1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
# mypy: allow-untyped-defs
"""
Utils for caching the outputs of AOTAutograd
"""
from __future__ import annotations
import base64
import contextlib
import functools
import json
import logging
import os
import pickle
import shutil
import time
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, TYPE_CHECKING, Union
import torch
from torch._dynamo.utils import counters, get_chromium_event_logger
from torch._functorch import config
from torch._inductor.codecache import (
_ident,
add_ephemeral_timeout_increase_for_distributed,
BypassFxGraphCache,
create_cache,
extract_tensor_metadata_for_cache_key,
FxGraphCache,
FxGraphCachePickler,
FxGraphHashDetails,
write_atomic,
)
from torch._inductor.output_code import CompiledFxGraphConstants
from torch._inductor.runtime.runtime_utils import cache_dir
from torch._inductor.utils import should_use_remote_fx_graph_cache
from torch._logging import LazyString
from torch._utils_internal import log_cache_bypass
from torchgen.utils import dataclass_repr
from .runtime_wrappers import (
AOTDispatchAutograd,
AOTDispatchSubclassWrapper,
CompilerWrapper,
FunctionalizedRngRuntimeWrapper,
post_compile,
RuntimeWrapper,
SubclassMeta,
)
from .schemas import AOTAutogradCacheInfo, AOTConfig, ViewAndMutationMeta # noqa: F401
if TYPE_CHECKING:
from torch._inductor.compile_fx import _CompileFxKwargs
from torch._inductor.output_code import CompiledFxGraph
from torch._inductor.remote_cache import JsonDataTy, RemoteCache
from torch._inductor.utils import BoxedBool
from torch.fx.node import Node
log = logging.getLogger(__name__)
class BypassAOTAutogradCache(Exception):
pass
# Used to signify when FXGraphCache missed when AOTAutogradCache uses it
class FXGraphCacheMiss(BypassAOTAutogradCache):
pass
def should_use_remote_autograd_cache():
if torch._inductor.config.force_disable_caches:
return False
if config.enable_remote_autograd_cache is not None:
return config.enable_remote_autograd_cache
if not config.is_fbcode():
return False
if torch._utils_internal.is_fb_unit_test():
return False
try:
from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION
except ModuleNotFoundError:
return False
jk_name = "pytorch/remote_cache:aot_autograd_cache_version"
return REMOTE_CACHE_VERSION >= torch._utils_internal.justknobs_getval_int(jk_name)
def should_use_local_autograd_cache():
if torch._inductor.config.force_disable_caches:
return False
return config.enable_autograd_cache
def autograd_cache_enabled():
return should_use_local_autograd_cache() or should_use_remote_autograd_cache()
def check_node_safe(node: Node):
"""
Checks that the node only uses supported operators. We are starting with very
conservative cacheability constraints, and incrementally adding more support as we expand.
[Note: AOTAutograd Cacheability checks]
- Our cache key is computed from the FX graph produced by Dynamo and the input example values
- A node is "safe" if the same cache key results in a compiled artifact that has the same behavior
(i.e, the set of inputs that go into our cache key is sufficient to distinguish its behavior)
To accomplish this safety check, we consider the following functions to be safe:
- Public functions under modules torch, torch.functional, and torch.nn.functional: these are
allowed in the graph by dynamo, so we can assume they are safe to cache.
- method calls on base tensor types
- Any call_module that dynamo deemed safe to allow AOTAutograd to trace
- Non callable nodes, such as placeholder, output, get_attr
The test suite test_aot_autograd_cache.py::AOTAutogradCachePicklerTests tries its best to fully cover/specify this behavior.
"""
SAFE_TORCH_MODULES = ("torch.functional", "torch.nn.functional")
SAFE_TORCH_FUNCTIONS = (
"torch.Size",
"torch.sym_int",
"torch._sym_sqrt",
"torch.sym_float",
"torch.sym_sum",
"einops.einops.rearrange",
)
def is_public_torch_api(target):
# Don't blindly allow private functions in the torch namespace
is_private = target.__name__.startswith("_")
return (
getattr(target, "__module__", None) in SAFE_TORCH_MODULES and not is_private
)
def is_safe_torch_function(target):
"""Allowlisted torch functions"""
return f"{target.__module__}.{target.__name__}" in SAFE_TORCH_FUNCTIONS
def is_torch_function(target):
if isinstance(target, (torch._ops.OpOverload, torch._ops.OpOverloadPacket)):
return True
if is_public_torch_api(target):
return True
is_builtin_fun_or_type = type(target).__name__ == "builtin_function_or_method"
if is_builtin_fun_or_type:
return True
if is_safe_torch_function(target):
return True
return False
def is_tensor(target):
# Tensors always have example values in meta field
return "example_value" in target.meta
# I'd love to use a match statement here, but it wasn't introduced until py3.10
if node.op == "call_function":
# We support only torch.* functions for now
# We can probably add an allowlist of safe non-torch implementations as well
if not is_torch_function(node.target):
module = getattr(node.target, "__module__", None)
name = getattr(node.target, "__name__", None)
raise BypassAOTAutogradCache(
f"Unsupported call_function target {node.target}. \n Function module: {module}, \nFunction name: {name}"
)
elif node.op == "call_method":
method_name = node.target
method_target = node.args[0]
# Only support method calls on base tensors
if not is_tensor(method_target):
module = getattr(method_target, "__module__", None)
name = getattr(method_target, "__name__", None)
raise BypassAOTAutogradCache(
f"Unsupported call_method target {method_target}. \nMethod module: {module}, \nMethod name: {name}"
)
if (
type(method_name) != str
and type(method_name).__name__ != "method_descriptor"
):
raise BypassAOTAutogradCache(
f"Unsupported call_method method {node.target}: {method_name}"
)
# Cache safe
elif node.op in ("placeholder", "get_attr", "call_module", "output"):
# Assumption today for call_module being a safe op:
# (1) today the only call_module ops that can show up in a graph come from "built-in-nn-modules"
# that dynamo assumes are safe to trace. If dynamo assumes they are safely to blindly trace, then
# they should be safe to cache as well.
# (2) in the steady-state (some time in H2?) we shouldn't see these anymore, once inline builtin nn modules by default
# (3) We do not allow user made nn modules in the graph today, only function calls.
pass
else:
raise BypassAOTAutogradCache(f"Unsupported node op {node.op}")
def check_cacheable(gm: torch.fx.GraphModule):
"""
Checks that the graph module only uses supported operators
"""
nodes = gm.graph.nodes
if torch._dynamo.compiled_autograd.in_compiled_autograd_region:
raise BypassAOTAutogradCache(
"Cannot cache a graph with compiled autograd enabled"
)
if torch._inductor.config.freezing:
raise BypassAOTAutogradCache("Cannot cache a graph with freezing enabled")
if not (
torch._inductor.config.fx_graph_cache or should_use_remote_fx_graph_cache()
):
raise BypassAOTAutogradCache("FX graph cache is not enabled")
tracing_context = torch._guards.TracingContext.try_get()
if tracing_context and tracing_context.fakify_first_call:
raise BypassAOTAutogradCache(
"Won't cache a graph with fakify_first_call enabled"
)
for node in nodes:
check_node_safe(node)
def check_metadata_cacheable(metadata: ViewAndMutationMeta):
"""
When view replay is turned on, we bypass autograd cache if
the output is aliased.
"""
if config.view_replay_for_aliased_outputs:
for info in metadata.output_info:
if info.functional_tensor is not None:
raise BypassAOTAutogradCache(
"Cannot cache a graph with functional tensor"
)
class AOTAutogradCacheDetails(FxGraphHashDetails):
"""
Object to capture all the details for a dynamo graph module relevant to computing
a safe and stable cache key for AOTAutograd.
"""
def __init__(
self,
gm: torch.fx.GraphModule,
example_inputs,
aot_config: AOTConfig,
fx_config: _CompileFxKwargs,
):
# FxGraphHashDetails contains all the keys related to inductor. Also includes some system info
self.aot_config = aot_config
self.grad_enabled = torch.is_grad_enabled()
self.disable_amp = torch._C._is_any_autocast_enabled()
self.deterministic_algorithms = torch.are_deterministic_algorithms_enabled()
self.autograd_config = config.save_config()
try:
# FXGraphCache has constraints on what can be pickled in its inductor
# config. Check that the gm is cacheable by inductor first,
# and if it raises an exception, also bypass on our end.
FxGraphCache._check_can_cache(gm)
super().__init__(gm, example_inputs, fx_config, [])
except BypassFxGraphCache as e:
# Sometimes inductor configs are unpickleable and can fail
raise BypassAOTAutogradCache from e
class AOTAutogradCachePickler(FxGraphCachePickler):
def __init__(self, gm: torch.fx.GraphModule):
super().__init__(gm)
self.dispatch_table: Dict
self.dispatch_table.update(
{
AOTConfig: functools.partial(self._reduce_aot_config),
torch.Tensor: functools.partial(self._reduce_tensor),
}
)
def _reduce_aot_config(self, aot_config: AOTConfig):
"""
Reduce the config to a stable key for caching.
"""
return (
_ident,
(
aot_config.num_params_buffers,
aot_config.keep_inference_input_mutations,
aot_config.is_export,
aot_config.no_tangents,
aot_config.dynamic_shapes,
aot_config.aot_autograd_arg_pos_to_source,
aot_config.enable_log,
aot_config.pre_dispatch,
),
)
def _reduce_tensor(self, tensor):
"""
Reduce the tensor to a stable key for caching.
"""
metadata = extract_tensor_metadata_for_cache_key(tensor)
return (_ident, (metadata,))
def autograd_cache_key(
gm: torch.fx.GraphModule,
example_inputs,
config: AOTConfig,
fx_config: _CompileFxKwargs,
# TODO: add args and parameters
) -> Tuple[str, List[str]]:
"""
Generate a unique hash of the FX graph for caching.
"""
check_cacheable(gm)
details = AOTAutogradCacheDetails(gm, example_inputs, config, fx_config)
pickler = AOTAutogradCachePickler(gm)
# The prefix distinguishes among the other kinds of objects we cache
key = "a" + pickler.get_hash(details)
debug_lines = pickler.debug_lines(details)
log.debug(
"Autograd graph cache hash details for key %s:\n%s",
key,
LazyString(lambda: "\n".join(debug_lines)),
)
return key, debug_lines
@dataclass
class FXGraphCacheLoadable:
fx_graph_cache_key: str
def is_backward(self):
return False
def load(self, example_inputs, fx_config: _CompileFxKwargs) -> CompiledFxGraph:
# [Note: AOTAutogradCache and FXGraphCache Guard interactions]
# As mentioned, AOTAutograd takes in the symint inputs from dynamo's list of arguments.
# FXGraphCache serializes guards that are needed in the shape_env based on these symint inputs to the graph.
# The invariant that AOTAutograd uses here is that the sources for symints given to it by dynamo are exactly
# the same as the ones it passes to inductor, for both the forward and backward passes.
# (This does not mean that the tensor values passed in are the same: only that their symints are).
# That is, AOTAutograd and Inductor never create new guards based on symints with different sources
# than those passed to it by inductor.
# TODO: We don't cache debug lines for now, but we should for improved debugging
remote_cache = None
constants = CompiledFxGraphConstants()
if should_use_remote_fx_graph_cache():
remote_cache = FxGraphCache.get_remote_cache()
result, cache_info = FxGraphCache.load_with_key(
self.fx_graph_cache_key,
[],
example_inputs,
local=True,
remote_cache=remote_cache,
is_backward=self.is_backward(),
constants=constants,
)
if result is None:
log.info("FXGraphCache cache miss for key %s", self.fx_graph_cache_key)
raise FXGraphCacheMiss
# No need to log chromium event because AOTAutograd will log that immediately for us
torch._logging.trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "fx_graph_cache_hit", # always a hit
"encoding": "json",
},
payload_fn=lambda: json.dumps(cache_info),
)
# TODO: How come cudagraphs could be None here?
result.post_compile(example_inputs, fx_config["cudagraphs"], constants) # type: ignore[arg-type]
return result
@dataclass
class CompiledForward(FXGraphCacheLoadable):
"""
Cacheable entry for a forward function
"""
def is_backward(self):
return False
@dataclass
class CompiledBackward(FXGraphCacheLoadable):
"""
Cacheable entry for a forward function
"""
# Used by AOTDispatchAutograd.post_compile
backward_state_indices: List[int]
num_symints_saved_for_bw_: int
def is_backward(self):
return True
@dataclass
class AOTAutogradCacheEntry:
"""A single entry into the cache."""
# Forward and Backward info
compiled_fw: CompiledForward
compiled_bw: Optional[CompiledBackward]
# Code of the joint graph using print_readable()
# Used for logging purposes
aot_joint_graph_str: Optional[str]
aot_forward_graph_str: Optional[str]
aot_backward_graph_str: Optional[str]
# Runtime_metadata saved right before compilation
runtime_metadata: ViewAndMutationMeta
# Wrappers that run after each aot_dispatch_* function
dispatch_wrappers: List[CompilerWrapper]
# Used by AOTSubclassWrapper
maybe_subclass_meta: Optional[SubclassMeta]
num_fw_outs_saved_for_bw: Optional[int]
# Used by RuntimeWrapepr
indices_of_inps_to_detach: List[int]
# Time taken to trace/compile the forward
# forward_time_taken includes AOTAutograd tracing time + inductor compilation time
# backward_time_taken is essentially just the time inductor took to compile
forward_time_taken_ns: int
backward_time_taken_ns: int
# Turn cache entry into the original callable
def wrap_post_compile(
self,
args: List[torch.Tensor],
aot_config: AOTConfig,
fx_config: _CompileFxKwargs,
) -> Callable:
"""
This function takes a cache entry and carefully reconstructs the original callable
that AOTAutograd returned the first time it was run. It does this by running the various
post compile steps that AOTAutograd runs on its compiled artifact after running the fw/bw compilers.
In the inference path, this consists of the Subclass, FunctionalzedRngRuntime, and RuntimeWrappers.
In the autograd path, this consists of AOTAutogradDispatch.post_compile.
The steps here should match exactly the steps that are run in aot_dispatch_base and aot_dispatch_autograd.
Notably absent from the cached path are:
- DebugAssertWrapper
- FakifiedOutWrapper
Which we'll handle separately later on, if necessary.
"""
# Log the output of AOTAutogradCache
if aot_config.enable_log:
# TODO: maybe also log to aot_graphs_log
# Unfortunately aot_graphs_log uses
# slightly different formatting though
if self.aot_joint_graph_str is not None:
torch._logging.trace_structured(
"aot_joint_graph", payload_fn=lambda: self.aot_joint_graph_str
)
if self.aot_forward_graph_str is not None:
torch._logging.trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "aot_forward_graph_fw_metadata",
"encoding": "string",
},
payload_fn=lambda: dataclass_repr(self.runtime_metadata),
)
if self.maybe_subclass_meta is not None:
torch._logging.trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "aot_forward_graph_fw_subclass_metadata",
"encoding": "string",
},
payload_fn=lambda: dataclass_repr(self.maybe_subclass_meta),
)
# It's called an inference graph if not running with autograd
name = (
"aot_forward_graph"
if self.aot_backward_graph_str is not None
else "aot_inference_graph"
)
torch._logging.trace_structured(
name, payload_fn=lambda: self.aot_forward_graph_str
)
if self.aot_backward_graph_str is not None:
torch._logging.trace_structured(
"aot_backward_graph", payload_fn=lambda: self.aot_backward_graph_str
)
compiled_fw_func = self.compiled_fw.load(args, fx_config)
compiled_bw_func = None
chromium_log = get_chromium_event_logger()
if self.compiled_bw is not None:
compiled_bw_func = self.compiled_bw.load(args, fx_config)
needs_autograd = True
chromium_log.try_add_event_data("backend_compile", dispatch_mode="autograd")
else:
needs_autograd = False
chromium_log.try_add_event_data(
"backend_compile", dispatch_mode="inference"
)
# Wrap the forward function in post compile wrappers
compiled_fw_func = AOTDispatchSubclassWrapper(
trace_joint=needs_autograd,
fw_only=None,
maybe_subclass_meta=self.maybe_subclass_meta,
num_fw_outs_saved_for_bw=self.num_fw_outs_saved_for_bw,
).post_compile(
compiled_fw_func, aot_config, runtime_metadata=self.runtime_metadata
)
req_subclass_dispatch = self.maybe_subclass_meta is not None
chromium_log.add_event_data(
"backend_compile", requires_subclass_dispatch=req_subclass_dispatch
)
# In autograd case, functionalizedRngWrapper should not modify outs
return_new_outs = not needs_autograd
compiled_fw_func = FunctionalizedRngRuntimeWrapper(
return_new_outs=return_new_outs
).post_compile(
compiled_fw_func, aot_config, runtime_metadata=self.runtime_metadata
)
disable_amp = torch._C._is_any_autocast_enabled()
if needs_autograd:
assert self.compiled_bw is not None
# This function is run on both cache miss and cache hit, either here
# or in aot_dispatch_autograd. On a cache hit,
# 1. the bw is already compiled
# 2. we don't need to save to the cache again
# so those corresponding arguments are set to None.
compiled_function = AOTDispatchAutograd.post_compile(
compiled_fw_func,
compiled_bw_func,
self.maybe_subclass_meta,
self.compiled_bw.num_symints_saved_for_bw_,
self.compiled_bw.backward_state_indices,
disable_amp,
self.indices_of_inps_to_detach,
None, # lazy_backward_info
aot_config,
fw_metadata=self.runtime_metadata,
try_save_cache_entry=None,
)
else:
compiled_function = RuntimeWrapper(
indices_of_inps_to_detach=self.indices_of_inps_to_detach,
trace_joint=False,
disable_amp=disable_amp,
).post_compile(
compiled_fw_func, aot_config, runtime_metadata=self.runtime_metadata
)
compiled_function, _ = post_compile(
self.dispatch_wrappers,
compiled_function,
aot_config,
runtime_metadata=self.runtime_metadata,
)
return compiled_function
@contextlib.contextmanager
def sanitize_gm_for_cache(gm: torch.fx.GraphModule):
"""
Clears a few fields in a dynamo supplied Graph Module that are not stable between graph inputs, but don't
affect inductor or aotdispatch correctness.
These fields **can** be used by code calling into aotdispatch (namely, dynamo), so we can't null them out completely.
To ensure that these fields are not accessed by inductor or aotdispatch, we clear them during AOTAutogradCache.load,
and then put them back before returning. This way, we generate a cache key based off of a canonical graph
without these fields, and also guarantee they aren't used to affect the cache's output.
"""
IGNORED_FIELDS = (
"meta", # metadata used by export
"compile_subgraph_reason", # Used by dynamo only for logging, no change in inductor/autograd behavior
"_param_name_to_source", # Encapsulated by aot_config.aot_autograd_arg_pos_to_source
)
saved_fields = {}
for field in IGNORED_FIELDS:
saved_fields[field] = getattr(gm, field, None)
# Clear the field
setattr(gm, field, None)
try:
yield
finally:
# Put the fields back after dispatch_and_compile is complete
for field, value in saved_fields.items():
setattr(gm, field, value)
class AOTAutogradCache:
"""
Caches the results of running AOTAutograd. This class mostly handles the save and load logic, whereas
AOTAutogradCacheEntry handles the wrapping/unwrapping logic.
Cache Inputs (AOTAutogradCacheDetails)
- AOTAutogradCache takes in the following inputs, which are analogous to inputs given
to AOTAutograd by dynamo:
- A fx graph module generated by dynamo
- A list of args, which consists of:
- Symint inputs to the graph, generated by dynamo
- The **real tensor** inputs, which inductor uses for cudagraphs
- Notably, the real tensor inputs don't have symints in their metadata.
AOTAutograd then retraces those real tensor arguments into FakeTensors later during execution.
- A set of global configurations that affect AOTAutograd or Inductor behavior.
It then generates a cache key given these values. Notably, this means AOTAutogradCache currently
specializes on the sizes and strides of the real tensor inputs when dynamic shapes are turned on.
In a later PR, we'll likely generate the cache key based on the FakeTensors AOTAutograd generates
based on the real tensor inputs, which can contain symints.
# Cache Outputs (AOTAutogradCacheEntry)
- AOTAutogradCache caches the following values:
- The compiled forward and backward functions from inductor, via keys to the FXGraphCache
- Metadata to reconstruct the AOTModule from the compiled inductor artifacts
- See AOTAutogradCacheEntry for more info
[Note: Caching guards generated by AOTAutograd and Inductor]
AOTAutograd and inductor both can introduce new guards to the shape environment. FXGraphCache saves guards with each
compiled graph inductor generates. On a cache hit, AOTAutograd reloads the compiled forward and backward functions
from FXGraphCache, giving it new symint arguments from the input args.
FXGraphCache uses those symints and its saved guards to repopulate the ShapeEnv with guards.
**No new guards are generated into the shape env after inductor finishes compiling**, so the guards
saved by inductor are sufficient for correctness for both AOTAutograd and Inductor's caches.
"""
@staticmethod
def clear():
"""Clear the cache"""
try:
shutil.rmtree(AOTAutogradCache._get_tmp_dir())
except FileNotFoundError:
pass
@staticmethod
def load(
dispatch_and_compile: Callable,
mod: Union[torch.fx.GraphModule, torch._dynamo.utils.GmWrapper],
args,
aot_config: AOTConfig,
cudagraphs: BoxedBool,
local: bool,
remote: bool,
) -> Callable:
"""
Load a result from the cache, and reconstruct a runtime wrapper around the object
"""
gm = mod.gm if isinstance(mod, torch._dynamo.utils.GmWrapper) else mod
with sanitize_gm_for_cache(gm):
compiled_fn = None
cache_info: Dict[str, Any] = {}
cache_key = None
debug_lines: List[str] = []
cache_event_time = time.time_ns()
cache_state = None
fx_config: _CompileFxKwargs = {"cudagraphs": cudagraphs}
try:
cache_key, debug_lines = autograd_cache_key(
gm, args, aot_config, fx_config
)
entry: Optional[AOTAutogradCacheEntry] = AOTAutogradCache._lookup(
cache_key, local, remote
)
if entry is not None:
compiled_fn = entry.wrap_post_compile(args, aot_config, fx_config)
log.info("AOTAutograd cache hit for key %s", cache_key)
counters["aot_autograd"]["autograd_cache_hit"] += 1
cache_state = "hit"
cache_event_time = time.time_ns()
forward_time_saved = entry.forward_time_taken_ns // 1e6
backward_time_saved = entry.backward_time_taken_ns // 1e6
cache_info.update(
{
"forward_time_saved_ms": forward_time_saved,
"backward_time_saved_ms": backward_time_saved,
"time_saved_ms": forward_time_saved + backward_time_saved,
}
)
time_saved_ns = (
entry.forward_time_taken_ns + entry.backward_time_taken_ns
)
# TODO: should we use the same field for remote cache time saved for both
# FXGraphCache and AOTAutogradCache?
# get_metrics_context().increment(...)
if (
ephemeral_increase := add_ephemeral_timeout_increase_for_distributed(
time_saved_ns
)
) != 0:
cache_info["ephemeral_timeout_increase"] = ephemeral_increase
if compiled_fn is None:
log.info("AOTAutograd cache miss for key %s", cache_key)
counters["aot_autograd"]["autograd_cache_miss"] += 1
cache_state = "miss"
cache_event_time = time.time_ns()
# Count missing the FXGraphCache as a miss not a bypass
except FXGraphCacheMiss as e:
counters["aot_autograd"]["autograd_cache_miss"] += 1
# Special counter when we pass autograd cache but
# fail when on inductor guards
counters["aot_autograd"]["autograd_cache_guard_miss"] += 1
cache_state = "miss"
if config.strict_autograd_cache:
raise e
# Most often this is BypassAOTAutogradCache, but
# if there's ever different reason we can't cache,
# we still never want to hard throw an exception, since
# we can always fallback to a cache bypass.
# As an example, if the user calls autograd via
# standalone inductor, we will sometimes get a GraphModule
# that doesn't actually have a `.graph` on it. Instead
# of checking every single case, we safely catch the exception
# in those cases.
except Exception as e:
cache_key = None
counters["aot_autograd"]["autograd_cache_bypass"] += 1
cache_state = "bypass"
cache_event_time = time.time_ns()
cache_info["cache_bypass_reason"] = str(e)
# TODO: this gets logged implicitly by cache_bypass_reason,
# and here we explicitly log it into tlparse.
# We may want to log this as an extra column in Scuba, though.
cache_info["cache_bypass_hard_exception"] = not isinstance(
e, BypassAOTAutogradCache
)
if remote:
log_cache_bypass("bypass_aot_autograd", str(e))
if config.strict_autograd_cache:
raise e
if compiled_fn is None:
# Set the cache key so we can save a cache result later
if cache_key is not None:
aot_config.cache_info = AOTAutogradCacheInfo(
cache_key, time.time_ns()
)
compiled_fn = dispatch_and_compile()
cache_info.update(
{
"key": cache_key,
"cache_state": cache_state,
"components": debug_lines,
}
)
chromium_log = get_chromium_event_logger()
chromium_log.log_instant_event(
f"autograd_cache_{cache_state}", cache_event_time, metadata=cache_info
)
chromium_log.try_add_event_data(
"backend_compile",
cache_state=cache_state,
cache_event_time=cache_event_time,
key=cache_info.get("key"),
components=cache_info.get("components"),
cache_bypass_reason=cache_info.get("cache_bypass_reason"),
remote_cache_enabled=remote,
local_cache_enabled=local,
)
torch._logging.trace_structured(
"artifact",
metadata_fn=lambda: {
"name": "aotautograd_cache_hash",
"encoding": "json",
},
payload_fn=lambda: json.dumps(cache_info),
)
return compiled_fn
@staticmethod
def _get_tmp_dir() -> str:
"""
Get the toplevel temporary directory for storing compiled graphs.
"""
return os.path.join(cache_dir(), "aotautograd")
@staticmethod
def _lookup(key: str, local: bool, remote: bool) -> Optional[AOTAutogradCacheEntry]:
"""Given a key generated by AOTAutogradCachePickler, look up its location in the cache."""
if local:
subdir = os.path.join(AOTAutogradCache._get_tmp_dir(), key)
# If the directory doesn't exist, we didn't cache this key locally
if os.path.exists(subdir):
path = os.path.join(subdir, "entry")
try:
with open(path, "rb") as f:
entry: AOTAutogradCacheEntry = pickle.load(f)
return entry
except Exception as e:
log.warning(
"AOTAutograd cache unable to load compiled graph: %s", e
)
if config.strict_autograd_cache:
raise e
# Prefer local cache to remote, fallback to remote if local missed
if remote:
remote_cache: Optional[
RemoteCache[JsonDataTy]
] = AOTAutogradCache.get_remote_cache()
if remote_cache is not None:
try:
if (cache_data := remote_cache.get(key)) is not None:
assert isinstance(cache_data, dict)
data = cache_data["data"]
assert isinstance(data, (str, bytes))
content = base64.b64decode(data)
# TODO: we currently don't have a way of logging the AOTAutograd output on a
# cache hit, because we never save it to the cache
# If we need to do that, we should do it here
return pickle.loads(content)
except Exception as e:
log_cache_bypass(
"bypass_aot_autograd", "Unable to deserialize: " + str(e)
)
log.warning(
"remote autograd cache unable to load compiled graph",
exc_info=True,
)
# Otherwise both caches missed
return None
@staticmethod
def save(key: str, entry: AOTAutogradCacheEntry, remote: bool):
"""Save a single entry into the cache."""
try:
check_metadata_cacheable(entry.runtime_metadata)
content = pickle.dumps(entry)
except BypassAOTAutogradCache as e:
counters["aot_autograd"]["autograd_cache_bypass"] += 1
log.warning("Bypassing autograd cache due to: %s", e)
if remote:
log_cache_bypass("bypass_aot_autograd", str(e))
return None
except Exception as e:
log.warning("AOTAutograd cache unable to serialize compiled graph: %s", e)
if remote:
log_cache_bypass(
"bypass_aot_autograd", "Unable to serialize: " + str(e)
)
if config.strict_autograd_cache:
raise e
return None
subdir = os.path.join(AOTAutogradCache._get_tmp_dir(), key)
if not os.path.exists(subdir):
os.makedirs(subdir, exist_ok=True)
path = os.path.join(subdir, "entry")
log.info("Writing AOTAutograd cache entry to %s", path)
write_atomic(path, content)
counters["aot_autograd"]["autograd_cache_saved"] += 1
if remote:
remote_cache: Optional[
RemoteCache[JsonDataTy]
] = AOTAutogradCache.get_remote_cache()
if remote_cache is not None:
time_taken_ms = int(
(entry.forward_time_taken_ns + entry.backward_time_taken_ns) // 1e6
)
cache_data: JsonDataTy = {
"data": base64.b64encode(content).decode("ascii"),
"time_taken_ms": time_taken_ms,
}
remote_cache.put(key, cache_data)
@staticmethod
@functools.lru_cache(None)
def get_remote_cache() -> Optional[RemoteCache[JsonDataTy]]:
"""
Attempts to load the remote cache, returns None on error.
"""
cache_id = "autograd-experimental"
return create_cache(
cache_id,
config.is_fbcode(),
"FbRemoteAOTAutogradCache",
"RemoteAOTAutogradCache",
)
|