File: insert_custom_op_guards.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (39 lines) | stat: -rw-r--r-- 1,450 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import functools
from typing import List

import torch
from torch._export.passes._node_metadata_hook import (
    _node_metadata_hook,
    _set_node_metadata_hook,
)


def insert_custom_op_guards(gm: torch.fx.GraphModule, ops_to_guard: List[str]) -> None:
    """
    This is used by draft_export to insert guards in front of calls to custom
    operators which have a generated fake kernel.
    """
    for node in gm.graph.nodes:
        if node.op == "call_function" and str(node.target) in ops_to_guard:
            with _set_node_metadata_hook(
                gm,
                functools.partial(
                    _node_metadata_hook, stack_trace=node.meta["stack_trace"]
                ),
            ), gm.graph.inserting_before(node):
                for arg in (*node.args, *node.kwargs.values()):
                    if isinstance(arg, torch.fx.Node) and isinstance(
                        arg.meta.get("val"), torch.Tensor
                    ):
                        val = arg.meta["val"]
                        gm.graph.call_function(
                            torch.ops.aten._assert_tensor_metadata.default,
                            args=(arg,),
                            kwargs={
                                "dtype": val.dtype,
                                "device": val.device,
                                "layout": val.layout,
                            },
                        )

    gm.recompile()