1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
|
# mypy: allow-untyped-defs
import ast
import dataclasses
import functools
import inspect
import math
import operator
import re
from contextlib import contextmanager
from inspect import Parameter
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Set,
Tuple,
Type,
TYPE_CHECKING,
Union,
)
import torch
from torch._guards import detect_fake_mode
from torch._subclasses.fake_tensor import FakeTensor
from torch._subclasses.functional_tensor import FunctionalTensor
from torch.fx._utils import first_call_function_nn_module_stack
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
if TYPE_CHECKING:
from torch._export.passes.lift_constants_pass import ConstantAttrMap
from torch._ops import OperatorBase
from torch.export import ExportedProgram
from torch.export.graph_signature import ExportGraphSignature
from torch.export.graph_signature import CustomObjArgument, InputKind, OutputKind
from torch.utils._pytree import (
_register_pytree_node,
Context,
FlattenFunc,
FromDumpableContextFn,
GetAttrKey,
KeyPath,
keystr,
MappingKey,
SequenceKey,
ToDumpableContextFn,
tree_flatten_with_path,
UnflattenFunc,
)
placeholder_prefixes = {
InputKind.USER_INPUT: "",
InputKind.PARAMETER: "p_",
InputKind.BUFFER: "b_",
InputKind.CONSTANT_TENSOR: "c_",
InputKind.CUSTOM_OBJ: "obj_",
InputKind.TOKEN: "token",
}
def _collect_and_set_constant_attrs(
graph_signature, constants, mod
) -> "ConstantAttrMap":
# the exported module will store constants & non-persistent buffers such that
# retracing treats them as persistent buffers, so we inform the constants lifting pass
# and overwrite the new graph signature using the previous program. This is intended to only be used
# in run_decompositions where we still have access to original EP.
from torch._export.passes.lift_constants_pass import ConstantAttrMap
constant_attrs = ConstantAttrMap()
non_persistent_buffers = {
spec.target
for spec in graph_signature.input_specs
if spec.kind == InputKind.BUFFER and not spec.persistent
}
for name, value in constants.items():
if name in non_persistent_buffers:
continue
# recursive getattr
_mod = mod
*atoms, attr = name.split(".")
for atom in atoms:
_mod = getattr(_mod, atom)
# remove as buffer, reassign as constant/non-persistent buffer
_mod._buffers.pop(attr, None)
setattr(_mod, attr, value)
constant_attrs.add(value, name)
return constant_attrs
def _overwrite_signature_for_non_persistent_buffers(
old_sig: "ExportGraphSignature", new_sig: "ExportGraphSignature"
):
# overwrite signature for non-persistent buffers
non_persistent_buffers = {
spec.target
for spec in old_sig.input_specs
if spec.kind == InputKind.BUFFER and not spec.persistent
}
for spec in new_sig.input_specs:
if spec.kind == InputKind.BUFFER and spec.target in non_persistent_buffers:
spec.persistent = False
return new_sig
def _collect_param_buffer_metadata(mod: torch.fx.GraphModule) -> Dict[str, Any]:
"""
Param/buffer metadata needs to be saved before lowering to aten IR
because aten IR lifts them, as a result, automatic preservation doesn't work.
This is intended to be called on the strict mode tracing right before lowering to
aten IR OR run_decomposition pass.
"""
params_buffers_to_node_meta = {}
def _getattr(model: torch.fx.GraphModule, attr_name: str):
*prefix, field = attr_name.split(".")
t = model
for item in prefix:
t = getattr(t, item, None) # type: ignore[assignment]
assert t is not None
return getattr(t, field)
for node in mod.graph.nodes:
target = node.target
meta = node.meta
if node.op == "call_module":
submodule = _getattr(mod, target)
if isinstance(submodule, torch.nn.Module):
for name, _ in submodule.named_parameters(
recurse=True, remove_duplicate=False
):
params_buffers_to_node_meta[target + "." + name] = meta
for name, _ in submodule.named_buffers(
recurse=True, remove_duplicate=False
):
params_buffers_to_node_meta[target + "." + name] = meta
if node.op == "get_attr":
submodule = _getattr(mod, target)
if not isinstance(submodule, torch.fx.GraphModule):
params_buffers_to_node_meta[target] = meta
# If the call_function uses param as input, we also need to update params' meta
# with this call_function node's meta.
# This is basically the same flow as torch.fx.traceback.preserve_meta()
if node.op == "call_function" and not isinstance(
node.target, torch._ops.HigherOrderOperator
):
for arg in node._input_nodes:
if arg.op == "get_attr":
for entry in torch.fx.proxy._COPY_META_FIELDS:
# the custom field should not be copied
if entry == "custom":
continue
if entry in meta:
params_buffers_to_node_meta[arg.target][entry] = meta[entry]
return params_buffers_to_node_meta
def _populate_param_buffer_metadata_to_new_gm(
params_buffers_to_node_meta: Dict[str, Any],
gm: torch.fx.GraphModule,
new_sig: "ExportGraphSignature",
) -> None:
"""
Given that we collected param'buffer metadata before, we put them back in
newly traced graph module
"""
# Don't copy over nn_module_stack, stack_trace metadata for params/buffers nodes
for metadata in params_buffers_to_node_meta.values():
metadata.pop("nn_module_stack", None)
metadata.pop("stack_trace", None)
for node in gm.graph.nodes:
if node.op == "placeholder":
if node.target in new_sig.inputs_to_parameters:
param_name = new_sig.inputs_to_parameters[node.target]
if param_name in params_buffers_to_node_meta:
for k, v in params_buffers_to_node_meta[param_name].items():
node.meta[k] = v
if node.target in new_sig.inputs_to_buffers:
buffer_name = new_sig.inputs_to_buffers[node.target]
if buffer_name in params_buffers_to_node_meta:
for k, v in params_buffers_to_node_meta[buffer_name].items():
node.meta[k] = v
def _get_shape_env_from_gm(gm: torch.fx.GraphModule):
vals = [
node.meta["val"]
for node in gm.graph.nodes
if node.meta.get("val", None) is not None
]
fake_mode = _detect_fake_mode_from_gm(gm)
if fake_mode is not None:
return fake_mode.shape_env
for v in vals:
if isinstance(v, torch.SymInt):
return v.node.shape_env
def _rename_without_collisions(
name_map: Dict[str, str],
orig_name: str,
name: str,
is_placeholder: bool = False,
):
"""
Renames nodes to avoid name collisions, with suffixing.
name_map: map from original name to new name
orig_name: mapping key
name: candidate name (potentially suffixed, e.g. mul_2)
is_placeholder: if the node is a placeholder, avoid detecting suffix
"""
if name in name_map.values():
# non-placeholder nodes may be suffixed with the count
# instead of adding another suffix, we will try to increment it
match = re.match(r"(.*)_(\d+)", name)
if match and not is_placeholder:
name, n = match.group(1), int(match.group(2))
else:
n = 0
while (dup_name := f"{name}_{n + 1}") in name_map.values():
n += 1
name_map[orig_name] = dup_name
else:
name_map[orig_name] = name
return name_map[orig_name]
def _check_input_constraints_for_graph(
input_placeholders: List[torch.fx.Node], flat_args_with_path, range_constraints
) -> None:
def get_keystr(key_path: KeyPath) -> str:
"""For a given index into the flat_args, return a human readable string
describing how to access it, e.g. "*args["foo"][0].bar"
"""
# Prefix the keypath with "*args" or "**kwargs" to make it clearer where
# the arguments come from. Ultimately we ought to serialize the
# original arg names for the best error message here.
args_kwargs_key_path = key_path[0]
assert isinstance(args_kwargs_key_path, SequenceKey)
if args_kwargs_key_path.idx == 0:
return f"*args{keystr(key_path[1:])}"
else:
kwarg_key = key_path[1]
assert isinstance(kwarg_key, MappingKey)
name = str(kwarg_key)[1:-1] # get rid of the enclosed []
return f"{name}{keystr(key_path[2:])}"
import sympy
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
_convert_range_to_int,
)
from torch.utils._sympy.solve import try_solve
if len(flat_args_with_path) != len(input_placeholders):
raise RuntimeError(
"Unexpected number of inputs "
f"(expected {len(input_placeholders)}, got {len(flat_args_with_path)})"
)
# NOTE: export already guarantees that the same symbol is used in metadata
# for all InputDims related by equality constraints, so we can just unify
# symbols with given input dimension values to check equality constraints.
unification_map: Dict[sympy.Symbol, Any] = {}
for (key_path, arg), node in zip(flat_args_with_path, input_placeholders):
node_val = node.meta.get("val")
if isinstance(node_val, FakeTensor):
if not isinstance(arg, torch.Tensor):
raise RuntimeError(
f"Expected input at {get_keystr(key_path)} to be a tensor, but got {type(arg)}",
)
if len(node_val.shape) != len(arg.shape):
raise RuntimeError(
f"Unexpected number of dimensions in input at {get_keystr(key_path)}.shape "
f"(expected {node_val.shape}, got {arg.shape})"
)
for j, (arg_dim, node_dim) in enumerate(zip(arg.shape, node_val.shape)):
# TODO(avik): Assert the following property in the IR verifier:
# node_dim is either an int or a SymInt containing an int or a unary sympy.Expr
if (
isinstance(node_dim, torch.SymInt)
and len(node_dim.node.expr.free_symbols) == 1
):
symbol = next(iter(node_dim.node.expr.free_symbols))
if symbol in unification_map:
existing_dim = node_dim.node.expr.subs(unification_map)
if arg_dim != existing_dim:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be equal to "
f"{existing_dim}, but got {arg_dim}",
)
else:
if (
isinstance(arg_dim, torch.SymInt)
and not arg_dim.node.expr.is_number
):
# This can happen when, say, arg is a fake tensor.
# We do not run checks on symbolic shapes of fake inputs as
# such checks can affect the shape env.
pass
else:
if isinstance(node_dim.node.expr, sympy.Symbol):
# Short cut for try_solve below. Also useful in cases where
# sympy.Eq(node_dim.node.expr, arg_dim) would evaluate to False
# purely because symbol is constrained to be size-like,
# e.g., when node_dim.node.expr = symbol and arg_dim = 0.
unification_map[symbol] = int(arg_dim)
else:
solution = try_solve(
sympy.Eq(node_dim.node.expr, arg_dim), symbol
)
if solution is None:
raise RuntimeError( # noqa: B904
f"Expected input {node.name}.shape[{j}] = {arg_dim} to be "
f"of the form {node_dim.node.expr}, where {symbol} is an integer"
)
else:
unification_map[symbol] = int(solution[1])
if node_dim.node.expr in range_constraints:
min_val, max_val = _convert_range_to_int(
range_constraints[node_dim.node.expr]
)
# NOTE: we allow dimensions to be 0/1 at runtime
if min_val > 2:
if arg_dim < min_val:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be >= "
f"{min_val}, but got {arg_dim}",
)
if max_val < math.inf:
if arg_dim > max_val:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be <= "
f"{max_val}, but got {arg_dim}",
)
else:
if arg_dim != node_dim:
if (
isinstance(node_dim, torch.SymInt)
and not node_dim.node.expr.is_number
):
# this means we deferred a guard from export analysis to runtime, let this pass
# we'll add a runtime assert checking equality to this replacement expression
continue
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be equal to "
f"{node_dim}, but got {arg_dim}",
)
elif isinstance(node_val, (int, float, str)):
if type(arg) != type(node_val) or arg != node_val:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)} to be equal to {node_val}, but got {arg}",
)
def register_dataclass_as_pytree_node(
cls: Type[Any],
flatten_fn: Optional[FlattenFunc] = None,
unflatten_fn: Optional[UnflattenFunc] = None,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
return_none_fields: bool = False,
) -> None:
assert dataclasses.is_dataclass(
cls
), f"Only dataclasses can be registered with this function: {cls}"
def default_flatten_fn(obj: Any) -> Tuple[List[Any], Context]:
flattened = []
flat_names = []
none_names = []
for f in dataclasses.fields(obj):
name, val = f.name, getattr(obj, f.name)
if val is not None or return_none_fields:
flattened.append(val)
flat_names.append(name)
else:
none_names.append(name)
return flattened, [flat_names, none_names]
def default_unflatten_fn(values: Iterable[Any], context: Context) -> Any:
flat_names, none_names = context
return cls(**dict(zip(flat_names, values)), **dict.fromkeys(none_names))
def default_flatten_fn_with_keys(obj: Any) -> Tuple[List[Any], Context]:
flattened, (flat_names, none_names) = flatten_fn(obj) # type: ignore[misc]
return [(MappingKey(k), v) for k, v in zip(flat_names, flattened)], flat_names
flatten_fn = flatten_fn if flatten_fn is not None else default_flatten_fn
unflatten_fn = unflatten_fn if unflatten_fn is not None else default_unflatten_fn
if (to_dumpable_context is None) ^ (from_dumpable_context is None):
raise ValueError(
f"Both to_dumpable_context and from_dumpable_context for {cls} must "
"be None or registered."
)
_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
flatten_with_keys_fn=default_flatten_fn_with_keys,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
)
def is_param(program: "ExportedProgram", node: torch.fx.Node) -> bool:
"""
Checks if the given node is a parameter within the exported program
"""
return node.name in program.graph_signature.inputs_to_parameters
def get_param(
program: "ExportedProgram",
node: torch.fx.Node,
) -> Optional[torch.nn.Parameter]:
"""
Returns the parameter associated with the given node in the exported program.
Returns None if the node is not a parameter within the exported program
"""
if is_param(program, node):
parameter_name = program.graph_signature.inputs_to_parameters[node.name]
return program.state_dict[parameter_name]
return None
def is_buffer(program: "ExportedProgram", node: torch.fx.Node) -> bool:
"""
Checks if the given node is a buffer within the exported program
"""
return node.name in program.graph_signature.inputs_to_buffers
def get_buffer(
program: "ExportedProgram",
node: torch.fx.Node,
) -> Optional[torch.Tensor]:
"""
Returns the buffer associated with the given node in the exported program.
Returns None if the node is not a buffer within the exported program
"""
if is_buffer(program, node):
buffer_name = program.graph_signature.inputs_to_buffers[node.name]
if buffer_name in program.graph_signature.non_persistent_buffers:
return program.constants[buffer_name]
else:
return program.state_dict[buffer_name]
return None
def is_lifted_tensor_constant(
program: "ExportedProgram",
node: torch.fx.Node,
) -> bool:
"""
Checks if the given node is a lifted tensor constant within the exported program
"""
return node.name in program.graph_signature.inputs_to_lifted_tensor_constants
def get_lifted_tensor_constant(
program: "ExportedProgram",
node: torch.fx.Node,
) -> Optional[torch.Tensor]:
"""
Returns the lifted tensor constant associated with the given node in the exported program.
Returns None if the node is not a lifted tensor constant within the exported program
"""
if is_lifted_tensor_constant(program, node):
lifted_tensor_name = program.graph_signature.inputs_to_lifted_tensor_constants[
node.name
]
return program.constants[lifted_tensor_name]
return None
def sequential_split(
gm: torch.fx.GraphModule,
node_call_back: Callable[[torch.fx.Node], Union[torch.fx.Node, bool]],
) -> torch.fx.GraphModule:
"""
sequential_split creates a new graph module that splits the input graph module into multiple submodules
based on the node_call_back. It doesn't mutate the input graph module. The node_call_back should return
True if the node is a delimiter. Delimiter will be the first node in the next submodule.
"""
from torch.fx.passes.split_module import split_module
split_map = {}
split_id = 0
for node in gm.graph.nodes:
if node_call_back(node):
split_id += 1
split_map[node] = split_id
new_gm = split_module(
gm,
gm,
lambda node: split_map[node],
keep_original_order=True,
keep_original_node_name=True,
)
# Keep the codegen from original graph module to preserve e.g. pytree info.
new_gm.graph._codegen = gm.graph._codegen
new_gm.recompile()
return new_gm
def nodes_filter(nodes: List[torch.fx.Node], node_call_back) -> List[torch.fx.Node]:
"""Returns the nodes that match the node_call_back as a list."""
return [node for node in nodes if node_call_back(node)]
def apply_runtime_assertion_pass(gm: torch.fx.GraphModule, graph_signature):
from torch._export.passes._node_metadata_hook import (
_node_metadata_hook,
_set_node_metadata_hook,
)
from torch._functorch._aot_autograd.input_output_analysis import _graph_output_names
if not torch._dynamo.config.do_not_emit_runtime_asserts:
stack_trace = (
'File "torch/fx/passes/runtime_assert.py", line 24, '
"in insert_deferred_runtime_asserts"
)
with _set_node_metadata_hook(
gm, functools.partial(_node_metadata_hook, stack_trace=stack_trace)
):
shape_env = _get_shape_env_from_gm(gm)
if shape_env:
insert_deferred_runtime_asserts(
gm,
shape_env,
f"exported program: {first_call_function_nn_module_stack(gm.graph)}",
export=True,
)
# update output specs
gm.recompile()
graph_signature.user_outputs = _graph_output_names(gm)
return gm, graph_signature
def nodes_first(
nodes: List[torch.fx.Node], node_call_back=None
) -> Optional[torch.fx.Node]:
"""
Returns the first node that matches the node_call_back. If no node matches, returns None.
When node_call_back is None, returns the first node in the node list.
"""
ret = nodes_filter(nodes, node_call_back if node_call_back else lambda node: True)
if len(ret) > 0:
return ret[0]
return None
def nodes_count(nodes: List[torch.fx.Node], node_call_back) -> int:
"""Returns the number of nodes that match the node_call_back."""
return len(nodes_filter(nodes, node_call_back))
def nodes_map(nodes: List[torch.fx.Node], node_call_back) -> List[torch.fx.Node]:
"""
Sequentially visit the nodes list and invoke node_call_back on each element.
Returns the nodes list after the node_call_back is invoked on each element.
"""
for node in nodes:
node_call_back(node)
return nodes
def node_replace_(old_node: torch.fx.Node, new_node: torch.fx.Node) -> None:
"""
Replace all uses of old_node with new_node.
"""
old_node.replace_all_uses_with(new_node)
old_node.users.clear()
old_node.graph.erase_node(old_node)
def _update_gm_meta_if_possible(gm: torch.fx.GraphModule, mod: torch.nn.Module) -> None:
if (
isinstance(mod, torch.fx.GraphModule)
and hasattr(mod, "meta")
and "custom" in mod.meta
):
gm.meta.update({"custom": mod.meta["custom"]})
def node_inline_(call_mod_node: torch.fx.Node) -> Optional[torch.fx.GraphModule]:
"""
Inline the submodule of the given node into the parent module.
Note: we only support the case where submodule takes tensors inputs.
"""
assert call_mod_node.op == "call_module"
gm = call_mod_node.graph.owning_module
assert gm is not None
assert isinstance(call_mod_node.target, str)
sub_gm = getattr(gm, call_mod_node.target)
phs = (node for node in sub_gm.graph.nodes if node.op == "placeholder")
body = (
node for node in sub_gm.graph.nodes if node.op not in ("placeholder", "output")
)
output = [node for node in sub_gm.graph.nodes if node.op == "output"]
for ph, arg in zip(phs, call_mod_node.args):
assert isinstance(arg, torch.fx.Node)
node_replace_(ph, arg)
with gm.graph.inserting_before(call_mod_node):
for node in body:
new_node = gm.graph.node_copy(node)
if node.op == "get_attr":
new_target_name = new_node.target
if hasattr(gm, new_target_name):
# Loop through and find the "submod_{i}" that have no name collision
i = 1
new_target_name = f"submod_{i}"
while hasattr(gm, new_target_name):
i += 1
new_target_name = f"submod_{i}"
new_node.target = new_target_name
setattr(gm, new_node.target, getattr(sub_gm, node.target))
node_replace_(node, new_node)
if len(output) > 0:
assert len(output) == 1 and len(output[0].args) == 1
new_output = output[0].args[0]
if isinstance(new_output, torch.fx.Node):
# Clear the users of the output node and set
# the users to be the users of original call_module node.
new_output.users.clear()
node_replace_(call_mod_node, new_output)
elif isinstance(new_output, (list, tuple)):
# Pop subgraph output node from users.
for node in new_output:
node.users.pop(output[0])
# Inline the get_item calls for the output node.
get_item_users = nodes_filter(
list(call_mod_node.users.keys()),
lambda node: node.op == "call_function"
and node.target == operator.getitem,
)
# get_item_node.args[1] is the idx referring to new_output[idx]
nodes_map(
get_item_users,
lambda get_item_node: node_replace_(
get_item_node,
new_output[get_item_node.args[1]],
),
)
call_mod_node.graph.erase_node(call_mod_node)
else:
raise NotImplementedError(
f"Unsupported output type {type(new_output)}. Expect it to be a Node or a list/tuple of Nodes."
)
else:
call_mod_node.graph.erase_node(call_mod_node)
gm.delete_all_unused_submodules()
gm.recompile()
return gm
def _get_torch_jit_trace_forward_signature(mod: torch.nn.Module) -> inspect.Signature:
"""
Get source code and parse argument names using AST. The function returns
a signature of the forward() function.
# TODO: Directly provide inspect.signature compatible TS-d module.
"""
ast_mod = ast.parse(mod.code) # type: ignore[call-overload]
ast_func_def: ast.FunctionDef = ast_mod.body[0]
# FIXME(jiashenc): TorchScript should only allow positional or keywords arguments.
arg_type_map = {"args": Parameter.POSITIONAL_OR_KEYWORD}
# Traverse all argument types in AST tree and create associated parameters.
param_list = []
for arg_type, param_type in arg_type_map.items():
arg_name_list = [a.arg for a in getattr(ast_func_def.args, arg_type)]
for arg_name in arg_name_list:
if arg_name == "self":
continue # Skip self argument.
param_list.append(inspect.Parameter(arg_name, param_type))
return inspect.Signature(parameters=param_list)
def _bind_signature_to_inputs(mod, fake_args, fake_kwargs):
if isinstance(mod, (torch.jit.ScriptModule, torch.jit.TracedModule)):
sig = _get_torch_jit_trace_forward_signature(mod)
# Sanity check for placeholder names coming from TorchScript.
assert len(sig.parameters) == len(fake_args) + len(fake_kwargs), (
"Arguments other than POSITIONAL_OR_KEYWORD kinds in forward() "
"are not supported in _get_torch_jit_trace_forward_signature"
)
else:
sig = inspect.signature(mod.forward)
return sig.bind(*fake_args, **fake_kwargs).arguments
def _name_hoo_subgraph_placeholders(gm: torch.fx.GraphModule) -> None:
"""
Propagate placeholder names from the top-level graph into HigherOrderOp subgraphs,
and handle collisions with non-placeholders by count suffixing.
Different HOO subgraph types have different input schemas, so we first enumerate them
and gather the top-level named placeholder nodes.
"""
# gather all HOO subgraphs and their top-level named placeholder nodes
subgraph_ph_tuples: List[Tuple[torch.fx.GraphModule, List[torch.fx.Node]]] = []
for node in gm.graph.nodes:
if node.op == "call_function" and isinstance(
node.target, torch._ops.HigherOrderOperator
):
# HOO subgraphs have varying input schemas, so we enumerate them there
if node.target._name == "cond":
_, true_graph, false_graph, cond_args = node._args
subgraph_ph_tuples.append((getattr(gm, true_graph.target), cond_args))
subgraph_ph_tuples.append((getattr(gm, false_graph.target), cond_args))
elif node.target._name == "wrap_with_set_grad_enabled":
subgraph, phs = node._args[1], node._args[2:]
subgraph_ph_tuples.append((getattr(gm, subgraph.target), phs))
elif node.target._name == "map_impl":
body_graph, array, args = node._args
subgraph_ph_tuples.append(
(getattr(gm, body_graph.target), array + args)
)
# propagate names
for subgraph, hoo_phs in subgraph_ph_tuples:
name_map: Dict[str, str] = {}
for i, node in enumerate(subgraph.graph.nodes):
if i < len(hoo_phs): # placeholder, retain name
name_map[node.name] = hoo_phs[i].name
node.name = node.target = hoo_phs[i].name
else: # non-placeholder, check for collisions
node.name = _rename_without_collisions(name_map, node.name, node.name)
# recurse and recompile
_name_hoo_subgraph_placeholders(subgraph)
subgraph.recompile()
def placeholder_naming_pass(
gm: torch.fx.GraphModule,
export_graph_signature: "ExportGraphSignature",
mod: torch.nn.Module,
fake_args,
fake_kwargs,
fake_params_buffers,
constants: Dict[str, Any],
) -> None:
"""
This pass is run at the end of _export_non_strict() to assign better placeholder node names:
- User inputs:
These follow the signature of mod.forward(), e.g. forward(x, y) produces nodes x, y.
For nested inputs from dictionaries, lists, tuples, or dataclasses,
the names are a concatenation of the path to the tensor.
e.g. x = {
'a': torch.randn(),
'b': [torch.randn(), torch.randn()]
}
produces nodes x_a, x_b_0, x_b_1.
- Parameters/buffers/constants/custom objects:
These follow the FQN of the object, prefixed by "p", "b", "c", "obj" respectively.
e.g. self.bar.l0.weight produces "p_bar_l0_weight".
- Effect tokens:
These are named token, token_1, ...
"""
def _strip_name(x):
if x.startswith("L__self___"):
x = x[len("L__self___") :]
elif x.startswith("self_"):
x = x[len("self_") :]
x = re.sub(r"[^a-zA-Z0-9]", "_", x)
return x
def _extract_pytree_key(x):
if isinstance(x, MappingKey):
x = re.sub(r"[^a-zA-Z0-9]", "_", str(x.key))
return x
elif isinstance(x, SequenceKey):
return str(x.idx)
elif isinstance(x, GetAttrKey):
return x.name
else:
raise RuntimeError(f"Pytree key of type {type(x)} not handled for {x}")
name_map: Dict[str, str] = {}
# map user input names with mod.forward() signature
combined_args = _bind_signature_to_inputs(mod, fake_args, fake_kwargs)
flat_args_with_path, _ = tree_flatten_with_path(combined_args)
user_input_names = [
spec.arg.name
for spec in export_graph_signature.input_specs
if spec.kind == InputKind.USER_INPUT
]
# use pytree path to name nested user inputs
for (arg_path, arg), user_input_name in zip(flat_args_with_path, user_input_names):
if user_input_name:
_rename_without_collisions(
name_map,
user_input_name,
placeholder_prefixes[InputKind.USER_INPUT]
+ "_".join(_extract_pytree_key(x).lower() for x in arg_path),
is_placeholder=True,
)
# use graph signature input specs to map param/buffer/constant names
# name effect tokens as token, token_1, ... (these aren't visible to user)
for spec in export_graph_signature.input_specs:
if spec.kind == InputKind.USER_INPUT:
continue
if spec.kind == InputKind.TOKEN:
base_name = ""
else:
base_name = _strip_name(spec.target).lower()
base_name = re.sub(r"[^a-zA-Z0-9]", "_", base_name)
_rename_without_collisions(
name_map,
spec.arg.name,
placeholder_prefixes[spec.kind] + base_name,
is_placeholder=True,
)
# handle naming collisions with call_function/get_attr inputs.
# here, we want to prioritize user input names over call_function names
# e.g. not have forward(self, mul): lead to a placeholder node called mul_13,
# so we increment the suffix of call_function nodes as needed
for node in gm.graph.nodes:
if node.op == "placeholder":
continue
_rename_without_collisions(name_map, node.name, node.name)
# assign new node names
for node in gm.graph.nodes:
if node.op == "placeholder":
assert node.name in name_map
node.name = node.target = name_map[node.name]
# if the constant obj is an input, we also need to update meta["val"]
# because this is created before the placeholder naming pass
if isinstance(node.meta["val"], CustomObjArgument):
node.meta["val"].name = node.name
elif node.name in name_map:
node.name = name_map[node.name]
# propagate names to higher order op subgraphs
_name_hoo_subgraph_placeholders(gm)
# re-generate graph module code
gm.recompile()
# modify graph signature (input specs, output specs, user input mutations)
for spec in export_graph_signature.input_specs:
assert spec.arg.name in name_map
spec.arg.name = name_map[spec.arg.name]
if ( # handle targets for custom objects
spec.kind == InputKind.CUSTOM_OBJ and spec.target in name_map
):
spec.target = name_map[spec.target][4:] # strip obj_ prefix
for spec in export_graph_signature.output_specs:
if spec.arg.name in name_map:
spec.arg.name = name_map[spec.arg.name]
if spec.kind == OutputKind.USER_INPUT_MUTATION and spec.target in name_map:
spec.target = name_map[spec.target]
# rename keys in constants dict for custom objects
for name in list(constants.keys()):
constant = constants[name]
if name in name_map and not isinstance(
constant, torch.Tensor
): # rename custom objects with generic names
new_name = name_map[name]
if (
new_name != name
and re.match(r"arg(\d+)_1", name)
and new_name != placeholder_prefixes[InputKind.CUSTOM_OBJ] + name
):
constants[new_name] = constant
del constants[name]
def remove_proxy_from_state_dict(state_dict: Dict, in_place: bool) -> Dict:
"""
If `in_place` is false, return a new copy of `state_dict` with "proxy" removed from `v.__dict__`.
`v` is the values in the dictionary.
If `in_place` is true, modify `state_dict` in place.
"""
if in_place:
for k, v in state_dict.items():
if hasattr(v, "proxy"):
delattr(state_dict[k], "proxy")
return state_dict
else:
new_state_dict = {}
for k, v in state_dict.items():
if hasattr(v, "proxy"):
new_state_dict[k] = v.detach().clone()
else:
new_state_dict[k] = v
return new_state_dict
def _detect_fake_mode_from_gm(
gm: torch.fx.GraphModule,
) -> torch._subclasses.fake_tensor.FakeTensorMode:
"""
For a given graph module, we look at the "val" of placeholder nodes to find the fake inputs.
Additionally, if gm doesn't have placeholders, we further look at the "example_value" or "val" of other nodes.
If no fake mode is found, we return None for fake_mode.
"""
fake_inps: List[torch.Tensor] = []
fake_vals: List[torch.Tensor] = []
for node in gm.graph.nodes:
if node.op == "placeholder" and "val" in node.meta:
fake_val = node.meta["val"]
if fake_val is not None and isinstance(fake_val, torch.Tensor):
fake_inps.append(fake_val)
elif len(fake_inps) == 0 and (
"example_value" in node.meta or "val" in node.meta
):
fake_val = None
if "example_value" in node.meta:
fake_val = node.meta["example_value"]
elif "val" in node.meta:
fake_val = node.meta["val"]
if fake_val is not None and isinstance(fake_val, torch.Tensor):
fake_vals.append(fake_val)
return detect_fake_mode(fake_inps + fake_vals)
@contextmanager
def _disable_load_state_dict_hooks(mod: torch.nn.Module):
state_dict_hooks: Dict[int, Callable] = dict(mod._state_dict_hooks)
state_dict_pre_hooks: Dict[int, Callable] = dict(mod._state_dict_pre_hooks)
mod._state_dict_hooks.clear()
mod._state_dict_pre_hooks.clear()
try:
yield
finally:
mod._state_dict_hooks = state_dict_hooks
mod._state_dict_pre_hooks = state_dict_pre_hooks
def _is_cia_op(op: "OperatorBase") -> bool:
return (
torch._C._dispatch_has_kernel_for_dispatch_key(
op.name(), torch._C.DispatchKey.CompositeImplicitAutograd
)
or torch._C.DispatchKey.CompositeImplicitAutograd in op.py_kernels
)
def _is_preservable_cia_op(op: "OperatorBase") -> bool:
return _check_valid_to_preserve(op) and _is_cia_op(op)
def _is_aten_op(op: "OperatorBase") -> bool:
return op.name().split("::")[0] == "aten"
def _is_custom_op(op: "OperatorBase") -> bool:
return not _is_aten_op(op)
# We can't cache this because custom op registry API in python can still
# add entries to the C++ dispatcher.
def _materialize_cpp_cia_ops() -> None:
"""
Utility function to query C++ dispatcher to get the all
possible CIA ops and populate them into torch.ops namespace
"""
cia_ops = torch._C._dispatch_get_registrations_for_dispatch_key(
"CompositeImplicitAutograd"
)
# Materialize all CIA ops
for op in cia_ops:
namespace, op_name = tuple(op.split("::"))
split_list = op_name.split(".")
# Sometime overload could be missing
assert len(split_list) == 1 or len(split_list) == 2
op_name = split_list[0]
op_overload_name = "default"
if len(split_list) == 2:
op_overload_name = split_list[1]
_ = getattr(getattr(getattr(torch.ops, namespace), op_name), op_overload_name)
def _special_op_to_preserve_cia(*args, **kwargs):
"""
This is an special marker that tells our infra that we shouldn't decompose this op.
"""
return NotImplemented
# Our strategy for deciding if we can preserve a op is following:
# 1. The op should be known statically that it is functional
# 2. If it is maybe aliasing, we decompose because we must know if an op
# is mutating or aliasing.
def _check_valid_to_preserve(op_overload: "OperatorBase"):
from torch._decomp import _should_decompose_because_unsafe_op
if _should_decompose_because_unsafe_op(op_overload):
return False
if op_overload in FunctionalTensor.metadata_fns:
return False
if not hasattr(op_overload, "_schema"):
return False
alias_info = len(
[i for i in op_overload._schema.arguments if i.alias_info is not None]
)
is_mutating_or_aliasing = alias_info != 0 or op_overload._schema.is_mutable
if is_mutating_or_aliasing:
return False
if not torch._C._dispatch_has_kernel(op_overload.name()):
return False
return True
@functools.lru_cache(maxsize=1)
def _collect_all_valid_cia_ops_for_aten_namespace() -> Set["OperatorBase"]:
return _collect_all_valid_cia_ops_for_namespace("aten")
def _collect_all_valid_cia_ops_for_namespace(namespace: str) -> Set["OperatorBase"]:
# Step 1: Materialize all ops from C++ dispatcher
_materialize_cpp_cia_ops()
# Step 2: Query all ops from python dispatcher
assert hasattr(torch.ops, namespace)
op_namespace = getattr(torch.ops, namespace)
cia_ops = set()
for op in op_namespace:
op_packet = getattr(op_namespace, op)
for overload in op_packet.overloads():
op_overload = getattr(op_packet, overload)
if _is_preservable_cia_op(op_overload):
cia_ops.add(op_overload)
return cia_ops
def _collect_all_valid_cia_ops() -> Set["OperatorBase"]:
"""
This is an util function that gets the all CIA functional ops.
The algorithm is in 2 steps:
1. We first query C++ dispatcher to get the list of CIA ops
and then we call getattr on torch.ops.aten to lazily populate
them.
2. Sometimes, handful of ops have CIA registered in python dispatcher
but not on the C++ side, these can't be caught at the first step.
So we walk again to get the final list.
Note that the output of this function should never be modified
"""
cia_ops = set()
for op_namespace_name in torch.ops._dir:
# The reason we split here is because aten ops are safe to cache.
if op_namespace_name != "aten":
cia_ops |= _collect_all_valid_cia_ops_for_namespace(op_namespace_name)
else:
cia_ops |= _collect_all_valid_cia_ops_for_aten_namespace()
return cia_ops
def _get_decomp_for_cia(op: "OperatorBase"):
# [NOTE] Seperating out func.decompose
# Ideally we should be able to just register func.decompose but
# we can't as this decomp is gonna be registered to the py_impl.
# As a result it will infinitely recurse. So we first check if the op
# has py_impl entry for CIA and if it is we use that first. If not,
# we register C++ query to py_impl.
dk = torch._C.DispatchKey.CompositeImplicitAutograd
if dk in op.py_kernels and not isinstance(op.py_kernels[dk], torch._C.DispatchKey):
return op.py_kernels[dk]
def _special_op_to_decompose_cia(*args, **kwargs):
kernel = kwargs["kernel"]
del kwargs["kernel"]
# Can't call kernel.decompose due to infinite recursion as
# we register this kernel to py_impl directly
dk = torch._C.DispatchKey.CompositeImplicitAutograd
if torch._C._dispatch_has_kernel_for_dispatch_key(
kernel.name(), torch._C.DispatchKey.CompositeImplicitAutograd
):
return kernel._op_dk(dk, *args, **kwargs)
else:
raise AssertionError(
f"Expected {kernel} to have CompositeImplicitAutograd kernel"
)
return functools.partial(_special_op_to_decompose_cia, kernel=op)
|