1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
|
# mypy: allow-untyped-defs
import builtins
import logging
import operator
import typing
import warnings
from contextlib import contextmanager
from typing import Any, Dict, List, Optional, Sequence, Set, Tuple, Union
import torch
import torch.export._trace
from torch import _C
from torch._export.passes.replace_quantized_ops_with_standard_ops_pass import (
replace_quantized_ops_with_standard_ops,
)
from torch.export.exported_program import ExportedProgram
from torch.export.graph_signature import (
ConstantArgument,
CustomObjArgument,
InputKind,
InputSpec,
OutputKind,
OutputSpec,
TensorArgument,
)
from torch.fx import subgraph_rewriter
log = logging.getLogger(__name__)
def _get_param_count_list(method_graph, args_params):
param_count_list = []
for input_, arg_params_ in zip(method_graph.inputs(), args_params):
if "PackedParams" in str(input_.type()):
in_vars, _ = torch.jit._flatten(arg_params_)
param_count_list.append(len(in_vars))
else:
param_count_list.append(arg_params_ is not None)
return param_count_list
def _trace_and_get_graph_from_model(model, args):
# A basic sanity check: make sure the state_dict keys are the same
# before and after running the model. Fail fast!
orig_state_dict_keys = torch.jit._unique_state_dict(model).keys()
# Disable Autocast cache because it replaces kernel's weight and bias
# by (undesired) constants.
# No perf impact for when there are reused weights since https://github.com/pytorch/pytorch/pull/85665
prev_autocast_cache_enabled = torch.is_autocast_cache_enabled()
torch.set_autocast_cache_enabled(False)
trace_graph, torch_out, inputs_states = torch.jit._get_trace_graph(
model,
args,
strict=False,
_force_outplace=False,
_return_inputs_states=True,
)
torch.set_autocast_cache_enabled(prev_autocast_cache_enabled)
if orig_state_dict_keys != torch.jit._unique_state_dict(model).keys():
raise RuntimeError(
"state_dict changed after running the tracer; "
"something weird is happening in your model!"
)
return trace_graph, torch_out
def _create_jit_graph(
model: Union[torch.nn.Module, torch.jit.ScriptFunction], args: Sequence[Any]
) -> Tuple[torch.Graph, List["_C.IValue"], Any, Optional[torch.ScriptModule]]:
if isinstance(model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)):
flattened_args = tuple(torch.jit._flatten(tuple(args))[0])
torch_out = None
if isinstance(model, torch.jit.ScriptModule):
try:
graph = model.forward.graph # type: ignore[attr-defined]
except AttributeError as e:
raise RuntimeError("'forward' method must be a script method") from e
_C._jit_pass_onnx_function_substitution(graph)
freezed_module = _C._freeze_module(
typing.cast(_C.ScriptModule, model._c), preserveParameters=True
)
module, params = _C._jit_onnx_list_model_parameters(freezed_module)
method_graph = module._get_method("forward").graph
args_params = tuple(args) + tuple(params)
param_count_list = _get_param_count_list(method_graph, args_params)
in_vars, _ = torch.jit._flatten(args_params)
graph = _C._propagate_and_assign_input_shapes(
method_graph, tuple(in_vars), param_count_list, False, False
)
return graph, params, torch_out, module
# torch.jit.ScriptFunction
params = []
graph = model.graph
_C._jit_pass_onnx_function_substitution(graph)
param_count_list = _get_param_count_list(graph, args)
graph = _C._propagate_and_assign_input_shapes(
graph, flattened_args, param_count_list, False, False
)
return graph, params, torch_out, None
graph, torch_out = _trace_and_get_graph_from_model(model, args)
_C._jit_pass_onnx_lint(graph)
state_dict = torch.jit._unique_state_dict(model)
params = list(state_dict.values())
graph_inputs = list(graph.inputs())
user_input_num = len(graph_inputs) - len(state_dict)
param_names = list(state_dict.keys())
for i, inp in enumerate(graph_inputs):
if i >= user_input_num:
inp.setDebugName(param_names[i - user_input_num])
_C._jit_pass_onnx_function_substitution(graph)
return graph, params, torch_out, None
def list_add(a, b):
return a + b
def list_append(container, element):
return container + [element]
def execute_subgraph_from_prim_loop(
subgraph, iter_idx, len_loop_local_arguments, *args, **kwargs
):
"""
subgraph: GraphModule from sub-block.
iter_idx: The index of interation.
len_loop_local_arguments: The number of loop local arguments in args.
"""
# Loop local variables. TS graph create those as inputs because their values
# are updated inside the loop.
loop_local_args = args[:len_loop_local_arguments]
# Global variables that are not passed in as inputs to the loop sub-blocks
# but are directly used. Most of time, their values are not updated, but
# the only exception is when there are some operations that perform inplace
# updates.
global_args = args[len_loop_local_arguments:]
return subgraph(*global_args, iter_idx, *loop_local_args, **kwargs)
def inplace_optimize_sym_size_div(gm: torch.fx.GraphModule):
def pattern(im, dim, scale):
sym_size_int = torch.ops.aten.sym_size.int(im, dim)
scalar_tensor = torch.ops.aten.scalar_tensor(sym_size_int)
div_scalar_mode = torch.ops.aten.div.Scalar_mode(
scalar_tensor, scale, rounding_mode="trunc"
)
int_tensor = torch.ops.aten.Int.Tensor(div_scalar_mode)
return int_tensor
def replacement(im, dim, scale):
sym_size_int = torch.ops.aten.sym_size.int(im, dim)
return sym_size_int // scale
replaced_patterns = subgraph_rewriter.replace_pattern(gm, pattern, replacement)
def is_valid_for_codegen(name):
if len(name) == 0:
raise RuntimeError("Empty argument name for codegen")
if name[0].isdigit():
return False
return True
def normalize_name(name: str, prefix: str = "rename") -> str:
name = name.replace(".", "_")
if is_valid_for_codegen(name):
return name
return f"{prefix}_{name}"
def ir_name_to_func_name(name: str) -> str:
"""prim::If -> convert_prim_If"""
name_list = name.split("::")
return "convert_" + "_".join(name_list)
def get_node_as_placeholder_or_get_attr(fx_graph, name, is_top_level_graph):
if is_top_level_graph:
return fx_graph.get_attr(name)
return fx_graph.placeholder(name)
_TORCH_DTYPE_TO_ENUM = {
torch.uint8: 0,
torch.int8: 1,
torch.int16: 2,
torch.int32: 3,
torch.int64: 4,
torch.float16: 5,
torch.float32: 6,
torch.float64: 7,
torch.complex32: 8,
torch.complex64: 9,
torch.complex128: 10,
torch.bool: 11,
torch.qint8: 12,
torch.quint8: 13,
torch.bfloat16: 15,
}
_TORCH_ENUM_TO_DTYPE = {value: key for key, value in _TORCH_DTYPE_TO_ENUM.items()}
def get_dtype_as_int(tensor):
"""
prim::dtype has the signature "Tensor a) -> int", where it gets the dtype of
the tensor and returns the integer corresponding to this dtype based on the
enum in ScalarType.h
"""
dtype = tensor.dtype
if dtype not in _TORCH_DTYPE_TO_ENUM:
raise RuntimeError(f"Unsupported dtype {dtype}")
return _TORCH_DTYPE_TO_ENUM[dtype]
# Those operators will be automatically populated to a instance method
# of TS2FXGraphConverter with name convert_<namespace>_<opname>().
# Please check __init__ for method population implementations.
kind_to_standard_operators = {
"prim::max": builtins.max,
"prim::min": builtins.min,
"prim::TupleIndex": operator.getitem,
"aten::__is__": operator.is_,
"aten::__isnot__": operator.is_not,
"aten::__not__": operator.not_,
"aten::__contains__": operator.contains,
"prim::dtype": get_dtype_as_int,
"aten::len": len,
# Mapping from specialized op to its symbolic counterpart.
# They currently do not have any other overrides.
"aten::numel": torch.ops.aten.sym_numel,
"aten::size": torch.ops.aten.sym_size,
"aten::storage_offset": torch.ops.aten.sym_storage_offset,
"aten::stride": torch.ops.aten.sym_stride,
}
def get_ir_value_parent_name_and_attr_name(node):
irv_parent_name, irv_name = node.input().debugName(), node.output().debugName()
attr_name = node.s("name")
return irv_name, irv_parent_name, attr_name
def construct_fqn(ir, ref_map, name_map):
name_list = []
while ir in ref_map:
name_list.append(name_map[ir])
ir = ref_map[ir]
return ".".join(reversed(name_list))
def get_block_to_lifted_attrs(
graph: torch._C.Graph,
) -> Tuple[Dict[torch._C.Block, Set[str]], Dict[str, str]]:
"""
Perform two passes to get a mapping of blocks to a set of FQNs of its lifted attributes.
When a graph has control flow, the graph will be divided into multiple blocks. We want to convert
each block to a graph which will be passed into torch.cond. A restriction for torch.cond is that model
parameters/buffers are expected to be lifted as inputs to the subgraphs. Before converting the model,
we will run this pass which will:
1. Figure out which params/buffers are used within blocks through tracing the GetAttr calls.
2. Process the graph bottom up to find the lifted attributes of each block by taking the union
of the attributes used in the current block, and the lifted attributes of all its child blocks.
Returns:
A mapping of blocks to a set of FQNs of its lifted attributes, and a
mapping of node names to the FQNs of its lifted attributes.
"""
# A map from a block to its expected to be lifted arguments.
blocks_to_lifted_attrs: Dict[torch._C.Block, Set[str]] = {}
# Reference map stores the input (i.e., src) and output (i.e., dest) IR of a
# GetAttr node. By traversing this reference map, we can figure out the
# full IR aliasing pass and figure out the FQN of an attribute.
# E.g., %2 = GetAttr(linear)[%1] --> node_to_parent_map["%2"] = "%1"
node_to_parent_map: Dict[str, str] = {}
# Used for reconstructing the FQN of an attribute based on the reference map.
# In nutshell, for each GetAttr call, GetAttr(input IR, attribute name) -> output IR
# This name map stores which attribute name is called for a src IR --> dest IR action.
# E.g., %2 = GetAttr(linear)[%1] --> node_to_attr_name["%2"] = "linear"
node_to_attr_name: Dict[str, str] = {}
def _dfs_get_attr_dependency(entry):
"""
First DFS path to construct reference map and name map.
"""
for node in entry.nodes():
if node.kind() == "prim::GetAttr":
(
irv_name,
irv_parent_name,
attr_name,
) = get_ir_value_parent_name_and_attr_name(node)
node_to_parent_map[irv_name] = irv_parent_name
node_to_attr_name[irv_name] = attr_name
for block in node.blocks():
_dfs_get_attr_dependency(block)
def _map_blocks_to_lifted_attrs(entry):
"""
Walk the graph in a bottom-up fashion to build the expected to be
lifted arguments for each block.
"""
arguments: Set[str] = set()
for node in entry.nodes():
for block in node.blocks():
# Recursively build.
arguments = arguments.union(_map_blocks_to_lifted_attrs(block))
if node.kind() == "prim::GetAttr":
irv_name = node.output().debugName()
# Skip for intermediate GetAttr, which will anyway not result a FQN.
# E.g., node_to_parent_name: {"%3": "%2", "%2": "%1"}
# node_to_attr_name: {"%3": "weight", "%2": "linear", "%1": "self"}
# There is only one FQN %3-->%2-->%1: self.linear.weight
# %2-->%1 is not a FQN: self.linear
if irv_name not in set(node_to_parent_map.values()):
arguments.add(
construct_fqn(irv_name, node_to_parent_map, node_to_attr_name)
)
if not isinstance(entry, torch._C.Graph): # Skip the top level.
blocks_to_lifted_attrs[entry] = arguments
return arguments
_dfs_get_attr_dependency(graph)
_map_blocks_to_lifted_attrs(graph)
return blocks_to_lifted_attrs, node_to_attr_name
def get_attribute_fqn_from_ts_node(
name_to_attribute_fqn: Dict[str, str], node: torch._C.Node
) -> str:
def get_attr(name: str):
if name in name_to_attribute_fqn:
return name_to_attribute_fqn[name]
else:
raise ValueError(f"Attribute {name} not found")
if node.kind() == "prim::SetAttr":
input_name = next(node.inputs()).debugName()
elif node.kind() == "prim::GetAttr":
input_name = node.input().debugName()
else:
raise RuntimeError(
f"Unexpected node kind when getting attribute fqn. node: {node} "
)
attr_name = node.s("name")
root_attr_name = get_attr(input_name)
attr_fqn = f"{root_attr_name}.{attr_name}" if root_attr_name else attr_name
return attr_fqn
def get_op_overload(node: torch._C.Node):
schema_str = node.schema()
assert schema_str != "(no schema)", f"got empty schema for {node}"
schema: torch._C.FunctionSchema = torch._C.parse_schema(schema_str)
ns, op_name = str(schema.name).split("::")
override = schema.overload_name
try:
op_overload_mod = getattr(torch.ops, ns)
op_overload_packet = getattr(op_overload_mod, op_name)
if override:
op_overload = getattr(op_overload_packet, override)
else:
op_overload = op_overload_packet.default
except Exception as e:
raise RuntimeError(
f"Unable to find operator {node.kind()} with schema {node.schema()}"
) from e
return op_overload
class TS2FXGraphConverter:
def __init__(
self,
ts_graph: Union[torch._C.Graph, torch._C.Block],
name_to_param: Dict[str, torch.Tensor],
name_to_buffer: Dict[str, torch.Tensor],
blocks_to_lifted_attrs: Dict[torch._C.Block, Set[str]],
name_to_non_tensor_attribute: Dict[str, Any],
name_to_constant: Dict[str, Any],
name_to_attribute_fqn: Dict[str, str],
):
self.ts_graph = ts_graph
# Mapping of parameter FQN to actual parameter value
self.name_to_param = name_to_param
# Mapping of buffer FQN to actual buffer value
self.name_to_buffer = name_to_buffer
self.fx_graph: torch.fx.Graph = torch.fx.Graph()
self.input_specs: List[InputSpec] = []
self.output_specs: List[OutputSpec] = []
# Mapping of TS node name to converted FX node
self.name_to_node: Dict[
str, Union[torch.fx.Node, List[torch.fx.Node], Dict[Any, torch.fx.Node]]
] = {}
# Mapping of TS node name to constant value (int, str, TorchBind obj,
# tensor constants ...)
self.name_to_constant: Dict[str, Any] = name_to_constant
# Mapping from torchscript node output name to attribute fully qualified name
self.name_to_attribute_fqn: Dict[str, str] = name_to_attribute_fqn
# Mapping from fully qualified name to real values or a fx graph node
# During convert, this represents the current value of a non-tensor attribute
# One use case is:
# def forward(self, x):
# c1 = self.count
# self.count += 1
# c2 = self.count
# return x + c1 + c2
self.name_to_non_tensor_attribute_node: Dict[str, Any] = {}
# Mapping from fully qualified name to initial real values inputs
# We separate it from self.name_to_non_tensor_attribute_node since
# we need initial real value input when we construct fx.GraphModule
self.name_to_non_tensor_attribute: Dict[str, Any] = name_to_non_tensor_attribute
self.subgraphs: Dict[str, torch.fx.GraphModule] = {}
# Mapping of block to list of attributes that need to be lifted for each
# block
self.blocks_to_lifted_attrs = blocks_to_lifted_attrs
# Populate methods for the standard operators.
for k in kind_to_standard_operators.keys():
handler_func_name = ir_name_to_func_name(k)
# Create an indirect function call:
# convert_<namespace>_<opname> --> lambda node: _convert_standard_operator(node)
setattr(
self,
handler_func_name,
lambda node: self._convert_standard_operators(node),
)
# This stores a list of return results that do not appear in the original TS
# graph's outputs. The reason we maintain this is because some operations in the sub-block
# might have inplace updates to the variable defined in the parent fx graph. After
# the execution of that sub-block, the variable defined in the parent fx graph also
# needs to be updated.
self.name_update_from_subblock_to_parent: Set[str] = set()
def _is_get_attr_node(self, fqn):
return (
fqn in self.name_to_buffer
or fqn in self.name_to_param
or (
fqn in self.name_to_constant
and isinstance(self.name_to_constant[fqn], torch.ScriptObject)
)
)
def _convert_block_to_subgraph(self, node: torch._C.Node, arguments: List[str]):
subgraph_nodes, subgraph_converters = [], []
for block in node.blocks():
subgraph_converter = TS2FXGraphConverter(
block,
self.name_to_param,
self.name_to_buffer,
self.blocks_to_lifted_attrs,
{},
self.name_to_constant,
self.name_to_attribute_fqn,
)
for block_arg in arguments:
normalized_block_arg_name = normalize_name(block_arg)
placeholder_node = subgraph_converter.fx_graph.placeholder(
normalized_block_arg_name
)
subgraph_converter.name_to_node[block_arg] = placeholder_node
subgraph = subgraph_converter.convert()
subgraph_name = self.add_subgraph(subgraph)
subgraph_nodes.append(self.fx_graph.get_attr(subgraph_name))
subgraph_converters.append(subgraph_converter)
return subgraph_nodes, subgraph_converters
def _identify_inputs_as_arguments(self, entry):
"""
Identify inputs from the innermost sub-block. This is needed
for nested sub-blocks when the input is hidden in the nested sub-block.
E.g., example IR of input is hidden in the nested sub-block.
Graph[x.1]
%1 = ...
Block[]
Block[x.1]
%2 = x.1 ...
"""
arguments: Set[str] = set()
for block in entry.blocks():
for block_node in block.nodes():
for block_node_in in block_node.inputs():
if (
block_node_in.debugName() in self.name_to_node
and block_node_in.debugName() not in self.name_to_attribute_fqn
):
arguments.add(block_node_in.debugName())
arguments = arguments.union(
self._identify_inputs_as_arguments(block_node)
)
return arguments
def is_top_level_graph(self):
return isinstance(self.ts_graph, torch._C.Graph)
def add_subgraph(self, subgraph) -> str:
name = f"subgraph_{len(self.subgraphs)}"
self.subgraphs[name] = subgraph
return name
def get_args_kwargs(self, node: torch._C.Node, schema):
args = []
kwargs = {}
for input, schema_arg in zip(node.inputs(), schema.arguments):
if schema_arg.kwarg_only:
kwargs[schema_arg.name] = self.get_fx_value_by_ir_value(input)
else:
args.append(self.get_fx_value_by_ir_value(input))
return tuple(args), kwargs
def get_fx_value_by_ir_value(self, value: torch._C.Value):
value_name = value.debugName()
if value_name in self.name_to_node:
input_node = self.name_to_node[value_name]
return input_node
elif value_name in self.name_to_constant:
if isinstance(self.name_to_constant[value_name], torch.ScriptObject):
return self.fx_graph.get_attr(value_name)
return self.name_to_constant[value_name]
elif value_name in self.name_to_attribute_fqn:
return self.get_fx_value_by_fqn(self.name_to_attribute_fqn[value_name])
else:
raise ValueError(f"Input {value_name} not found")
def get_fx_value_by_fqn(self, name):
if name in self.name_to_node:
fx_node = self.name_to_node[name]
elif name in self.name_to_constant:
fx_node = self.name_to_constant[name]
elif name in self.name_to_non_tensor_attribute_node:
fx_node = self.name_to_non_tensor_attribute_node[name]
elif name in self.name_to_non_tensor_attribute:
fx_node = self.name_to_non_tensor_attribute[name]
else:
raise ValueError(f"Attribute {name} not found")
return fx_node
def convert(self) -> torch.fx.GraphModule:
self.convert_graph_inputs()
for node in self.ts_graph.nodes():
self.convert_node(node)
self.convert_graph_outputs()
# Pass parameter and buffer to the root for lookup.
gm = torch.fx.GraphModule(
{
**self.subgraphs,
**self.name_to_param,
**self.name_to_buffer,
**self.name_to_non_tensor_attribute,
**self.name_to_constant,
},
self.fx_graph,
)
inplace_optimize_sym_size_div(gm)
gm.graph.lint()
return gm
def convert_graph_inputs(self):
for graph_input in self.ts_graph.inputs():
name = graph_input.debugName()
if name in self.name_to_param:
normalized_name = normalize_name(name)
self.input_specs.append(
InputSpec(
InputKind.PARAMETER,
arg=TensorArgument(name=normalized_name),
target=name,
)
)
fx_node = get_node_as_placeholder_or_get_attr(
self.fx_graph, name, self.is_top_level_graph()
)
elif name in self.name_to_buffer:
normalized_name = normalize_name(name)
self.input_specs.append(
InputSpec(
InputKind.BUFFER,
arg=TensorArgument(name=normalized_name),
target=name,
persistent=True,
)
)
fx_node = get_node_as_placeholder_or_get_attr(
self.fx_graph, name, self.is_top_level_graph()
)
elif name in self.name_to_constant:
assert isinstance(
self.name_to_constant[name], torch.ScriptObject
), "Input conversion only handles ScriptObject"
normalized_name = normalize_name(name)
self.input_specs.append(
InputSpec(
InputKind.CUSTOM_OBJ,
arg=CustomObjArgument(
name=normalized_name, class_fqn=normalized_name
),
target=name,
persistent=False,
)
)
fx_node = get_node_as_placeholder_or_get_attr(
self.fx_graph, name, self.is_top_level_graph()
)
elif isinstance(graph_input.type(), torch.ClassType):
# Directly skip inputs that are ScriptObject but not used in the graph.
continue
else:
normalized_name = normalize_name(name, prefix="input")
self.input_specs.append(
InputSpec(
InputKind.USER_INPUT,
arg=TensorArgument(name=normalized_name),
target=name,
)
)
fx_node = self.fx_graph.placeholder(normalized_name)
self.name_to_node[name] = fx_node
def convert_aten_Float(self, node: torch._C.Node):
def to_float_tensor(t):
return t.to(dtype=torch.float).item()
inp_list = [
self.get_fx_value_by_ir_value(inp) for inp in node.inputs()
] # noqa: C416
fx_node = self.fx_graph.call_function(
to_float_tensor,
tuple(inp_list),
)
self.name_to_node[node.output().debugName()] = fx_node
def convert_aten_tensor(self, node: torch._C.Node):
"""aten::tensor creates a constant tensor ad-hoc --> GetAttr"""
args, kwargs = self.get_args_kwargs(node, torch.ops.aten.tensor.default._schema)
for k in kwargs:
if k == "requires_grad":
kwargs[k] = bool(kwargs[k]) # 0 -> False, 1 -> True
to_tensor = (
torch.tensor
if all(isinstance(a, int) for a in args)
else torch._refs.tensor
)
def target(*args, **kwargs):
if "dtype" in kwargs and kwargs["dtype"] is not None:
kwargs["dtype"] = _TORCH_ENUM_TO_DTYPE[kwargs["dtype"]]
return to_tensor(*args, **kwargs)
# def to_dynamic_tensor(*args, **kwargs):
# if "dtype" in kwargs and kwargs["dtype"] is not None:
# kwargs["dtype"] = _TORCH_ENUM_TO_DTYPE[kwargs["dtype"]]
# return torch._refs.tensor(*args, **kwargs)
output_name = node.output().debugName()
fx_node = self.fx_graph.call_function(target, args, kwargs)
self.name_to_node[output_name] = fx_node
def convert_aten_append(self, node: torch._C.Node):
# special handle python list append: "aten::append.t(t[](a!) self, t(c -> *) el) -> t[](a!)"
# inplace append to the list!! This is kinda crazy, as we are inplace mutating the list
# This makes the converter "non-functional", and the result depends on the order of the nodes being converter
# In a sense, the converter now becomes an stateful interpreter
warnings.warn(
"Converting aten::append.t, which is a inplace mutation of the list. "
"This makes the converter non-functional: the result depends on the order of the append nodes being converter!"
)
args = tuple(self.get_fx_value_by_ir_value(inp) for inp in node.inputs())
fx_node = self.fx_graph.call_function(list_append, args)
self.name_to_node[node.output().debugName()] = fx_node
# inplace mutate arg[0], which is the python list
self.name_to_node[node.inputsAt(0).debugName()] = fx_node
# Variables that need to be updated to parent module.
if not self.is_top_level_graph() and args[0].op == "placeholder":
self.name_update_from_subblock_to_parent.add(node.inputsAt(0).debugName())
def convert_prim_Constant(self, node: torch._C.Node):
name = node.output().debugName()
value: Any = None
if node.hasAttribute("value"):
constant_kind = node.kindOf("value")
if constant_kind == "i":
value = node.i("value")
elif constant_kind == "f":
value = node.f("value")
elif constant_kind == "s":
value = node.s("value")
elif constant_kind == "t":
alias_name = (
f"lifted_tensor_{name}" # Follow naming convention from EP tracing.
)
fx_node = self.fx_graph.get_attr(alias_name)
self.name_to_node[name] = fx_node
name, value = alias_name, node.t("value")
elif constant_kind == "ival":
value = node.ival("value")
else:
raise ValueError(f"Unsupported constant type: {node.kindOf('value')}")
else:
value = None
self.name_to_constant[name] = value
def convert_prim_CallMethod(self, node: torch._C.Node):
inp_list = [
self.get_fx_value_by_ir_value(inp) for inp in node.inputs()
] # noqa: C416
fx_node = self.fx_graph.call_method(
node.s("name"),
tuple(inp_list),
)
self.name_to_node[node.output().debugName()] = fx_node
def convert_prim_device(self, node: torch._C.Node):
input_type = node.input().type()
if input_type.isSubtypeOf(torch._C.TensorType.get()):
device = input_type.device() # type: ignore[attr-defined]
output_name = node.output().debugName()
self.name_to_constant[output_name] = device
else:
raise ValueError(f"Unsupported JitType ({input_type}) when get device")
def convert_prim_GetAttr(self, node: torch._C.Node):
# Build fully qulified name
attr_fqn = get_attribute_fqn_from_ts_node(self.name_to_attribute_fqn, node)
output_name = node.output().debugName()
self.name_to_attribute_fqn[output_name] = attr_fqn
if self.is_top_level_graph():
if self._is_get_attr_node(attr_fqn):
# We insert a get_attr node due to two reasons.
# First, ts graph does not lift tensor constants as input nodes. So
# tensor constants may be ignored by in convert_graph_inputs().
# Second, attr_fqn may have been written to via SetAttr. Two
# GetAttr may give different values.
self.name_to_node[output_name] = self.fx_graph.get_attr(attr_fqn)
else:
if attr_fqn not in self.name_to_non_tensor_attribute_node:
self.name_to_non_tensor_attribute_node[
attr_fqn
] = self.name_to_non_tensor_attribute[attr_fqn]
self.name_to_node[output_name] = self.name_to_non_tensor_attribute_node[
attr_fqn
]
else:
# Special support for if blocks which do not allow SetAttr TorchScript
# node and get_attr FX Graph Node.
if self._is_get_attr_node(attr_fqn):
self.name_to_node[output_name] = self.name_to_node[attr_fqn]
def convert_prim_SetAttr(self, node: torch._C.Node):
attr_fqn = get_attribute_fqn_from_ts_node(self.name_to_attribute_fqn, node)
attr_value = tuple(node.inputs())[1]
ts_graph_tensor_input = self.get_fx_value_by_ir_value(attr_value)
if self._is_get_attr_node(attr_fqn):
fx_attr_node = self.fx_graph.get_attr(attr_fqn)
self.fx_graph.call_function(
torch.Tensor.copy_, (fx_attr_node, ts_graph_tensor_input)
)
else:
self.name_to_non_tensor_attribute_node[attr_fqn] = ts_graph_tensor_input
def convert_call_function_op(self, node: torch._C.Node):
target = get_op_overload(node)
args, kwargs = self.get_args_kwargs(node, target._schema)
fx_node = self.fx_graph.call_function(target, args, kwargs)
# TODO: covnert sourceRange() into stack_trace
# fx_node.meta["stack_trace"] = node.sourceRange()
if node.outputsSize() == 1:
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
else:
for i, outp in enumerate(node.outputs()):
output_name = outp.debugName()
next_fx_node = self.fx_graph.call_function(
operator.getitem, (fx_node, i)
)
self.name_to_node[output_name] = next_fx_node
def convert_prim_TupleConstruct(self, node: torch._C.Node):
self._convert_prim_iterator(node)
def convert_prim_ListConstruct(self, node: torch._C.Node):
self._convert_prim_iterator(node)
def _convert_prim_iterator(self, node: torch._C.Node):
output_list = [self.get_fx_value_by_ir_value(inp) for inp in node.inputs()]
output_name = node.output().debugName()
self.name_to_node[output_name] = output_list
def convert_prim_DictConstruct(self, node: torch._C.Node):
output_dict = {}
k, v = None, None
for i, inp in enumerate(node.inputs()):
# We assume key value are stored in pair in the DictConstruct.
# The first element is the key and the following is the value.
if i % 2 == 0:
k = self.get_fx_value_by_ir_value(inp)
else:
v = self.get_fx_value_by_ir_value(inp)
assert (
k is not None and v is not None
), "DictConstruct has an empty key value pair."
output_dict[k] = v
k, v = None, None
assert (
k is None and v is None
), "DictConstruct has an odd number of elements (violating our assumption)."
output_name = node.output().debugName()
self.name_to_node[output_name] = output_dict
def convert_prim_ListUnpack(self, node: torch._C.Node):
self._convert_prim_unpack_iterator(node)
def convert_prim_TupleUnpack(self, node: torch._C.Node):
self._convert_prim_unpack_iterator(node)
def _convert_prim_unpack_iterator(self, node: torch._C.Node):
# Single input and multiple outputs for unpacking.
for i, outp in enumerate(node.outputs()):
outp_name = outp.debugName()
inp = self.get_fx_value_by_ir_value(node.input())
fx_node = self.fx_graph.call_function(operator.getitem, (inp, i))
self.name_to_node[outp_name] = fx_node
def convert_aten_Int(self, node: torch._C.Node):
# converts aten::Int as aten._to_copy + aten::_local_scalar_dense
target = torch.ops.aten._to_copy.default
args = tuple(self.get_fx_value_by_ir_value(input) for input in node.inputs())
to_copy_node = self.fx_graph.call_function(target, args, {"dtype": torch.int32})
fx_node = self.fx_graph.call_function(
torch.ops.aten._local_scalar_dense.default, (to_copy_node,)
)
# TODO: covnert sourceRange() into stack_trace
# fx_node.meta["stack_trace"] = node.sourceRange()
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_NumToTensor(self, node: torch._C.Node):
# Converts prim::NumToTensor as aten.scalar_tensor.
# prim::NumToTensor IRs are currently triggered by:
# .size() https://github.com/pytorch/pytorch/blob/main/torch/csrc/jit/frontend/tracer.cpp#L950
# .numel() https://github.com/pytorch/pytorch/blob/main/torch/csrc/jit/frontend/tracer.cpp#L971
# For both of those APIs, torch.jit.trace implicitly sets the output tensor type
# to be LongTensor.
target = torch.ops.aten.scalar_tensor
args = tuple(self.get_fx_value_by_ir_value(input) for input in node.inputs())
fx_node = self.fx_graph.call_function(target, args, {"dtype": torch.long})
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_CreateObject(self, node: torch._C.Node):
output_name = node.output().debugName()
self.name_to_attribute_fqn[output_name] = ""
def convert_aten__convolution(self, node: torch._C.Node):
# converts aten::_convolution as aten.convolution, since aten::_convolution
# doesn't have a meta function
target = torch.ops.aten.convolution.default
args, kwargs = self.get_args_kwargs(node, target._schema)
fx_node = self.fx_graph.call_function(target, args, kwargs)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_aten_div(self, node: torch._C.Node):
target = get_op_overload(node)
schema = target._schema
args, kwargs = self.get_args_kwargs(node, schema)
# converts aten::div.Tensor_mode(x, tensor_constant)
# as aten.div.Scalar_mode(x, tensor_constant.item())
if schema.overload_name == "Tensor_mode":
arg1_name = args[1].name
if arg1_name in self.name_to_constant and isinstance(
self.name_to_constant[arg1_name], torch.Tensor
):
tensor_constant = self.name_to_constant[arg1_name]
if tensor_constant.numel() == 1:
updated_args = list(args)
updated_args[1] = self.name_to_constant[arg1_name].item()
fx_node = self.fx_graph.call_function(
torch.ops.aten.div.Scalar_mode,
tuple(updated_args),
kwargs,
)
# TODO: covnert sourceRange() into stack_trace
# fx_node.meta["stack_trace"] = node.sourceRange()
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
return
self.convert_call_function_op(node)
def convert_aten___getitem__(self, node: torch._C.Node):
input_container, index = tuple(
self.get_fx_value_by_ir_value(input) for input in node.inputs()
)
fx_node = self.fx_graph.call_function(
operator.getitem, (input_container, index)
)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_aten_to(self, node: torch._C.Node):
target = get_op_overload(node)
args, kwargs = self.get_args_kwargs(node, target._schema)
# special handle aten.to.dtype and aten.to.prim_dtype followed by inplace_mutation_op
# coz aten.to + inplace_mutation_op pattern would trigger
# "cannot mutate tensors with frozen storage" functionalization error.
# To work around the issue, we override the copy to be True, so that the output
# is for sure not an alias of input
if target == torch.ops.aten.to.dtype or target == torch.ops.aten.to.prim_dtype:
user_nodes = [use.user for use in node.output().uses()]
user_targets = [
get_op_overload(user_node)
for user_node in user_nodes
if user_node.schema() != "(no schema)"
]
has_mutable_target = any(
target._schema.is_mutable for target in user_targets
)
if has_mutable_target:
assert len(args) >= 4
new_args = list(args)
new_args[3] = True # copy, override to True
fx_node = self.fx_graph.call_function(
torch.ops.aten.to.dtype, tuple(new_args)
)
# temp hack to work around the issue https://github.com/pytorch/pytorch/issues/131679
# When this issue is fixed, the clone node would be no longer needed
clone_node = self.fx_graph.call_function(
torch.ops.aten.clone.default, (fx_node,)
)
output_name = node.output().debugName()
self.name_to_node[output_name] = clone_node
return
self.convert_call_function_op(node)
def convert_aten_add(self, node: torch._C.Node):
if node.schema() == "(no schema)":
if isinstance(node.inputsAt(0).type(), torch.ListType) and isinstance(
node.inputsAt(1).type(), torch.ListType
):
target = torch.ops.aten.add.t
else:
raise RuntimeError(f"unable to determind the target for {node}")
else:
target = get_op_overload(node)
if target == torch.ops.aten.add.t:
# special handle python list/tuple add: "aten::add.t(t[] a, t[] b) -> t[]" for
# RuntimeError: aten::add() Expected a value of type 'List[t]' for argument 'a' but instead found type 'immutable_list'.
args, kwargs = self.get_args_kwargs(node, target._schema)
output_name = node.output().debugName()
self.name_to_node[output_name] = self.fx_graph.call_function(list_add, args)
else:
self.convert_call_function_op(node)
def _check_prim_loop_support(self, node):
inputs = list(node.inputs())
# TODO: (1/N) stage.
if inputs[0].debugName() not in self.name_to_constant:
raise RuntimeError(
"prim::Loop currently cannot run with dynamic value of number of iterations."
)
# Make sure the condition is not updated in the subblock.
subblock = next(node.blocks())
condition_output_name = next(subblock.outputs()).debugName()
for node in subblock.nodes():
if (
node.outputsSize() == 1
and node.output().debugName() == condition_output_name
):
raise RuntimeError(
"prim::Loop currently cannot run with dynamic value of condition."
)
if node.outputsSize() >= 2:
for outp in node.outputs():
if outp.debugName() == condition_output_name:
raise RuntimeError(
"prim::Loop currently cannot run with dynamic value of condition."
)
def convert_prim_Loop(self, node: torch._C.Node):
inputs = list(node.inputs())
self._check_prim_loop_support(node)
num_iterations = self.get_fx_value_by_ir_value(inputs[0])
# Find inputs.
loop_local_arguments = [inp.debugName() for inp in inputs[2:]]
global_arguments = self._identify_inputs_as_arguments(node)
# Lift parameters as inputs.
for block in node.blocks():
global_arguments = global_arguments.union(
self.blocks_to_lifted_attrs[block]
)
global_arguments = list(global_arguments)
subgraph_nodes, subgraph_converters = self._convert_block_to_subgraph(
node, global_arguments
)
assert len(subgraph_nodes) == 1
subgraph_converter = subgraph_converters[0]
if not self.is_top_level_graph():
self.name_update_from_subblock_to_parent = (
self.name_update_from_subblock_to_parent.union(
subgraph_converter.name_update_from_subblock_to_parent
)
)
fx_block_args = [
self.get_fx_value_by_fqn(name)
for name in loop_local_arguments + global_arguments
]
for iter_idx in range(num_iterations):
loop_node = self.fx_graph.call_function(
execute_subgraph_from_prim_loop,
# Check execute_node function for the expected arguments order.
(
subgraph_nodes[0],
iter_idx,
len(loop_local_arguments),
*fx_block_args,
),
{},
)
# Update the value of loop local variables.
if node.outputsSize() >= 1:
for i, outp in enumerate(node.outputs()):
output_name = outp.debugName()
self.name_to_node[output_name] = self.fx_graph.call_function(
operator.getitem,
(
loop_node,
i + 1,
), # + 1 because the 0th element is the condition.
)
fx_block_args[i] = self.name_to_node[output_name]
# Update the value of global variables, whose values are modified inplace.
for i, name in enumerate(
subgraph_converter.name_update_from_subblock_to_parent
):
self.name_to_node[name] = self.fx_graph.call_function(
operator.getitem,
(
loop_node,
i + node.outputsSize() + 1,
), # + 1 because the 0th element is the condition.
)
global_argument_index = global_arguments.index(name)
fx_block_args[
i + node.outputsSize() + global_argument_index
] = self.name_to_node[name]
def _check_set_attr_in_if_block(self, if_node: torch._C.Node):
for block in if_node.blocks():
for node in block.nodes():
if node.kind() == "prim::SetAttr":
raise RuntimeError(
"During converting prim::If to torch.cond, found prim::SetAttr op"
" which is not supported yet. Please file an issue if you come "
"across this error."
)
def convert_prim_If(self, node: torch._C.Node):
self._check_set_attr_in_if_block(node)
inputs = list(node.inputs())
assert len(inputs) == 1
predicate = self.get_fx_value_by_ir_value(inputs[0])
# Find inputs.
arguments = self._identify_inputs_as_arguments(node)
# Lift parameters as inputs.
for block in node.blocks():
arguments = arguments.union(self.blocks_to_lifted_attrs[block])
arguments = list(arguments)
subgraph_nodes, _ = self._convert_block_to_subgraph(node, arguments)
assert len(subgraph_nodes) == 2
fx_block_args = [self.get_fx_value_by_fqn(name) for name in arguments]
args = (
predicate,
subgraph_nodes[0],
subgraph_nodes[1],
tuple(fx_block_args),
)
cond_node = self.fx_graph.call_function(torch.cond, args, {})
# prim::If can also have zero output.
if node.outputsSize() == 1:
output_name = node.output().debugName()
self.name_to_node[output_name] = cond_node
elif node.outputsSize() > 1:
for i, output in enumerate(node.outputs()):
output_name = output.debugName()
getitem = self.fx_graph.call_function(operator.getitem, (cond_node, i))
self.name_to_node[output_name] = getitem
def convert_aten_Bool(self, node: torch._C.Node):
self._convert_as_noop(node)
def convert_prim_Enter(self, node: torch._C.Node):
# export generally treats prim::Enter as noop
# The only context manager export supports is aten::enable_grad.
# Unfortunately, TorchScript does not support aten::enable_grad yet.
# TODO: support aten::enable_grad in both TorchScript and Converter.
return
def convert_prim_Exit(self, node: torch._C.Node):
# export treats prim::Exit as noop
return
def _convert_as_noop(self, node: torch._C.Node):
# Converts the node as a no-op by mapping its output node as arg[0]
target = get_op_overload(node)
schema = target._schema
args, kwargs = self.get_args_kwargs(node, schema)
output_name = node.output().debugName()
self.name_to_node[output_name] = args[0]
def convert_profiler__record_function_exit(self, node: torch._C.Node):
# _record_function_exit has side effect so we keep it in fx.graph
# currently, _record_function_enter_new and _record_function_exit are
# discarded during `retrace_as_exported_program`.
target = torch.ops.profiler._record_function_exit
args = tuple(self.get_fx_value_by_ir_value(input) for input in node.inputs())
self.fx_graph.call_function(target, args)
def convert_prim_tolist(self, node: torch._C.Node):
# prim::tolist cannot be supported by `_convert_standard_operators`
# since it requires call_method instead of call_function.
target = "tolist"
args = (self.get_fx_value_by_ir_value(next(node.inputs())),)
fx_node = self.fx_graph.call_method(target, args)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_Uninitialized(self, node: torch._C.Node):
# `prim::Uninitialized` is inserted by the compiler when it can prove
# the value will never be used. It can be introduced by exceptions,
# breaks, continues, and returns.
# So we add a dummy constant to the graph.
output_name = node.output().debugName()
self.name_to_constant[output_name] = torch.Tensor()
def _convert_standard_operators(self, node: torch._C.Node):
target = kind_to_standard_operators[node.kind()]
args = tuple(self.get_fx_value_by_ir_value(input) for input in node.inputs())
fx_node = self.fx_graph.call_function(target, args)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_node(self, node: torch._C.Node):
node_kind = node.kind()
# Get handler based on namespace and operator name.
# Provide a default node handler as well in case we don't find
# matching converter for that.
handler_func_name = ir_name_to_func_name(node_kind)
handler_func = getattr(self, handler_func_name, self.convert_call_function_op)
# str calls print function implemented in CPP. To avoid repeating
# the entire logic here, we simply keep first line from node string (getting rid
# of sub-blocks IR prints).
node_str = "".join(str(node).split("\n")[:1])
log.debug("[%s] converts [%s]", handler_func.__name__, node_str)
try:
handler_func(node)
except Exception as e:
raise RuntimeError(f"TS2EPConverter failed for node {node_kind}") from e
def convert_graph_outputs(self):
args = []
outp_name_list = [outp.debugName() for outp in self.ts_graph.outputs()] + list(
self.name_update_from_subblock_to_parent
)
for output_name in outp_name_list:
if output_name in self.name_to_node:
fx_node = self.name_to_node[output_name]
# TODO: Revisit this later after HigherOrderOp design changes.
# Currently, we cannot directly return input as output.
if (
not self.is_top_level_graph()
and isinstance(fx_node, torch.fx.Node)
and fx_node.op == "placeholder"
):
fx_node = self.fx_graph.call_function(torch.clone, (fx_node,))
args.append(fx_node)
self.output_specs.append(
OutputSpec(
OutputKind.USER_OUTPUT,
arg=TensorArgument(name=output_name),
target=output_name,
)
)
elif output_name in self.name_to_constant:
args.append(self.name_to_constant[output_name])
self.output_specs.append(
OutputSpec(
OutputKind.USER_OUTPUT,
arg=ConstantArgument(
name=output_name, value=self.name_to_constant[output_name]
),
target=output_name,
)
)
else:
raise ValueError(f"Output {output_name} not found")
if len(args) == 0:
# Sub-block of prim::If can have zero output.
self.fx_graph.output([])
elif len(args) == 1:
self.fx_graph.output(
args[0]
) # Get rid of an extra list wrapped around final output.
elif len(args) > 1:
self.fx_graph.output(
args
) # For prim::Loop and prim::If with multiple outputs.
else:
# Sub-block of prim::Loop can have multiple outputs.
self.fx_graph.output(args)
class ExplainTS2FXGraphConverter(TS2FXGraphConverter):
"""
Run TS2FXGraphConverter in an explain mode. It collects all failed operators conversions
and provide that information to users. In order to collect all failed conversions, it
also mocks some internal attributes (e.g., name_to_node).
"""
class _DictMock(dict):
def __init__(self, dict_data, mock_value):
super().__init__(dict_data)
self.mock_value = mock_value
def __getitem__(self, key):
# If the original dictionary has the key, return its value.
# Otherwise, return the mock value.
if not super().__contains__(key):
return self.mock_value
return super().__getitem__(key)
def __contains__(self, key):
return True
def __init__(
self,
ts_graph: Union[torch._C.Graph, torch._C.Block],
name_to_param: Dict[str, torch.Tensor],
name_to_buffer: Dict[str, torch.Tensor],
blocks_to_lifted_attrs: Dict[torch._C.Block, Set[str]],
name_to_non_tensor_attribute: Dict[str, Any],
name_to_constant: Dict[str, Any],
name_to_attribute_fqn: Dict[str, str],
):
super().__init__(
ts_graph,
name_to_param,
name_to_buffer,
blocks_to_lifted_attrs,
name_to_non_tensor_attribute,
name_to_constant,
name_to_attribute_fqn,
)
# Data to keep track of unsupported nodes.
self.unsupported_node_list: List[torch._C.Node] = []
# Add mock to needed attributes.
self.name_to_node = ExplainTS2FXGraphConverter._DictMock(
self.name_to_node,
# Dummy node.
torch.fx.Node(
None, # type: ignore[arg-type]
"mock",
"call_function",
lambda: None,
(),
{},
),
)
def explain(self):
self.convert_graph_inputs()
for node in self.ts_graph.nodes():
self.convert_node(node)
self.convert_graph_outputs()
def convert_node(self, node):
try:
super().convert_node(node)
except Exception as e:
self.unsupported_node_list.append(node)
@contextmanager
def disable_logging(log):
disabled = log.disabled
log.disabled = True
try:
yield
finally:
log.disabled = disabled
class TS2EPConverter:
# TorchScript model to ExportedProgram converter
def __init__(
self,
ts_model: Union[torch.jit.ScriptModule, torch.jit.ScriptFunction],
sample_args: Tuple[Any, ...],
sample_kwargs: Optional[Dict[str, Any]] = None,
):
self.ts_model = ts_model
self.ts_graph, self.params, _, _ = _create_jit_graph(ts_model, sample_args)
self.sample_args = sample_args
self.sample_kwargs = sample_kwargs
self.name_to_param: Dict[str, torch.Tensor] = {}
self.name_to_buffer: Dict[str, torch.Tensor] = {}
param_list = (
list(self.ts_model.parameters())
if not isinstance(self.ts_model, torch._C.ScriptFunction)
else []
)
if not isinstance(self.ts_model, torch._C.ScriptFunction):
for k, tensor in self.ts_model.state_dict().items(): # type: ignore[union-attr]
# Check if tensor belongs to any parameter.
if any(
(tensor == param).all()
for param in param_list
if tensor.shape == param.shape
):
self.name_to_param[k] = tensor
else:
self.name_to_buffer[k] = tensor
self.name_to_non_tensor_attributes: Dict[str, Any] = {}
self.name_to_constant: Dict[str, Any] = {}
self.lift_get_attr()
def convert(self) -> ExportedProgram:
log.info(
"""
TS2EPConverter logging starts from here.
INFO: (TORCH_LOGS="export" <cmd>)
* Log TorchScript IR.
DEBUG: (TORCH_LOGS="+export" <cmd>), additionally
* Log conversion IR by IR in a format of [<conversion handler name>] converts [<IR>].
"""
)
log.info("TorchScript graph\n\n%s\n", self.ts_graph)
blocks_to_lifted_attrs, name_to_attribute_fqn = get_block_to_lifted_attrs(
self.ts_graph
)
graph_converter = TS2FXGraphConverter(
self.ts_graph,
self.name_to_param,
self.name_to_buffer,
blocks_to_lifted_attrs,
self.name_to_non_tensor_attributes,
self.name_to_constant,
name_to_attribute_fqn,
)
gm = graph_converter.convert()
# Post-proccessing step to deal with quantized operators.
replace_quantized_ops_with_standard_ops(gm)
log.info("GraphModule: %s", gm.print_readable(print_output=False))
ep = self.retrace_as_exported_program(
gm,
graph_converter.name_to_constant,
)
log.info("%s", ep)
# Post-processing step to ensure ExportedProgram has the same state_dict as
# the original TorchScript model. Throw warnings for additionally populated
# state_dict entries.
if not isinstance(self.ts_model, torch._C.ScriptFunction):
for k, tensor in self.ts_model.state_dict().items(): # type: ignore[union-attr]
if k not in ep.state_dict:
warnings.warn(
f"Manually populate {k} into state_dict ExportedProgram, but it is never used by the ExportedProgram."
)
ep.state_dict[k] = tensor
return ep
@disable_logging(log)
def explain(self, print_output=True):
blocks_to_lifted_attrs, name_to_attribute_fqn = get_block_to_lifted_attrs(
self.ts_graph
)
graph_converter = ExplainTS2FXGraphConverter(
self.ts_graph,
self.name_to_param,
self.name_to_buffer,
blocks_to_lifted_attrs,
self.name_to_non_tensor_attributes,
self.name_to_constant,
name_to_attribute_fqn,
)
graph_converter.explain()
if len(graph_converter.unsupported_node_list) > 0:
explain_str = "Unsupported nodes are found in the following list:"
for i, n in enumerate(graph_converter.unsupported_node_list):
node_str = "".join(str(n).split("\n")[:1])
explain_str += f"\n\n {i}. {n.kind()} [{node_str}]"
else:
explain_str = "Success!"
if print_output:
print(explain_str)
return explain_str
def retrace_as_exported_program(
self,
gm: torch.fx.GraphModule,
name_to_constant: Dict[str, Any],
):
# TODO: adjust input orders to match GraphSignature convention
ep = torch.export._trace._export(
gm,
self.sample_args,
strict=False,
pre_dispatch=True,
)
# Post-processing to make sure the ExportedProgram states are correct.
# Because during conversion, we set tensor constants as GetAttr,
# retracing cannot recognize them as tensor constants but instead
# treat them as buffers. We need to set them again here.
ep._constants.update(
{
k: v
for k, v in name_to_constant.items()
if isinstance(v, (torch.Tensor, torch.ScriptObject))
}
)
for k in name_to_constant:
ep.state_dict.pop(k, None)
for i, spec in enumerate(ep.graph_signature.input_specs):
# Mark as constant tensors for erroneously traced buffers.
if spec.kind == InputKind.BUFFER and spec.target in name_to_constant:
assert isinstance(
name_to_constant[spec.target], torch.Tensor
), f"{type(name_to_constant[spec.target])} has been erroneously marked as buffer"
spec.kind = InputKind.CONSTANT_TENSOR
ep.verifier().check(ep)
return ep
def lift_get_attr(self):
# This function lifts multiple data types.
# 1. Tensor constants attributes (e.g., self.data = torch.tensor([2,3]))
# to buffers. Currently, when there are tensor constants, export
# would error and ask users to register tensor constants as buffers.
# Since it is hard to manually do so for TorchScript models
# (e.g., source code is missing), this function automatically
# lifts tensor constants to be buffers.
# 2. ScriptObbject to constant. It will then be converted to getattr in
# in the fx graph.
#
# This function should happen in TS2EPConverter instead of
# TS2FXGraphConverter since it gets attributes from self.ts_model
# which is not accessable in TS2FXGraphConverter. It is similar to where
# we collect self.name_to_param and self.name_to_buffer.
name_to_attribute_fqn: Dict[str, str] = {}
def get_attr(fqn: str):
name = fqn.split(".")
v = self.ts_model
for n in name:
v = getattr(v, n)
return v
def get_fqn(node: torch._C.Node):
attr_name = node.s("name")
input_name = node.input().debugName()
root_attr_name = name_to_attribute_fqn[input_name]
attr_fqn = f"{root_attr_name}.{attr_name}" if root_attr_name else attr_name
return attr_fqn
def _dfs_get_attr(block):
for node in block.nodes():
if node.kind() == "prim::CreateObject":
output_name = node.output().debugName()
name_to_attribute_fqn[output_name] = ""
if node.kind() == "prim::GetAttr":
attr_fqn = get_fqn(node)
value = get_attr(attr_fqn)
output_name = node.output().debugName()
name_to_attribute_fqn[output_name] = attr_fqn
if isinstance(value, torch.Tensor):
if attr_fqn not in self.name_to_buffer:
# Lift tensor constants to be a buffer
self.name_to_buffer[attr_fqn] = value
elif isinstance(value, torch.ScriptObject):
if attr_fqn not in self.name_to_constant:
self.name_to_constant[attr_fqn] = value
else:
self.name_to_non_tensor_attributes[attr_fqn] = value
for subblock in node.blocks():
_dfs_get_attr(subblock)
_dfs_get_attr(self.ts_graph)
|