr(value, field.name),
                    source and AttrSource(source, field.name),
                )

        return FrozenDataClassVariable(value, fields=field_map, source=source)

    def __init__(self, value, fields=None, **kwargs) -> None:
        super().__init__(value, **kwargs)
        if fields is None:
            fields = {}
        self.fields = fields

    def as_proxy(self):
        from dataclasses import fields

        args = []
        kwargs = {}
        for field in fields(self.value):
            proxy = self.fields[field.name].as_proxy()
            if hasattr(field, "kw_only") and field.kw_only:
                kwargs[field.name] = proxy
            else:
                args.append(proxy)

        return self.python_type()(*args, **kwargs)

    # NB: This is called during __init__ for a frozen dataclass
    # use this to accumulate the most up-to-date field values
    def method_setattr_standard(self, tx: "InstructionTranslator", name, value):
        self.fields[name.as_python_constant()] = value
        return super().method_setattr_standard(tx, name, value)

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.value_type.__name__})"


class SourcelessGraphModuleVariable(UserDefinedObjectVariable):
    def __init__(
        self,
        value,
        **kwargs,
    ) -> None:
        super().__init__(value, **kwargs)

    def call_method(
        self,
        tx,
        name,
        args: "List[VariableTracker]",
        kwargs: "Dict[str, VariableTracker]",
    ) -> "VariableTracker":
        fn_variable = variables.UserFunctionVariable(self.value.forward.__func__)
        args = [self] + args
        return tx.inline_user_function_return(
            fn_variable,
            args,
            kwargs,
        )


class KeyedJaggedTensorVariable(UserDefinedObjectVariable):
    @staticmethod
    def is_matching_object(obj):
        mod = sys.modules.get("torchrec.sparse.jagged_tensor")
        return mod is not None and type(obj) is mod.KeyedJaggedTensor

    def __init__(self, value, **kwargs) -> None:
        from torchrec.sparse.jagged_tensor import KeyedJaggedTensor

        assert type(value) is KeyedJaggedTensor
        super().__init__(value, **kwargs)

    def var_getattr(self, tx: "InstructionTranslator", name):
        if (
            torch._dynamo.config.force_unspec_int_unbacked_size_like_on_torchrec_kjt
            and self.source is not None
            and name in ("_length_per_key", "_offset_per_key")
        ):
            with TracingContext.patch(force_unspec_int_unbacked_size_like=True):
                return super().var_getattr(tx, name)
        return super().var_getattr(tx, name)


class RemovableHandleClass:
    # Dummy class to pass to python_type of RemovableHandleVariable
    # Useful for isinstance check on hooks
    pass


class RemovableHandleVariable(VariableTracker):
    REMOVED = -1

    def __init__(
        self,
        mutation_type=None,
        # index of the registration in the side_effects owned register_hook/handle list, used during removal.
        idx=None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.mutation_type = mutation_type
        self.idx = idx

    def call_method(self, tx: "InstructionTranslator", method_name, args, kwargs):
        if method_name == "remove":
            if self.idx != self.REMOVED:
                tx.output.side_effects.remove_hook(self.idx)
                self.idx = self.REMOVED
            return variables.ConstantVariable.create(None)
        super().call_method(tx, method_name, args, kwargs)

    def reconstruct(self, codegen):
        if self.idx == self.REMOVED:
            # Hook has already been removed, return a dummy handle
            codegen.add_push_null(
                lambda: codegen.load_import_from(
                    "torch._dynamo.utils", "invalid_removeable_handle"
                )
            )
            codegen.extend_output(create_call_function(0, False))
            return
        # unreachable due to codegen.add_cache() when the hook is installed
        super().reconstruct(codegen)

    def python_type(self):
        return RemovableHandleClass


class MutableMappingVariable(UserDefinedObjectVariable):
    _nonvar_fields = UserDefinedObjectVariable._nonvar_fields

    def __init__(self, value, **kwargs):
        super().__init__(value, **kwargs)
        self.generic_dict_vt = variables.ConstDictVariable({})
        self.mutation_type = AttributeMutationExisting()

    def var_getattr(self, tx: "InstructionTranslator", name: str) -> "VariableTracker":
        # A common pattern in the init code of MutableMapping objects is to
        # update the __dict__ attribute. To prevent graph break, we directly
        # return a ConstDictVariable for the __dict__attr.
        #
        # However, users can try to add a new attribute to the class using the
        # __dict__ attribute. To catch this, we save the ConstDictVariable for
        # the __dict__ and then lookup into this vt for each attr lookup.
        if name == "get" and type(self.value).get in (
            collections.abc.Mapping.get,
            dict.get,
        ):
            return variables.UserMethodVariable(polyfills.mapping_get, self)
        elif name == "__dict__" and self.source:
            self.generic_dict_vt = variables.LazyVariableTracker.create(
                self.value.__dict__, AttrSource(self.source, "__dict__")
            )
            return self.generic_dict_vt
        elif out := self.generic_dict_vt.maybe_getitem_const(
            variables.ConstantVariable(name)
        ):
            return out
        else:
            return super().var_getattr(tx, name)


class RandomVariable(UserDefinedObjectVariable):
    pass