File: __init__.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (391 lines) | stat: -rw-r--r-- 15,284 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# mypy: allow-untyped-defs
import copy
import dataclasses
import functools
import io
import json
import logging
import os
import re
import sys
import types
import warnings
import weakref
import zipfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import lru_cache

from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from unittest.mock import patch

import torch
import torch.fx
import torch.utils._pytree as pytree

from torch._dispatch.python import enable_python_dispatcher
from torch._guards import compile_context
from torch._utils_internal import log_export_usage
from torch.export._tree_utils import reorder_kwargs
from torch.export.graph_signature import (
    ArgumentSpec,
    ConstantArgument,
    ExportGraphSignature,
    InputKind,
    InputSpec,
    OutputKind,
    OutputSpec,
    SymIntArgument,
    SymBoolArgument,
    SymFloatArgument,
    TensorArgument,
)
from torch.fx import traceback as fx_traceback
from torch.fx._compatibility import compatibility
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.graph import _PyTreeCodeGen, _PyTreeInfo

from .wrappers import _wrap_submodules
from .utils import _materialize_cpp_cia_ops

log = logging.getLogger(__name__)

@dataclasses.dataclass
class ExportDynamoConfig:
    """
    Manage Export-specific configurations of Dynamo.
    """
    allow_rnn: bool = True


# We only want to print this once to avoid flooding logs in workflows where capture_pre_autograd_graph
# is called multiple times.
@lru_cache
def capture_pre_autograd_graph_warning():
    from torch._inductor import config

    log.warning("+============================+")
    log.warning("|     !!!   WARNING   !!!    |")
    log.warning("+============================+")
    log.warning("capture_pre_autograd_graph() is deprecated and doesn't provide any function guarantee moving forward.")
    log.warning("Please switch to use torch.export.export_for_training instead.")
    if config.is_fbcode():
        log.warning("For unittest, capture_pre_autograd_graph() will fallback to torch.export.export_for_training.")  # noqa: B950

@lru_cache
def print_export_warning():
    log.warning("Using torch.export.export_for_training(...,strict=True)")

def gm_using_training_ir(graph_module: torch.fx.GraphModule) -> bool:
    """
    Returns true if the graph module is detected to use training IR.

    This function checks for two specific conditions within the nodes of the graph module:
    1. The presence of the `torch.ops.aten.batch_norm.default` operation which indicates the use of training IR.
    2. The presence of deprecated IR tags on node meta or batch norm ops produced by the deprecated IR.

    The function raises a RuntimeError if both conditions are met, indicating a conflict in the IR.
    """
    # TODO: clean up this code after training IR migration.
    # T199018392
    has_training_ir_batch_norm = False
    has_deprecated_ir_tag = getattr(graph_module, "capture_pre_autograd_graph_tag", False)
    for node in graph_module.graph.nodes:
        if node.op == "call_function":
            if node.target == torch.ops.aten.batch_norm.default:
                has_training_ir_batch_norm = True
            if node.meta.get("capture_pre_autograd_graph_tag", False):
                has_deprecated_ir_tag = True
            if node.target in [
                torch.ops.aten._native_batch_norm_legit.default,
                torch.ops.aten.cudnn_batch_norm.default,
                torch.ops.aten.miopen_batch_norm.default,
            ]:
                has_deprecated_ir_tag = True

    if has_deprecated_ir_tag and has_training_ir_batch_norm:
        raise RuntimeError("Conflicting IR detected.")
    return has_training_ir_batch_norm or not has_deprecated_ir_tag

@compatibility(is_backward_compatible=False)
def capture_pre_autograd_graph(
    f: torch.nn.Module,
    args: Tuple[Any],
    kwargs: Optional[Dict[str, Any]] = None,
    dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any]]] = None,
) -> torch.nn.Module:
    """
    A helper function that is intended to trace a module before any pre-autograd
    decomposition is run. The produced module will be "non-functional" and
    composed of aten operators. Later this API will be deleted in favor of more general
    torch.export API.

    Args:
      f: nn.Module to be traced

      args: example positional inputs.

      kwargs: optional example keyword inputs.

      dynamic_shapes: Should either be:
         1) a dict from argument names of ``f`` to their dynamic shape specifications,
         2) a tuple that specifies dynamic shape specifications for each input in original order.
         If you are specifying dynamism on keyword args, you will need to pass them in the order that
         is defined in the original function signature.

         The dynamic shape of a tensor argument can be specified as either
         (1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
         not required to include static dimension indices in this dict, but when they are,
         they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
         where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
         are denoted by None. Arguments that are dicts or tuples / lists of tensors are
         recursively specified by using mappings or sequences of contained specifications.

    Returns:
        An nn.Module containing the traced method.

    """
    from torch.export._trace import _extract_fake_inputs, DEFAULT_EXPORT_DYNAMO_CONFIG, _ignore_backend_decomps
    from torch._utils_internal import capture_pre_autograd_graph_using_training_ir
    from torch._export.non_strict_utils import make_constraints
    from torch._subclasses.functional_tensor import FunctionalTensor
    from torch.export._unlift import _create_stateful_graph_module
    from torch.export.dynamic_shapes import _combine_args

    capture_pre_autograd_graph_warning()

    if sys.platform == "win32":
        raise RuntimeError("capture_pre_autograd_graph not yet supported on Windows")

    assert isinstance(f, torch.nn.Module), "Expected an nn.Module instance."

    if kwargs is None:
        kwargs = {}

    if capture_pre_autograd_graph_using_training_ir():
        print_export_warning()
        module = torch.export.export_for_training(f, args, kwargs, dynamic_shapes=dynamic_shapes, strict=True).module()
    else:
        log_export_usage(event="export.private_api", flags={"capture_pre_autograd_graph"})

        # Do not decompose dropout for exported models, because in eval mode the dropout
        # op disappears from the graph, which makes it difficult to switch to train mode.
        # See https://github.com/pytorch/pytorch/pull/115258#issuecomment-1900755832.

        # We force create native_batch_norm because the below materialization logic
        # only applies to CIA ops.
        maybe_aliasing_or_mutating_ops = [torch.ops.aten.native_batch_norm.default]

        _materialize_cpp_cia_ops()

        for op in torch.ops.aten:
            op_obj = getattr(torch.ops.aten, op)
            for overload in op_obj.overloads():
                op_overload = getattr(op_obj, overload)
                if torch.Tag.maybe_aliasing_or_mutating in op_overload.tags:
                    maybe_aliasing_or_mutating_ops.append(op_overload)

        decomp_table = {
            op: op.decompose
            for op in maybe_aliasing_or_mutating_ops
            if op != torch.ops.aten.dropout.default
        }
        with torch._dynamo.config.patch(dataclasses.asdict(DEFAULT_EXPORT_DYNAMO_CONFIG)), _ignore_backend_decomps():
            m = torch._dynamo.export(
                f,
                dynamic_shapes=dynamic_shapes,
                assume_static_by_default=True,
                tracing_mode="symbolic",
                decomposition_table=decomp_table,
                pre_dispatch=True,
                aten_graph=True,
                _log_export_usage=False,
            )(
                *args,
                **kwargs,
            )[0]

            _, _, fake_mode = _extract_fake_inputs(m, args, kwargs)

            m.meta["inline_constraints"] = {
                k: v
                for k, v in fake_mode.shape_env.var_to_range.items()
                if re.match(r"^[if]\d+$", str(k))
            }

            if isinstance(f, torch.nn.Module):
                from torch.export._trace import _restore_state_dict
                _restore_state_dict(f, m)

            flat_args, _ = pytree.tree_flatten((args, kwargs or {}))
            combined_args = _combine_args(f, args, kwargs)
            range_constraints = make_constraints(
                fake_mode,
                m,
                combined_args,
                dynamic_shapes,
                0,
            )

            module = _create_stateful_graph_module(
                m,
                range_constraints=range_constraints,
            )

            setattr(module, "capture_pre_autograd_graph_tag", True)  # noqa: B010
            for node in module.graph.nodes:
                node.meta["capture_pre_autograd_graph_tag"] = True

    error_message = \
        """
        Calling train() or eval() is not supported for exported models.
        Alternatively, you may override these methods to do custom user behavior as follows:

            def _my_train(self, mode: bool = True):
                ...

            def _my_eval(self):
                ...

            model.train = types.MethodType(_my_train, model)
            model.eval = types.MethodType(_my_eval, model)
        """

    def _train(self, mode: bool = True):
        raise NotImplementedError(error_message)

    def _eval(self, mode: bool = True):
        raise NotImplementedError(error_message)

    module.train = types.MethodType(_train, module)  # type: ignore[method-assign]
    module.eval = types.MethodType(_eval, module)  # type: ignore[method-assign]

    # Remove Proxy because they cannot be deepcopied or pickled.
    if hasattr(module, "_buffers"):
        torch._export.utils.remove_proxy_from_state_dict(
            module._buffers, in_place=True
        )
    return module


# We only want to print this once to avoid flooding logs in workflows where aot_compile_warning
# is called multiple times.
@lru_cache
def aot_compile_warning():
    from torch._inductor import config

    log.warning("+============================+")
    log.warning("|     !!!   WARNING   !!!    |")
    log.warning("+============================+")
    log.warning(
        "torch._export.aot_compile()/torch._export.aot_load() is being deprecated, please switch to "
        "directly calling torch._inductor.aoti_compile_and_package(torch.export.export())/"
        "torch._inductor.aoti_load_package() instead.")


def aot_compile(
    f: Callable,
    args: Tuple[Any],
    kwargs: Optional[Dict[str, Any]] = None,
    *,
    dynamic_shapes: Optional[Dict[str, Any]] = None,
    options: Optional[Dict[str, Any]] = None,
    remove_runtime_assertions: bool = False,
    disable_constraint_solver: bool = False,
    same_signature: bool = True,
) -> Union[List[str], str]:
    """
    Note: this function is not stable yet

    Traces either an nn.Module's forward function or just a callable with PyTorch
    operations inside, generates executable cpp code from the program, and returns
    the path to the generated shared library

    Args:
        f: the `nn.Module` or callable to trace.

        args: example positional inputs.

        kwargs: optional example keyword inputs.

        dynamic_shapes: Should either be:
            1) a dict from argument names of ``f`` to their dynamic shape specifications,
            2) a tuple that specifies dynamic shape specifications for each input in original order.
            If you are specifying dynamism on keyword args, you will need to pass them in the order that
            is defined in the original function signature.

            The dynamic shape of a tensor argument can be specified as either
            (1) a dict from dynamic dimension indices to :func:`Dim` types, where it is
            not required to include static dimension indices in this dict, but when they are,
            they should be mapped to None; or (2) a tuple / list of :func:`Dim` types or None,
            where the :func:`Dim` types correspond to dynamic dimensions, and static dimensions
            are denoted by None. Arguments that are dicts or tuples / lists of tensors are
            recursively specified by using mappings or sequences of contained specifications.

        options: A dictionary of options to control inductor

        disable_constraint_solver: Whether the dim constraint solver must be disabled.

    Returns:
        Path to the generated shared library
    """
    from torch.export._trace import _export_to_torch_ir
    from torch._inductor.decomposition import select_decomp_table
    from torch._inductor import config

    aot_compile_warning()

    if config.is_predispatch:
        gm = torch.export._trace._export(f, args, kwargs, dynamic_shapes, pre_dispatch=True).module()
    else:
        # We want to export to Torch IR here to utilize the pre_grad passes in
        # inductor, which run on Torch IR.
        gm = _export_to_torch_ir(
            f,
            args,
            kwargs,
            dynamic_shapes,
            disable_constraint_solver=disable_constraint_solver,
            same_signature=same_signature,
            # Disabling this flag, because instead we can rely on the mapping
            # dynamo_flat_name_to_original_fqn which is coming from Dynamo.
            restore_fqn=False,
        )

    with torch.no_grad():
        so_path = torch._inductor.aot_compile(gm, args, kwargs, options=options)  # type: ignore[arg-type]

    return so_path

def aot_load(so_path: str, device: str) -> Callable:
    """
    Loads a shared library generated by aot_compile and returns a callable

    Args:
        so_path: Path to the shared library

    Returns:
        A callable
    """
    aot_compile_warning()

    if device == "cpu":
        runner = torch._C._aoti.AOTIModelContainerRunnerCpu(so_path, 1)  # type: ignore[call-arg]
    elif device == "cuda" or device.startswith("cuda:"):
        runner = torch._C._aoti.AOTIModelContainerRunnerCuda(so_path, 1, device)  # type: ignore[assignment, call-arg]
    elif device == "xpu" or device.startswith("xpu:"):
        runner = torch._C._aoti.AOTIModelContainerRunnerXpu(so_path, 1, device)  # type: ignore[assignment, call-arg]

    else:
        raise RuntimeError("Unsupported device " + device)

    def optimized(*args, **kwargs):
        call_spec = runner.get_call_spec()  # type: ignore[attr-defined]
        in_spec = pytree.treespec_loads(call_spec[0])
        out_spec = pytree.treespec_loads(call_spec[1])
        flat_inputs = pytree.tree_flatten((args, reorder_kwargs(kwargs, in_spec)))[0]
        flat_inputs = [x for x in flat_inputs if isinstance(x, torch.Tensor)]
        flat_outputs = runner.run(flat_inputs)  # type: ignore[attr-defined]
        return pytree.tree_unflatten(flat_outputs, out_spec)

    return optimized