File: schema.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (402 lines) | stat: -rw-r--r-- 11,451 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# NOTE: This is a placeholder for iterating on export serialization schema design.
#       Anything is subject to change and no guarantee is provided at this point.

from dataclasses import dataclass, field
from enum import IntEnum
from typing import Annotated, Dict, List, Optional

from torch._export.serde.union import _Union

# NOTE: Please update this value if any modifications are made to the schema
SCHEMA_VERSION = (8, 2)
TREESPEC_VERSION = 1


class ScalarType(IntEnum):
    UNKNOWN = 0
    BYTE = 1
    CHAR = 2
    SHORT = 3
    INT = 4
    LONG = 5
    HALF = 6
    FLOAT = 7
    DOUBLE = 8
    COMPLEXHALF = 9
    COMPLEXFLOAT = 10
    COMPLEXDOUBLE = 11
    BOOL = 12
    BFLOAT16 = 13
    UINT16 = 28


class Layout(IntEnum):
    Unknown = 0
    SparseCoo = 1
    SparseCsr = 2
    SparseCsc = 3
    SparseBsr = 4
    SparseBsc = 5
    _mkldnn = 6
    Strided = 7


class MemoryFormat(IntEnum):
    Unknown = 0
    ContiguousFormat = 1
    ChannelsLast = 2
    ChannelsLast3d = 3
    PreserveFormat = 4


@dataclass
class Device:
    type: Annotated[str, 10]
    index: Annotated[Optional[int], 20] = None


@dataclass(repr=False)
class SymExprHint(_Union):
    as_int: Annotated[int, 10]
    as_bool: Annotated[bool, 20]
    as_float: Annotated[float, 30]


# This is for storing the symbolic expressions behind symints/symfloats/symbools
# For example, we can get something like
# SymExpr(expr_str="s0 + s1", hint=SymExprHint(as_int=4)
# if we also have the hint that s0 and s1 are both 2.
@dataclass
class SymExpr:
    expr_str: Annotated[str, 10]
    hint: Annotated[Optional[SymExprHint], 20] = None


@dataclass(repr=False)
class SymInt(_Union):
    as_expr: Annotated[SymExpr, 10]
    as_int: Annotated[int, 20]

@dataclass(repr=False)
class SymFloat(_Union):
    as_expr: Annotated[SymExpr, 10]
    as_float: Annotated[float, 20]


@dataclass(repr=False)
class SymBool(_Union):
    as_expr: Annotated[SymExpr, 10]
    as_bool: Annotated[bool, 20]


@dataclass
class TensorMeta:
    dtype: Annotated[ScalarType, 10]
    sizes: Annotated[List[SymInt], 20]
    requires_grad: Annotated[bool, 30]
    device: Annotated[Device, 40]
    strides: Annotated[List[SymInt], 50]
    storage_offset: Annotated[SymInt, 60]
    layout: Annotated[Layout, 70]


# In most cases we will use the "as_name" field to store arguments which are
# SymInts.
# The "as_int" field is used in the case where we have a list containing a mix
# of SymInt and ints (ex. [1, s0, ...]). We will serialize this type of list to
# be List[SymIntArgument] and map the SymInts to the "as_name" field, and ints
# to the "as_int" field.
@dataclass(repr=False)
class SymIntArgument(_Union):
    as_name: Annotated[str, 10]
    as_int: Annotated[int, 20]

# In most cases we will use the "as_name" field to store arguments which are
# SymFloats.
# The "as_float" field is used in the case where we have a list containing a mix
# of SymFloat and float (ex. [1.0, s0, ...]). We will serialize this type of list to
# be List[SymFloatArgument] and map the SymFloats to the "as_name" field, and ints
# to the "as_float" field.
@dataclass(repr=False)
class SymFloatArgument(_Union):
    as_name: Annotated[str, 10]
    as_float: Annotated[float, 20]

# In most cases we will use the "as_name" field to store arguments which are
# SymBools.
# The "as_bool" field is used in the case where we have a list containing a mix
# of SymBool and bools (ex. [True, i0, ...]). We will serialize this type of list to
# be List[SymboolArgument] and map the SymBools to the "as_name" field, and bools
# to the "as_bool" field.
@dataclass(repr=False)
class SymBoolArgument(_Union):
    as_name: Annotated[str, 10]
    as_bool: Annotated[bool, 20]


@dataclass
class TensorArgument:
    name: Annotated[str, 10]


@dataclass
class TokenArgument:
    name: Annotated[str, 10]


# This is use for storing the contents of a list which contain optional tensors
# (Tensor?[], ex. [Tensor, None, ...]), where the list will be serialized to the
# type List[OptionalTensorArgument], with tensor values seiralized to the
# "as_tensor" field, and None values serialized to the "as_none" field.
@dataclass(repr=False)
class OptionalTensorArgument(_Union):
    as_tensor: Annotated[TensorArgument, 20]
    as_none: Annotated[bool, 10]


@dataclass
class GraphArgument:
    name: Annotated[str, 10]
    graph: Annotated['Graph', 20]


@dataclass
class CustomObjArgument:
    name: Annotated[str, 10]
    class_fqn: Annotated[str, 20]


# This is actually a union type
@dataclass(repr=False)
class Argument(_Union):
    as_none: Annotated[bool, 10]
    as_tensor: Annotated[TensorArgument, 20]
    as_tensors: Annotated[List[TensorArgument], 30]
    as_int: Annotated[int, 50]
    as_ints: Annotated[List[int], 70]
    as_float: Annotated[float, 80]
    as_floats: Annotated[List[float], 90]
    as_string: Annotated[str, 100]
    as_strings: Annotated[List[str], 101]
    as_sym_int: Annotated[SymIntArgument, 110]
    as_sym_ints: Annotated[List[SymIntArgument], 120]
    as_scalar_type: Annotated[ScalarType, 130]
    as_memory_format: Annotated[MemoryFormat, 140]
    as_layout: Annotated[Layout, 150]
    as_device: Annotated[Device, 160]
    as_bool: Annotated[bool, 170]
    as_bools: Annotated[List[bool], 180]
    as_sym_bool: Annotated[SymBoolArgument, 182]
    as_sym_bools: Annotated[List[SymBoolArgument], 184]
    as_graph: Annotated[GraphArgument, 200]
    as_optional_tensors: Annotated[List[OptionalTensorArgument], 190]
    as_custom_obj: Annotated[CustomObjArgument, 210]
    as_operator: Annotated[str, 220]
    as_sym_float: Annotated[SymFloatArgument, 230]
    as_sym_floats: Annotated[List[SymFloatArgument], 240]

@dataclass
class NamedArgument:
    # Argument name from the operator schema
    name: Annotated[str, 10]
    arg: Annotated[Argument, 20]


@dataclass
class Node:
    target: Annotated[str, 10]
    inputs: Annotated[List[NamedArgument], 20]
    outputs: Annotated[List[Argument], 30]
    metadata: Annotated[Dict[str, str], 40]


@dataclass
class Graph:
    inputs: Annotated[List[Argument], 10]
    outputs: Annotated[List[Argument], 20]
    nodes: Annotated[List[Node], 30]
    tensor_values: Annotated[Dict[str, TensorMeta], 40]
    sym_int_values: Annotated[Dict[str, SymInt], 50]
    sym_bool_values: Annotated[Dict[str, SymBool], 60]
    # This is for deserializing the submodule graphs from higher order ops
    # (ex. cond, map) where single tensor returns will just return a single
    # tensor, rather than following export schema and returning a singleton
    # list.
    is_single_tensor_return: Annotated[bool, 70] = False
    custom_obj_values: Annotated[Dict[str, CustomObjArgument], 80] = field(default_factory=dict)
    sym_float_values: Annotated[Dict[str, SymFloat], 90] = field(default_factory=dict)

@dataclass
class UserInputSpec:
    # Actually, only tensors and SymInts are allowed here
    arg: Annotated[Argument, 10]


@dataclass(repr=False)
class ConstantValue(_Union):
    as_none: Annotated[bool, 10]
    as_int: Annotated[int, 20]
    as_float: Annotated[float, 30]
    as_string: Annotated[str, 40]
    as_bool: Annotated[bool, 50]


@dataclass
class InputToConstantInputSpec:
    name: Annotated[str, 10]
    value: Annotated[ConstantValue, 20]


@dataclass
class InputToParameterSpec:
    arg: Annotated[TensorArgument, 10]
    parameter_name: Annotated[str, 20]


@dataclass
class InputToBufferSpec:
    arg: Annotated[TensorArgument, 10]
    buffer_name: Annotated[str, 20]
    persistent: Annotated[bool, 30]



@dataclass
class InputToTensorConstantSpec:
    arg: Annotated[TensorArgument, 10]
    tensor_constant_name: Annotated[str, 20]


@dataclass
class InputToCustomObjSpec:
    arg: Annotated[CustomObjArgument, 10]
    custom_obj_name: Annotated[str, 20]


@dataclass
class InputTokenSpec:
    arg: Annotated[TokenArgument, 10]


@dataclass(repr=False)
class InputSpec(_Union):
    user_input: Annotated[UserInputSpec, 10]
    parameter: Annotated[InputToParameterSpec, 20]
    buffer: Annotated[InputToBufferSpec, 30]
    tensor_constant: Annotated[InputToTensorConstantSpec, 40]
    custom_obj: Annotated[InputToCustomObjSpec, 50]
    token: Annotated[InputTokenSpec, 70]
    constant_input: Annotated[InputToConstantInputSpec, 60]


@dataclass
class UserOutputSpec:
    arg: Annotated[Argument, 10]


@dataclass
class LossOutputSpec:
    arg: Annotated[TensorArgument, 10]


@dataclass
class BufferMutationSpec:
    arg: Annotated[TensorArgument, 10]
    buffer_name: Annotated[str, 20]


@dataclass
class GradientToParameterSpec:
    arg: Annotated[TensorArgument, 10]
    parameter_name: Annotated[str, 20]


@dataclass
class GradientToUserInputSpec:
    arg: Annotated[TensorArgument, 10]
    user_input_name: Annotated[str, 20]


@dataclass
class UserInputMutationSpec:
    arg: Annotated[TensorArgument, 10]
    user_input_name: Annotated[str, 20]


@dataclass
class OutputTokenSpec:
    arg: Annotated[TokenArgument, 10]


@dataclass(repr=False)
class OutputSpec(_Union):
    user_output: Annotated[UserOutputSpec, 10]
    loss_output: Annotated[LossOutputSpec, 20]
    buffer_mutation: Annotated[BufferMutationSpec, 30]
    gradient_to_parameter: Annotated[GradientToParameterSpec, 40]
    gradient_to_user_input: Annotated[GradientToUserInputSpec, 50]
    user_input_mutation: Annotated[UserInputMutationSpec, 60]
    token: Annotated[OutputTokenSpec, 70]


@dataclass
class GraphSignature:
    input_specs: Annotated[List[InputSpec], 10]
    output_specs: Annotated[List[OutputSpec], 20]


@dataclass
class RangeConstraint:
    min_val: Annotated[Optional[int], 10]
    max_val: Annotated[Optional[int], 20]


@dataclass
class ModuleCallSignature:
    inputs: Annotated[List[Argument], 10]
    outputs: Annotated[List[Argument], 20]

    # These are serialized by calling pytree.treespec_loads
    # And deserialized by calling pytree.treespec_dumps
    in_spec: Annotated[str, 30]
    out_spec: Annotated[str, 40]

    # This field is used to prettify the graph placeholders
    # after we ser/der and retrace
    forward_arg_names: Annotated[Optional[List[str]], 50] = None


@dataclass
class ModuleCallEntry:
    fqn: Annotated[str, 10]
    signature: Annotated[Optional[ModuleCallSignature], 30] = None


@dataclass
class GraphModule:
    graph: Annotated[Graph, 10]
    signature: Annotated[GraphSignature, 50]
    # This is used for unflattening, by tracking the calling structure of all of
    # the modules in order to unflatten the modules back to the eager calling
    # conventions.
    module_call_graph: Annotated[List[ModuleCallEntry], 60]
    metadata: Annotated[Dict[str, str], 40] = field(default_factory=dict)


# Invariant: Every time a change is made to the schema, one of the versions
#            should be upadted.
@dataclass
class SchemaVersion:
    major: Annotated[int, 10]  # Major version number is bumped every time a breaking change is made.
    minor: Annotated[int, 20]  # Minor version number is bumped when a compatible change is made.


@dataclass
class ExportedProgram:
    graph_module: Annotated[GraphModule, 10]
    # Key is the opset namespace (ex. aten), and value is the version number
    opset_version: Annotated[Dict[str, int], 20]
    range_constraints: Annotated[Dict[str, RangeConstraint], 30]
    schema_version: Annotated[SchemaVersion, 60]
    verifiers: Annotated[List[str], 70] = field(default_factory=list)
    torch_version: Annotated[str, 80] = "<=2.4"