File: runtime_wrappers.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (2202 lines) | stat: -rw-r--r-- 96,208 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
# mypy: allow-untyped-defs
"""
This module defines runtime wrappers, which, based on previous analysis attempts to:
1. process the inputs and outputs
2. apply mutations
3. handle functionalized randomness
4. deduplicate inputs and consolidate views into their bases (see input_output_analysis)
"""
import builtins
import collections
import itertools
import pprint
from contextlib import nullcontext
from dataclasses import dataclass, field
from functools import wraps
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union

import torch
import torch.utils.dlpack
from torch import Tensor
from torch._dynamo.utils import dynamo_timed, get_metrics_context
from torch._guards import (
    compile_context,
    CompileContext,
    detect_fake_mode,
    DuplicateInputs,
    tracing,
    TracingContext,
)
from torch._prims_common import CUDARngStateHelper
from torch._subclasses import FakeTensor
from torch.fx.experimental._backward_state import BackwardState
from torch.multiprocessing.reductions import StorageWeakRef
from torch.utils._python_dispatch import is_traceable_wrapper_subclass

from .. import config
from .collect_metadata_analysis import run_functionalized_fw_and_collect_metadata
from .functional_utils import gen_alias_from_base
from .input_output_analysis import (
    compute_overlapping_inputs,
    create_synthetic_base_metadata,
    remove_dupe_metadata,
)
from .logging_utils import describe_input, format_guard_bug_msg, track_graph_compiling
from .schemas import (
    AOTConfig,
    InputAliasInfo,
    MutationType,
    OutputType,
    PlainTensorMeta,
    SubclassCreationMeta,
    SubclassMeta,
    TensorAlias,
    ViewAndMutationMeta,
)
from .subclass_utils import (
    requires_subclass_dispatch,
    runtime_unwrap_tensor_subclasses,
    wrap_tensor_subclasses,
)
from .traced_function_transforms import aot_dispatch_subclass
from .utils import (
    call_func_at_runtime_with_args,
    make_boxed_func,
    normalize_as_list,
    partial_flatten_asdict,
    strict_zip,
)


zip = strict_zip


class CompilerWrapper:
    """
    A wrapper around the inputs and outputs to the compiler_fn. We separate these into two parts:

    1. The prologue, which edits the input to the compiler_fn(flat_fn, flat_args, etc)
    2. The epilogue, which edits the outputs of the compiler_fn (compiled_fn, real arguments)

    Each wrapper below should be implemented as a CompilerWrapper, so that we can facilitate
    caching on the compiled output, and re-wrapping the output via epilogues.
    Extra metadata that is needed to compute pre or post compile can be passed in via attributes.
    """

    def pre_compile(
        self,
        flat_fn,
        flat_args: List[Tensor],
        aot_config: AOTConfig,
        *,
        fw_metadata: ViewAndMutationMeta,
    ) -> Tuple[Callable, List[Tensor], ViewAndMutationMeta]:
        """
        Process the inputs to the compiler_fn. You can pass in extra metadata via kwargs.
        Args:
        flat_fn: The function to compile
        flat_args: Metadata from example inputs of the function to compile
        aot_config: AOTConfig passed in at compile time
        fw_metadata: ViewAndMutationMeta generated from flat_fn and flat_args
        """
        return flat_fn, flat_args, fw_metadata

    def post_compile(self, compiled_fn, aot_config, *, runtime_metadata) -> Callable:
        """
        Given an output of the compiler, wrap it with information received from prologue.
        Args:
        compiled_fn: Callable after calling compiler_fn
        aot_config: AOTConfig after calling prologue
        runtime_metadata: ViewAndMutationMeta after calling all wrappers's pre_compile steps.
        Example:

        def wrapped_compiled_fn(args):
            # do something with args, aot_config, fw_metadata
            return compiled_fn(args)

        return wrapped_compiled_fn
        """
        return compiled_fn


# The wrapper created by this function handles all of the runtime aliasing and mutation "epilogue" logic
# that needs to run after the compiled function.
#
# This function accepts a trace_joint flag, indicating whether or not we're generating the runtime
# epilogue for a forward-only inference graph, or for an autograd.Function.apply function.
# This is because there are some minor differences in how we treat these cases at runtime:
# - resize_() is currently handled in the inference case, but not fully handled in the autograd case.
# - the autograd cases inserts TensorAlias wrapper objects for outputs that alias inputs
@dataclass
class RuntimeWrapper(CompilerWrapper):
    indices_of_inps_to_detach: List[int]
    trace_joint: bool
    disable_amp: bool

    def post_compile(
        self,
        compiled_fn,
        aot_config: AOTConfig,
        *,
        runtime_metadata: ViewAndMutationMeta,
    ):
        return _create_runtime_wrapper(
            compiled_fn,
            runtime_metadata=runtime_metadata,
            indices_of_inps_to_detach=self.indices_of_inps_to_detach,
            trace_joint=self.trace_joint,
            keep_input_mutations=aot_config.keep_inference_input_mutations,
            disable_amp=self.disable_amp,
        )


class NoopAliasHandler:
    def __init__(self, info, runtime_metadata, trace_joint):
        pass

    def __call__(self, orig_inputs, fw_outs, out):
        return out


def _unwrap_tensoralias(x):
    assert isinstance(x, TensorAlias)
    return x.alias


def _identity(x):
    return x


class AliasOfInputHandler:
    def __init__(self, info, runtime_metadata, trace_joint):
        self.base_idx = info.base_idx
        self.unwrap_out = _unwrap_tensoralias if trace_joint else _identity
        self.requires_grad = info.requires_grad
        self.functional_tensor = info.functional_tensor
        self.replay_views = config.view_replay_for_aliased_outputs

    def __call__(self, orig_inputs, fw_outs, out):
        aliased_base_tensor = orig_inputs[self.base_idx]
        return gen_alias_from_base(
            aliased_base_tensor,
            self.unwrap_out(out),
            self.requires_grad,
            self.functional_tensor,
            replay_views=self.replay_views,
        )


class IsInputHandler:
    def __init__(self, info, runtime_metadata, trace_joint):
        self.base_idx = info.base_idx
        self.unwrap_out = _unwrap_tensoralias if trace_joint else _identity

    def __call__(self, orig_inputs, fw_outs, out):
        aliased_base_tensor = orig_inputs[self.base_idx]
        return aliased_base_tensor


class AliasOfIntermediateHandler:
    def __init__(self, info, runtime_metadata, trace_joint):
        if info.output_type in (
            OutputType.alias_of_intermediate,
            OutputType.alias_of_intermediate_save_as_output,
        ):
            num_user_outputs = len(runtime_metadata.output_info)
            self.base_idx = info.base_idx + num_user_outputs
        else:
            self.base_idx = info.base_idx

        self.unwrap_out = _unwrap_tensoralias if trace_joint else _identity
        self.requires_grad = info.requires_grad
        self.functional_tensor = info.functional_tensor
        self.replay_views = config.view_replay_for_aliased_outputs

    def __call__(self, orig_inputs, fw_outs, out):
        aliased_base_tensor = fw_outs[self.base_idx]
        return gen_alias_from_base(
            aliased_base_tensor,
            self.unwrap_out(out),
            self.requires_grad,
            self.functional_tensor,
            replay_views=self.replay_views,
        )


_HANDLER_MAP = {
    OutputType.non_alias: NoopAliasHandler,
    OutputType.unsafe_view_alias: NoopAliasHandler,
    OutputType.custom_function_view: NoopAliasHandler,
    OutputType.alias_of_input: AliasOfInputHandler,
    OutputType.is_input: IsInputHandler,
    OutputType.alias_of_intermediate: AliasOfIntermediateHandler,
    OutputType.alias_of_intermediate_save_as_output: AliasOfIntermediateHandler,
    OutputType.alias_of_intermediate_base_is_user_output: AliasOfIntermediateHandler,
}


def make_output_handler(info, runtime_metadata, trace_joint):
    handler_type = _HANDLER_MAP[info.output_type]
    return handler_type(info, runtime_metadata, trace_joint)


def _create_runtime_wrapper(
    compiled_fn,
    *,
    runtime_metadata: ViewAndMutationMeta,
    indices_of_inps_to_detach: List[int],
    trace_joint: bool,
    keep_input_mutations: bool,
    disable_amp: bool,
):
    if not hasattr(compiled_fn, "_boxed_call"):
        compiled_fn = make_boxed_func(compiled_fn)

    # Note [Inputs needed in runtime epilogue after list clearing]
    # In Python functions, you can't free the input arguments of a function within the scope of that function. A workaround is to
    # wrap the input arguments in a list, and clear the list from within the function.
    # Here, this is implemented as `call_func_at_runtime_with_args(..., steal_args=True)`.
    #
    # This is needed for Compiled Autograd since some of the inputs (activations) should be freed early.
    # However, we cannot blindly clear the entire list, because AOTAutograd may need access to some of the graph inputs
    # **after** the compiled function has finished running. There are two main cases:
    #   (1) Input mutations: If there are an input mutations that we must run outside of the graph, we need access to the input.
    #   (2) Output aliasing: Outputs that aliases graph inputs generally must be regenerated outside of the `autograd.Function`,
    #       and doing so requires us accessing the corresponding input after the compiled artifact has run.
    epilogue_args_idx = []
    epilogue_args_idx.extend(runtime_metadata.mutated_inp_runtime_indices)
    for info in runtime_metadata.output_info:
        if (
            info.output_type == OutputType.alias_of_input
            or info.output_type == OutputType.is_input
        ):
            assert isinstance(info.base_idx, int)
            epilogue_args_idx.append(info.base_idx)

    if config.unlift_effect_tokens:
        assert len(runtime_metadata.tokens) == 0

    replay_views = config.view_replay_for_aliased_outputs
    if runtime_metadata.num_outputs_aliased > 0:
        output_handlers = tuple(
            make_output_handler(info, runtime_metadata, trace_joint)
            for info in runtime_metadata.output_info
        )

    def runtime_wrapper(args: List[Any]):
        # stash a ref to each input tensor we plan to use after the compiled function
        orig_inputs = {i: args[i] for i in epilogue_args_idx}

        if keep_input_mutations:
            mutated_args = (
                args[i]
                for i in runtime_metadata.mutated_graph_handled_indices_seen_by_autograd
            )
            torch.autograd.graph.increment_version(mutated_args)

        if trace_joint:
            args_ = list(args)
            # See Note [Detaching inputs that never need gradients]
            for idx in indices_of_inps_to_detach:
                if isinstance(args_[idx], torch.Tensor):
                    args_[idx] = args_[idx].detach()

            # It's possible to have trace_joint inside user specified with no_grad() region,
            # if there is a nested with enable_grad(), that forces some outputs to require gradients.
            # Therefore, we unconditionally turn on enable_grad() for compiled_fn execution.
            with torch.autograd._force_original_view_tracking(
                True
            ), torch.enable_grad():
                all_outs = call_func_at_runtime_with_args(
                    compiled_fn, args_, disable_amp=disable_amp, steal_args=True
                )
        else:
            # When we have an inference graph, we run with grad disabled.
            # It's possible to get an inference graph with inputs that require grad,
            # in which case we want to make sure autograd is disabled
            # (since e.g., inductor will generate aten.addmm.out calls which autograd will complain on)
            # NOTE: We use _set_grad_enabled directly to reduce runtime overhead
            grad_enabled = torch.is_grad_enabled()
            try:
                if grad_enabled:
                    torch._C._set_grad_enabled(False)
                all_outs = call_func_at_runtime_with_args(
                    compiled_fn, args, disable_amp=disable_amp, steal_args=True
                )
            finally:
                if grad_enabled:
                    torch._C._set_grad_enabled(True)
        del args

        num_mutated_runtime_inps = runtime_metadata.num_mutated_inp_runtime_indices
        num_intermediate_bases = runtime_metadata.num_intermediate_bases

        assert (
            len(all_outs)
            == num_mutated_runtime_inps
            + runtime_metadata.num_outputs
            + num_intermediate_bases
        )

        # Step 3: After running the compiled fw, apply updates to mutated inputs
        num_mutations_to_apply = runtime_metadata.num_mutated_inp_runtime_indices
        if num_mutations_to_apply > 0:
            updated_inputs = all_outs[:num_mutations_to_apply]
            fw_outs = all_outs[num_mutations_to_apply:]

            for i, inpt_idx in enumerate(runtime_metadata.mutated_inp_runtime_indices):
                meta = runtime_metadata.input_info[inpt_idx]
                if not meta.mutates_data and not meta.mutates_metadata:
                    continue
                original_inpt = orig_inputs[inpt_idx]
                updated_inpt = updated_inputs[i]
                if meta.mutates_storage_metadata:
                    # See Note [set_() Input Mutations in AOTAutograd]
                    # mutates_storage_metadata means our input saw a x.set_(y) call.
                    # What if x **also** saw a data and/or a metadata mutation?
                    # (1) If the [meta]data mutation occurred after the set_(),
                    #     then there is no need to copy_() the data.
                    #     When we perform x.set_(x_updated), we are guaranteed that
                    #     x_updated already has the final version of the data/metadata
                    # (2) If a data mutation occurred before the set_().
                    #     This case seems very difficult to support.
                    #     TODO: discuss on the PR and decide if we want to tr to
                    #     either support it, or detect and ban it.
                    if trace_joint:
                        assert isinstance(updated_inpt, TensorAlias)
                        updated_inpt = updated_inpt.alias
                    with torch.no_grad():
                        original_inpt.set_(updated_inpt)
                    continue
                if meta.mutates_metadata and not meta.mutates_data:
                    if trace_joint:
                        assert isinstance(updated_inpt, TensorAlias)
                        updated_inpt = updated_inpt.alias
                    # We need to grab the size/stride/storage_offset from the compiled forward,
                    # and use that to mutate the metadata of the input
                    original_inpt.as_strided_(
                        updated_inpt.size(),
                        updated_inpt.stride(),
                        updated_inpt.storage_offset(),
                    )
                else:
                    if meta.mutates_data and meta.mutates_metadata:
                        original_inpt.as_strided_(
                            updated_inpt.size(),
                            updated_inpt.stride(),
                            updated_inpt.storage_offset(),
                        )
                    else:
                        assert meta.mutates_data
                    if meta.is_leaf and original_inpt.requires_grad:
                        # We can hit this situation in this case:
                        #   def f(x):
                        #       x.detach().mul_(2)
                        #       return x + 1
                        # AOTAutograd will see a mutation in the above case, and try to
                        # apply a copy_() here, in the epilogue.
                        # But if x required gradients, and is a leaf, then autograd
                        # will yell at us for trying to mutate it.
                        # However, it's only possible to end up in this scenario (like the above)
                        # if all of the mutations to the leaf input were non-autograd-tracking mutations
                        # (aka mutations under no_grad(), or on detached views).
                        # In that case, we fully want to hide the mutation from autograd, so detaching is ok.
                        original_inpt.detach().copy_(updated_inpt)
                    else:
                        original_inpt.copy_(updated_inpt)
        else:
            fw_outs = all_outs

        # Step 4: Manually regenerate any outputs that are aliased to inputs, instead of
        # compiling them.
        if runtime_metadata.num_outputs_aliased > 0:
            # The compiled forward also returned intermediate bases. We don't want to return them to the user.
            expect_num_outputs = (
                len(output_handlers) + runtime_metadata.num_intermediate_bases
            )
            assert len(fw_outs) == expect_num_outputs
            ret_outs = [
                handler(orig_inputs, fw_outs, out)
                for out, handler in builtins.zip(fw_outs, output_handlers)
            ]
        else:
            ret_outs = fw_outs

        if runtime_metadata.dynamic_outputs:
            for t, o in zip(ret_outs, runtime_metadata.output_info):
                if o.dynamic_dims is None:
                    continue
                if hasattr(t, "_dynamo_weak_dynamic_indices"):
                    t._dynamo_weak_dynamic_indices |= o.dynamic_dims
                else:
                    t._dynamo_weak_dynamic_indices = o.dynamic_dims.copy()
        if runtime_metadata.grad_enabled_mutation is not None:
            torch._C._set_grad_enabled(runtime_metadata.grad_enabled_mutation)
        return ret_outs

    return runtime_wrapper


@dataclass
class FunctionalizedRngRuntimeWrapper(CompilerWrapper):
    # TODO: I would love to get rid of this argument, but it's
    # Wrapped pretty tightly around our aot_dispatch_autograd logic.
    # Specifically, tensors_saved_for_backwards_slice's value is both used for calculating indices
    # for setting placeholder strides(which is done before runtime, before this wrapper runs)
    # and for saving tensors for backward (which is done during runtime, after this wrapper runs)
    # So in aot_dispatch_autograd, this wrapper can't edit the set of outs without making one
    # of those two indices incorrect.
    return_new_outs: bool = True

    def pre_compile(
        self,
        flat_fn,
        flat_args,
        aot_config,
        *,
        fw_metadata,
    ) -> Tuple[Callable, List[Tensor], ViewAndMutationMeta]:
        if config.functionalize_rng_ops:
            # Update example inputs for the fw_compiler
            fake_mode = detect_fake_mode()
            seed, offset = CUDARngStateHelper.get_torch_state_as_tuple(fake_mode)
            flat_args.extend([seed, offset])
            # We are not clearing flat_args here because
            # 1) There is a check in the debug compiler at the end
            # 2) It does not matter as these are fake tensors
        return flat_fn, flat_args, fw_metadata

    def post_compile(
        self,
        compiled_fn,
        aot_config: AOTConfig,
        *,
        runtime_metadata: ViewAndMutationMeta,
    ):
        @wraps(compiled_fn)
        def wrapper(runtime_args: List[Any]):
            if runtime_metadata.is_rng_op_functionalized:
                # Add the seed and offset to args
                seed, offset = CUDARngStateHelper.get_torch_state_as_tuple()
                runtime_args.extend([seed, offset])
                out = compiled_fn(runtime_args)
                out = self._functionalized_rng_runtime_epilogue(
                    runtime_metadata,
                    out,
                    # TODO: this won't be right for the backward when we convert the call_compiled_backward to use the wrapper
                    runtime_metadata.num_forward_returns,
                )
                return out
            return compiled_fn(runtime_args)

        return wrapper

    # Calling convention: If we are running functionalized RNG, then outs consists
    # of (user_outs, rng_offset)
    def _functionalized_rng_runtime_epilogue(
        self,
        metadata: ViewAndMutationMeta,
        outs,
        offset_index,
    ):
        if metadata.is_rng_op_functionalized:
            assert metadata.num_outputs_rng_offset == 1
            new_rng_offset = outs[offset_index]
            CUDARngStateHelper.set_new_offset(new_rng_offset)
            if self.return_new_outs:
                user_outs = outs[:offset_index] + outs[offset_index + 1 :]
                return user_outs
            else:
                return outs

        return outs


@dataclass
class FakifiedOutWrapper(CompilerWrapper):
    out_metas: List[torch.Tensor] = field(default_factory=list)
    # TracingContext.fwd_output_strides
    # Generated from actually doing compile
    fwd_output_strides: Optional[List[List[int]]] = None
    needs_post_compile: bool = True

    def pre_compile(
        self,
        fw_module,  # Must be fw_module from aot_dispatch_*_graph
        flat_args,
        aot_config,
        *,
        fw_metadata,
    ) -> Tuple[Callable, List[Tensor], ViewAndMutationMeta]:
        tracing_context = torch._guards.TracingContext.try_get()
        if tracing_context and tracing_context.fakify_first_call:
            self.out_metas = [
                n.meta["val"] for n in (list(fw_module.graph.nodes)[-1].args[0])
            ]
        else:
            self.needs_post_compile = False
        return fw_module, flat_args, fw_metadata

    def _compute_output_meta_with_inductor_strides(self):
        out = self.out_metas
        fwd_output_strides = self.fwd_output_strides
        if not fwd_output_strides:
            return out

        from torch.fx.experimental.symbolic_shapes import statically_known_true

        for i in range(len(out)):
            if not isinstance(out[i], Tensor):
                continue
            if all(
                statically_known_true(s1 == s2)
                for s1, s2 in zip(out[i].stride(), fwd_output_strides[i])
            ):
                continue
            out[i] = out[i].as_strided(out[i].shape, fwd_output_strides[i])
        return out

    # To be called post compile
    def set_fwd_output_strides(self, fwd_output_strides):
        self.fwd_output_strides = fwd_output_strides

    def post_compile(
        self,
        compiled_fn,
        aot_config: AOTConfig,
        *,
        runtime_metadata: ViewAndMutationMeta,
    ):
        if self.needs_post_compile:
            assert self.fwd_output_strides is not None
            fakified_out = self._compute_output_meta_with_inductor_strides()

            @wraps(compiled_fn)
            def wrapper(runtime_args):
                nonlocal fakified_out
                if fakified_out is not None:
                    out = fakified_out
                    fakified_out = None
                    return out
                return compiled_fn(runtime_args)

            return wrapper
        # If we don't need to fakify, we can just return the original compiled function
        return compiled_fn


# This wrapper handles the AOTDispatch runtime logic for tensor subclasses.
# At runtime, we have a compiled function that knows how to operate on the domain of DenseTensor -> DenseTensor,
# But the user might have passed us some tensor subclass inputs (or expect some subclass tensor outputs).
# This function handles the wrapping and unwrapping of tensor subclasses at runtime.
@dataclass
class AOTDispatchSubclassWrapper(CompilerWrapper):
    trace_joint: bool
    fw_only: Optional[Callable]  # Not cached, only used in pre_compile
    maybe_subclass_meta: Optional[SubclassMeta]
    num_fw_outs_saved_for_bw: Optional[int]

    def pre_compile(
        self,
        flat_fn,
        flat_args: List[Tensor],
        aot_config: AOTConfig,
        *,
        fw_metadata: ViewAndMutationMeta,
    ):
        (new_flat_fn, new_flat_args, subclass_meta) = aot_dispatch_subclass(
            flat_fn,
            flat_args,
            is_joint_structure=self.trace_joint,
            meta=fw_metadata,
            fw_only=self.fw_only,  # type: ignore[arg-type]
        )
        self.maybe_subclass_meta = subclass_meta
        return new_flat_fn, new_flat_args, fw_metadata

    def post_compile(
        self,
        compiled_fn,
        _aot_config: AOTConfig,
        *,
        runtime_metadata: ViewAndMutationMeta,
    ):
        if self.maybe_subclass_meta is None:
            return compiled_fn

        subclass_metas = runtime_metadata.subclass_fw_graph_out_meta

        @wraps(compiled_fn)
        def inner_fn(args: List[Any]):
            unwrapped_args = runtime_unwrap_tensor_subclasses(
                args,
                subclass_metas=runtime_metadata.subclass_inp_meta,
                append_symints=True,
            )
            args.clear()
            # expectation: runtime_fn is a boxed fn
            unwrapped_outs = compiled_fn(unwrapped_args)
            wrapped_outs = wrap_tensor_subclasses(
                unwrapped_outs,
                subclass_metas=subclass_metas,
                num_fw_outs_saved_for_bw=self.num_fw_outs_saved_for_bw,
                is_runtime=True,
                included_subclass_symints=True,
            )
            return wrapped_outs

        # box it
        inner_fn._boxed_call = True  # type: ignore[attr-defined]
        return inner_fn


@dataclass
class EffectTokensWrapper(CompilerWrapper):
    def post_compile(
        self,
        compiled_fn,
        _aot_config,
        *,
        runtime_metadata: ViewAndMutationMeta,
    ):
        num_tokens = len(runtime_metadata.tokens)

        @wraps(compiled_fn)
        def inner_fn(args: List[Any]):
            if num_tokens > 0:
                # Pass in forward effect tokens (See Note [Side-Effectful Tokens in AOTAutograd])
                old_args = args
                args = [*([None] * num_tokens), *args]
                old_args.clear()

            outs = compiled_fn(args)

            # Inductor cache DummyModule can return None
            if outs is None:
                return None
            # Toss out the effect tokens (See Note [Side-Effectful Tokens in AOTAutograd])
            return outs[num_tokens:] if num_tokens != 0 else outs

        # box it
        inner_fn._boxed_call = True  # type: ignore[attr-defined]
        return inner_fn


# MOTIVATION:
#
# When tracing functions for future execution, one must be careful not to pass
# in the same input tensor multiple times (e.g., f(x, x), as this can result
# in graphs that are ONLY valid if you later pass a new tensor in exactly the
# same way (e.g., f(y, y)).  (NB: we really mean duplicate; two distinct
# tensors that alias each other is a different situation that is covered by
# aot_dispatch_deduplicated_autograd). Here are two examples:
#
# (1) Suppose you have a function:
#
#   def f(x, y):
#       return x + y
#
# If you make_fx(f)(x, x), you will trace out:
#
#   def f(x, y):
#       return y + y
#
# Oops!
#
# (2) For most tensors x and y, you can compute f's gradient with respect to
# these to inputs by saying torch.autograd.grad(f(x, y), (x, y)).  However,
# if x is y, you will trace out a program that gets incorrect gradients:
#
#   >>> x = torch.randn(1, requires_grad=True)
#   >>> torch.autograd.grad(x + x, (x, x))
#   (tensor([2.]), tensor([2.]))
#
# In other words, the gradient is double-counted.  Deduplicating the arguments
# gives you an appropriate gradient:
#
#   >>> y = torch.randn(1, requires_grad=True)
#   >>> torch.autograd.grad(x + y, (x, y))
#   (tensor([1.]), tensor([1.]))
#
# HOW TO DEDUPLICATE:
#
# There are a few strategies, in order of preference:
#
# 1. For every duplicate argument to the function, detach it into
#    a separate leaf tensor, so that it is no longer duplicated.
#
#       PRO: The resulting compiled graph works for any configuration
#       of duplicated arguments.
#
#       CON: It does not (naively) work if you mutate the metadata of inputs:
#
#           def f(x, y):
#               x.transpose_(0, 1)
#               y.transpose_(0, 2)
#
#           x = torch.randn(2, 3, 4)
#           f(x, x)
#
#       The ordering of the transposes inside f dictates whether or not
#       you get [4, 2, 3] or [3, 4, 2].  This means that you cannot precompute
#       what metadata mutations should get applied to each input; you need to
#       assume they aren't duplicates (what we do today) or preserve
#       the original metadata mutations exactly in order, so that they work
#       for any duplicate configuration.
#
#       CON: It does not (naively) work if you mutate the data of inputs.
#       In particular, leaf tensors that require grad cannot be mutated,
#       this makes it impossible to differentiate with respect to the original
#       base.
#
# 2. For every duplicate argument to the function, remove it, so it is
#    no longer part of the "true" signature:
#
#       PRO: Implemented naively, it still works for metadata/data mutation.
#
#       CON: The resulting compiled graph is duplicate-specialized: it only
#       works if future calls duplicate arguments in exactly the same way.
#       Horribly, Dynamo doesn't guard on this at the moment.  But even if
#       it did, you could still end up recompiling a bunch of each duplicate.
#
# Our strategy is to do (1) if we can, and do (2) otherwise, erroring if
# Dynamo's guards are not enough.  In practice, this seems to cover
# everything.
#
@dataclass
class AOTDedupeWrapper(CompilerWrapper):
    keep_arg_mask: List[bool] = field(default_factory=list)
    add_dupe_map: List[int] = field(default_factory=list)
    old_input_metadata: List[InputAliasInfo] = field(default_factory=list)
    needs_post_compile: bool = True

    # NB: Hot path, avoid set lookups here
    # TODO: Can avoid the zip here too, probably
    def remove_dupe_args(self, args):
        return [t for t, keep in zip(args, self.keep_arg_mask) if keep]

    def add_dupe_args(self, args):
        return [args[i] for i in self.add_dupe_map]

    def pre_compile(
        self,
        flat_fn,
        flat_args: List[Tensor],
        aot_config: AOTConfig,
        *,
        fw_metadata: ViewAndMutationMeta,
    ) -> Tuple[Callable, List[Tensor], ViewAndMutationMeta]:
        # Use information about whether or not flat_fn mutates its arguments
        # or not to handle dupe args

        # Strategy 1: For any input that is not mutated, we can leafify it if we
        # need to remove a duplicate.
        leaf_flat_args = []
        args_set = set()
        ok = True

        for i, a in enumerate(flat_args):
            if not isinstance(a, torch.Tensor):
                leaf_flat_args.append(a)
            elif a not in args_set:
                args_set.add(a)
                leaf_flat_args.append(a)
            elif (
                not fw_metadata.input_info[i].mutates_data
                and not fw_metadata.input_info[i].mutates_metadata
            ):
                leaf_flat_args.append(a.detach().requires_grad_(a.requires_grad))
            else:
                ok = False
                break

        if ok:
            self.needs_post_compile = False
            return flat_fn, leaf_flat_args, fw_metadata

        if requires_subclass_dispatch(leaf_flat_args, fw_metadata):
            raise RuntimeError(
                """\
        Encountered duplicate inputs that are mutated in the graph, but at least one input/output
        to the graph is a tensor subclass. This is not supported today. You can try to
        remove the aliasing yourself as a workaround, or otherwise file an issue on github."""
            )

        # export path: ban duplicate inputs for now, add later if requested.
        if aot_config.is_export:
            raise RuntimeError(
                f"""\
        Encountered duplicated inputs that are mutated in the graph you are trying to export.
        This functionality is currently not supported. If needed, please file a github issue.

        fw_metadata={str(fw_metadata)}
            """
            )

        # Strategy 2: Duplicate specialize.
        #
        # In Haskell types, suppose you have:
        #
        #   add_dupe_args :: DedupedArgs -> Args
        #   remove_dupe_args :: Args -> DedupedArgs
        #
        #   compiler_fn
        #       :: (DedupedArgs -> R) -> DedupedArgs -> AOTConfig -> (DedupedArgs -> R)
        #   deped_compiler_fn
        #       :: (Args -> R) -> Args -> AOTConfig -> (Args -> R)
        #
        # Then the code below can be written in point-free style as:
        #
        #   deduped_compiler_fn f a c =
        #       compiler_fn (f . add_dupe_args) (remove_dupe_args a) c . remove_dupe_args
        #
        # Suppose you have:
        #
        #   [a, b, a, c]
        #
        # We want:
        #
        #   remove_dupe_args([a, b, a, c]) == [a, b, c]
        #   add_dupe_args([a, b, c]) == [a, b, a, c]
        #
        # This is done via (respectively):
        #
        #   seen_args = {a: 0, b: 1, c: 2}
        #   enumerate(add_dupe_map) = [  # how to get args from the deduped list
        #       (0, 0),
        #       (1, 1),
        #       (2, 0),
        #       (3, 2),
        #   ]
        #   keep_arg_mask = [True, True, False, True]

        seen_args: Dict[Tensor, int] = {}
        # Implicitly map duped arg position (list index) to de-duped arg position
        keep_arg_mask: List[bool] = []
        add_dupe_map: List[int] = []
        duped_arg_len = len(flat_args)

        j = 0  # index into deduped_flat_args
        for t in flat_args:
            if isinstance(t, torch.Tensor):
                if t in seen_args:
                    keep_arg_mask.append(False)
                    add_dupe_map.append(seen_args[t])
                    continue
                seen_args[t] = j

            keep_arg_mask.append(True)
            add_dupe_map.append(j)
            j += 1
        assert (
            len(add_dupe_map) == duped_arg_len
        ), f"Expects add_dupe_map to have length {duped_arg_len} but got {len(add_dupe_map)}"

        self.keep_arg_mask = keep_arg_mask
        self.add_dupe_map = add_dupe_map

        deduped_flat_args = self.remove_dupe_args(flat_args)

        # Update our input metadata to remove duped input metadata.
        updated_fw_metadata = remove_dupe_metadata(
            fw_metadata, keep_arg_mask, add_dupe_map
        )

        if (
            tracing_context := TracingContext.try_get()
            and aot_config.aot_autograd_arg_pos_to_source
        ):
            # TODO(voz): This structure is 1:1, we could consider an alternate structure like
            # kept_pos:[dupe_arg_pos], however, add_dupe_map is 1:1 so we would need a new structure there,
            # which feels like needless complexity for a tiny bit of efficiency at this point.
            for dupe_arg_pos, (kept_pos, keep_arg) in enumerate(
                zip(add_dupe_map, keep_arg_mask)
            ):
                if not keep_arg:
                    dupe_arg_source = aot_config.aot_autograd_arg_pos_to_source[
                        dupe_arg_pos
                    ]
                    kept_arg_source = aot_config.aot_autograd_arg_pos_to_source[
                        kept_pos
                    ]
                    tracing_context.guards_context.aotautograd_guards.append(  # type: ignore[attr-defined]
                        DuplicateInputs(kept_arg_source, dupe_arg_source)
                    )

        @wraps(flat_fn)
        def wrapped_flat_fn(*args):
            return flat_fn(*self.add_dupe_args(args))

        if config.debug_assert:
            ref_fw_metadata = run_functionalized_fw_and_collect_metadata(
                wrapped_flat_fn,
                static_input_indices=aot_config.static_input_indices,
                keep_input_mutations=fw_metadata.keep_input_mutations,
                is_train=fw_metadata.is_train,
            )(*deduped_flat_args)
            assert (
                ref_fw_metadata == updated_fw_metadata
            ), f"ref_metadata={str(ref_fw_metadata)}, actual_metadata={str(updated_fw_metadata)}"

        return wrapped_flat_fn, deduped_flat_args, updated_fw_metadata

    def post_compile(
        self,
        compiled_fn,
        aot_config: AOTConfig,
        *,
        runtime_metadata: ViewAndMutationMeta,
    ):
        if not self.needs_post_compile:
            return compiled_fn

        @wraps(compiled_fn)
        def wrapped_compiled_fn(args: List[Any]):
            deduped_args = self.remove_dupe_args(args)
            args.clear()
            return compiled_fn(deduped_args)

        wrapped_compiled_fn._boxed_call = True  # type: ignore[attr-defined]

        # This can be uncommented when we properly guard for duplicates,
        # but right now we must not do it.
        # if not config.debug_assert:
        #     return wrapped_compiled_fn

        @wraps(wrapped_compiled_fn)
        def debugged_compiled_fn(args):
            # Test that the computed remove/add arg functions are an inverse
            new_args = self.add_dupe_args(self.remove_dupe_args(args))
            seen: Dict[Any, None] = {}
            for i, (x, y) in enumerate(zip(new_args, args)):
                seen[y] = None
                assert x is y, format_guard_bug_msg(
                    aot_config,
                    f"{describe_input(i, aot_config)} would be a duplicate of "
                    f"{describe_input(self.add_dupe_map[i], aot_config)}",
                )
            # This is only an error if there is metadata mutation on both of
            # the duped arguments; in this case, we need to know what order
            # the metadata mutation applies in.  You'll get the correct result
            # otherwise, because a graph that assumes distinct inputs works if
            # you dupe the inputs (the gradient contributions from each input
            # will get summed up appropriately.)
            #
            # TODO: work out how to setup this assert correctly
            """
            assert len(seen) == unique_args, format_guard_bug_msg(aot_config,
                f"there would be {unique_args} distinct arguments"
            )
            """
            return wrapped_compiled_fn(args)

        debugged_compiled_fn._boxed_call = True  # type: ignore[attr-defined]

        return debugged_compiled_fn


# This layer handles the situation where you have two inputs that alias each other,
# and one of the inputs is mutated.
# We need to take special care to ensure that the mutation is applied to the other aliases in the graph.
#
# pre-condition: AOTDedupWrapper has already run.
# (This function will in theory work if there are duplicate args.
# However, the synthetic base code path is a bit sub-optimal, and running with dupe'd inputs
# would cause us to hit that path more frequently).
@dataclass
class AOTSyntheticBaseWrapper(CompilerWrapper):
    # Currently, the only reason we need to plumb this bool is because
    # the synthetic base code prohibits more cases in the autograd case than the inference case.
    trace_joint: bool  # TODO: refactor trace_joint
    needs_post_compile: bool = True
    aliased_arg_idx_with_metadata_mutations: List[int] = field(default_factory=list)

    def pre_compile(
        self,
        flat_fn,
        flat_args: List[Any],
        aot_config: AOTConfig,
        *,
        fw_metadata: ViewAndMutationMeta,
    ) -> Tuple[Callable, List[Tensor], ViewAndMutationMeta]:
        is_inference = not self.trace_joint
        flat_args_with_synthetic_bases, synthetic_base_info = merge_view_inputs(
            aot_config,
            flat_args,
            fw_metadata.input_info,
            is_inference=is_inference,
        )

        # Happy path: we don't need synthetic bases
        if synthetic_base_info is None:
            self.needs_post_compile = False
            return flat_fn, flat_args, fw_metadata

        # export path: ban synthetic bases for now, add later if requested.
        if requires_subclass_dispatch(flat_args, fw_metadata):
            raise RuntimeError(
                """\
        Encountered aliased inputs that are mutated in the graph, but at least one input/output
        to the graph is a tensor subclass. This is not supported today. You can try to
        remove the aliasing yourself as a workaround, or otherwise file an issue on github."""
            )

        if aot_config.is_export:
            raise RuntimeError(
                f"""\
        Encountered aliased inputs that are mutated in the graph you are trying to export.
        This functionality is currently not supported. If needed, please file a github issue.

        synthetic_base_info={str(synthetic_base_info)}

        fw_metadata={str(fw_metadata)}
                """
            )

        assert len(fw_metadata.input_info) == len(synthetic_base_info)

        # Update our forward metadata to take synthetic bases into account
        (
            fw_metadata_updated,
            aliased_arg_idx_with_metadata_mutations,
        ) = create_synthetic_base_metadata(
            fw_metadata, synthetic_base_info, flat_args, flat_args_with_synthetic_bases
        )
        # Save old input args for post-compile
        self.old_input_info = fw_metadata.input_info

        self.aliased_arg_idx_with_metadata_mutations = (
            aliased_arg_idx_with_metadata_mutations
        )

        num_aliased_args_with_metadata_mutations = len(
            aliased_arg_idx_with_metadata_mutations
        )

        replay_views = config.view_replay_for_aliased_outputs

        def _unpack_synthetic_bases(primals: Tuple[Any, ...]) -> List[Any]:
            f_args_inner = []
            for inner_idx_or_tuple in synthetic_base_info:
                if isinstance(inner_idx_or_tuple, int):
                    f_args_inner.append(primals[inner_idx_or_tuple])
                else:
                    inner_base_idx, view_tensor = inner_idx_or_tuple
                    base = primals[inner_base_idx]
                    view_arg = gen_alias_from_base(
                        base,
                        view_tensor,
                        view_tensor.requires_grad,
                        replay_views=replay_views,
                    )
                    f_args_inner.append(view_arg)
            return f_args_inner

        @wraps(flat_fn)
        def wrapped_flat_fn(*args):
            unpacked_args = _unpack_synthetic_bases(args)
            # This is a bit subtle. The goal of this entire function (aot_dispatch_synthetic_bases)
            # is to relieve the downstream logic from having to reason about mutations on inputs that alias
            # each other, by replacing aliased inputs with a synthetic base.
            # One area where this breaks down a bit however is if one of those aliased inputs
            # experienced a metadata mutation.
            # We are now obligated to reapply the metadata mutation directly to the user's input;
            # it isn't enough to apply mutations back to the synthetic base in the downstream logic.
            #
            # The way we handle this is by pretending that those aliased inputs that experience metadata mutations
            # are additional outputs in the user's forward function.
            # The downstream logic will just treat these as "user outputs that alias inputs".
            # However, we will manually grab them at runtime here, use them to reapply the metadata mutation
            # to the user inputs, and not return them to the user.
            aliased_args_with_metadata_mutations = [
                x
                for i, x in enumerate(unpacked_args)
                if i in self.aliased_arg_idx_with_metadata_mutations
            ]
            if len(aliased_args_with_metadata_mutations) > 0:
                return *(flat_fn(*unpacked_args)), *aliased_args_with_metadata_mutations
            else:
                return flat_fn(*unpacked_args)

        if config.debug_assert:
            ref_fw_metadata = run_functionalized_fw_and_collect_metadata(
                wrapped_flat_fn,
                static_input_indices=aot_config.static_input_indices,
                keep_input_mutations=fw_metadata.keep_input_mutations,
                is_train=fw_metadata.is_train,
            )(*flat_args_with_synthetic_bases)
            assert ref_fw_metadata == fw_metadata_updated, (
                f"ref_metadata={pprint.pformat(partial_flatten_asdict(ref_fw_metadata))}, "
                f"\nactual_metadata={pprint.pformat(partial_flatten_asdict(fw_metadata_updated))}"
            )
        return (
            wrapped_flat_fn,
            flat_args_with_synthetic_bases,
            fw_metadata_updated,
        )

    def post_compile(
        self,
        compiled_fn,
        aot_config: AOTConfig,
        *,
        runtime_metadata: ViewAndMutationMeta,
    ):
        if not self.needs_post_compile:
            return compiled_fn

        is_inference = not self.trace_joint

        @wraps(compiled_fn)
        def wrapped_compiled_fn(args):
            args_with_synthetic_bases, synthetic_base_info = merge_view_inputs(
                aot_config, args, self.old_input_info, is_inference=is_inference
            )
            assert synthetic_base_info is not None
            aliased_args_w_metadata_mutations = [
                args[i] for i in self.aliased_arg_idx_with_metadata_mutations
            ]
            num_aliased_args_with_metadata_mutations = len(
                aliased_args_w_metadata_mutations
            )
            args.clear()
            outs = compiled_fn(args_with_synthetic_bases)
            if num_aliased_args_with_metadata_mutations > 0:
                # This code does not handle **all** input metadata mutations.
                # Instead, it only handles metadata mutations on inputs that were converted into synthetic bases
                # (which only happens if at least one aliased input experienced a data mutation).
                # e.g:
                # def f(a, b):
                #     a.mul_(2)
                #     b.t_(1, 0)
                # f(x.view(2, 2), x.view(2, 2))
                mutated_metadata_inps = outs[-num_aliased_args_with_metadata_mutations:]
                user_outs = outs[:-num_aliased_args_with_metadata_mutations]
                for inp, mutated_inp in zip(
                    aliased_args_w_metadata_mutations, mutated_metadata_inps
                ):
                    inp.as_strided_(
                        mutated_inp.size(),
                        mutated_inp.stride(),
                        mutated_inp.storage_offset(),
                    )
                return user_outs
            return outs

        return wrapped_compiled_fn


# Note [Handling mutations on an input that aliases other inputs]
# The easiest example to show-case this edge case is here:
#
# def f(a, b):
#     a.mul_(2)
#     out = a + b
#     return out
# b = torch.ones(...)
# a = b.view(-1)
# f(a, b)
#
# In this situation, if a and b happened to be aliased, we need to trace something different!
# Suppose we had b = a.view(-1)
# (In this case, that means that `a._base is b`)
#
# We need to ensure that the aliasing relationship between a and b is preserved.
# We do that detecting the specific situation above (mutate an input that aliases another input),
# and when we do that, we create a synthetic base argument. Then inside of the traced forward,
# we regenerate a and b off of that base.
# The complete example of the transformed function looks like this:
#
# // The traced forward takes in a synthetic base, and regenerates the aliased inputs as views
# // We could consider getting view-replay support here to minimize as_strided_scatter ops in the graph
# def traced_forward(base):
#     a = base.as_strided(...)
#     b = base.as_strided(...)
#     a_updated = a.mul(2)
#     base_updated = torch.as_strided_scatter(base, a_updated, ...)
#     b_updated = base_updated.as_strided(...)
#     out = a_updated + b_updated
#     return a_updated, out
#
# def compiled_fn(a, b):
#     // we detect that a is the "differentiable base" here
#     base = a
#     // In other situations, we might do either:
#     // (1) a and b are both views off of some larger differentiable base
#     //     assert a._base is b._base and a._base is not None
#     //     base = a._base
#     // (2) a and b both don't require gradients. Create a base from the storage
#     //     assert a._base is None and b._base is None
#     //     base = torch.Tensor(a.storage())
#     a_updated, out = traced_forward(base)
#     a.copy_(a_updated)
#     return out
#
# This function:
# (1) Merges input views into a synthetic base argument, when any of those input views are mutated
# (2) Returns metadata telling the autograd.Function how to modify their arguments properly,
#     to respect the new calling convention.
#
# The calling convention is as follows.
# Any inputs that were originally views of one another get yanked, and replaced with a synthetic base.
# The argument list ordering goes [base1, ..., baseN], [arg1, ..., argN],
# Where the ordering of the bases is determined from the ordering of the original view args.
# baseA will come before baseB if the earliest original argument coming from baseA
# showed up earlier in the argument list than the earliest original argument coming from baseB.
#
# Example, given some tensors a, b, c, d
# call site:
#   f(a, c.view(-1), b.view(-1), b, c, d)
# Modified argument list:
#   c_base comes first because the first c view came earlier in arg list than the first b view
#   a and d still show up in the modified arg list, but b and c don't- they're regenerated from their bases
#   b_base = torch.Tensor(b.storage())
#   c_base = torch.Tensor(c.storage())
#   f(c_base, b_base, a, d)
def merge_view_inputs(
    aot_config: AOTConfig,
    fwd_inputs: List[Any],
    mutated_input_info: List[InputAliasInfo],
    *,
    # The autograd case currently has more restrictions than the inference case.
    is_inference: bool,
) -> Tuple[List[Any], Optional[List[Union[int, Tuple[int, torch.Tensor]]]]]:
    def _are_differentiable_views(view1, view2):
        if view1 is view2:
            return True
        if view1._base is None and view2._base is None:
            return False
        if view1._base is view2._base or view1._base is view2 or view1 is view2._base:
            return True
        return False

    def _same_dtype_views(view1, view2):
        if view1.dtype != view2.dtype:
            return False
        if view1._base is not None and view1.dtype != view1._base.dtype:
            return False
        if view2._base is not None and view2.dtype != view2._base.dtype:
            return False
        return True

    assert len(fwd_inputs) == len(mutated_input_info)
    if not [info for info in mutated_input_info if info.mutates_data]:
        # Return early when there are no mutations.
        return fwd_inputs, None

    storage_ref_to_idx: Dict[StorageWeakRef, List[int]] = collections.defaultdict(list)
    base_args = []
    other_args = []
    for i, inpt in enumerate(fwd_inputs):
        if isinstance(inpt, Tensor):
            storage_ref = StorageWeakRef(inpt.untyped_storage())
            storage_ref_to_idx[storage_ref].append(i)
        else:
            other_args.append(inpt)
    # Note [Synthetic Base Info Metadata]
    # This list contains metadata that tells you what the i'th argument in the inner calling convention should be.
    # It's either:
    # - another int (corresponding to the index in the argument list of the element from the outer calling convention)
    # - idx, view_tensor, where we can generate the new output with view_tensor._view_func(old_args[idx])
    #   idx corresponds to which synthetic base from the outer calling context to view
    inner_calling_convention_meta: Dict[int, Union[int, Tuple[int, torch.Tensor]]] = {}
    for aliased_input_indices in storage_ref_to_idx.values():
        if len(aliased_input_indices) <= 1 or not any(
            # We only care about mutations that affect all aliases,
            # so metadata mutations on an input doesn't require us to do synthetic base handling.
            mutated_input_info[inpt_idx].mutates_data
            for inpt_idx in aliased_input_indices
        ):
            other_args.extend(
                fwd_inputs[curr_idx] for curr_idx in aliased_input_indices
            )
            continue

        # Here, we attempt to do a more complicated check to detect false aliasing
        # (e.g. if all the tensors have the same storage, but don't actually overlap)
        # In theory, we could have a large group of tensors that all share storages, where only *some* of them
        # have overlapping memory.
        # I don't bother with that case for now: here, we only bail out earlier if we detect that **every** pair
        # of tensors in the current group that shares a storage is non-overlapping.
        aliased_input_indices_no_false_sharing = compute_overlapping_inputs(
            aot_config, fwd_inputs, aliased_input_indices
        )
        if len(aliased_input_indices_no_false_sharing) <= 1:
            other_args.extend(
                fwd_inputs[curr_idx] for curr_idx in aliased_input_indices
            )
            continue

        # We detected an input that was mutated, AND aliases with another input.
        # we need to replace this set of aliased inputs with a single synthetic base.
        # For now, I'm banning a bunch of cases. We expect dynamo to properly detect these cases
        # and error out. We can fix them later.
        # These checks are transitive, so we don't need to check every pair.
        for idx1, idx2 in zip(
            aliased_input_indices, aliased_input_indices[1:], strict=False
        ):
            view1 = fwd_inputs[idx1]
            view2 = fwd_inputs[idx2]
            # The "inputs that are aliased but have different differentiable bases" case
            # is more complicated and hopefully pretty rare. Not currently handled.
            if not is_inference:
                assert _are_differentiable_views(
                    view1, view2
                ), "aot_autograd() does not yet handle non-differentiable view input mutations."
            # Regenerating views when reinterpreting complex / real tensors seems non-trivial,
            # not handling for now
            assert _same_dtype_views(
                view1, view2
            ), "aot_autograd() does not yet handle input mutations on views with different dtypes."
        non_none_bases = [
            fwd_inputs[i]._base
            for i in aliased_input_indices
            if fwd_inputs[i]._base is not None
        ]
        aliases_with_none_bases = [
            fwd_inputs[i] for i in aliased_input_indices if fwd_inputs[i]._base is None
        ]
        if len(non_none_bases) == 0:
            # Case where none of the aliases have a ._base
            # we generate a synthetic base without gradients, and generate views off of it
            # We hit this case when we have input tensors to the graph that share a storage,
            # but do not have a ._base field.
            # Wondering when we hit this case?
            # The _base field simply says that autograd knows about the aliasing relationship,
            # but sometimes we create tensors which are aliased out of the same storage but guaranteed
            # to be disjoint. In these cases, we will skip setting up the _base relationship
            # for performance reasons (because the fact that the tensors share the same storage
            # is unobservable unless you (1) do naughty things with resize_/as_strided
            # or (2) look at the storage--as we are doing here.)
            # One particular example of this is optimizer steps on the LSTM module:
            # LSTM parameters are packed into a contiguous storage for efficiency reasons when
            # calling cuDNN kernels, so when these parameters get passed to the optimizer we will
            # find they share the same storage, but do not have _base set since they are all disjoint.
            #
            # NOTE: There is one case where this is unsafe:
            # torch.Tensor(storage) will ALWAYS create a 1D tensor, which is not necessarily
            # the same shape as the "actual" base that the tensor came from.
            # For the most part this is fine, because we always use as_strided()
            # to generate the original aliased inputs again.
            # If we were to use view-replay though, this could cause the aliased views
            # to have incorrect sizes.
            example_idx = aliased_input_indices[0]
            example_alias = fwd_inputs[example_idx]
            # Note that this function is re-used at both trace time and runtime.
            # At trace time, we're under a FakeMode so synthetic_base becomes a FakeTensor.
            synthetic_base = torch.empty(
                (0,), dtype=example_alias.dtype, device=example_alias.device
            )
            # We don't actually have a convenient way of going from storage -> tensor,
            # So using set_() here (we suffer some minor overhead, but this case is rare).
            synthetic_base.set_(example_alias.untyped_storage())
        else:
            # Case where all of the aliases require gradients, and have the same _base.
            synthetic_base = non_none_bases[0]
            for other_base in non_none_bases[1:]:
                assert (
                    other_base is synthetic_base
                ), "aot_autograd() does not yet handle non-differentiable view input mutations."
            for alias in aliases_with_none_bases:
                assert (
                    alias is synthetic_base
                ), "aot_autograd() does not yet handle non-differentiable view input mutations."
        base_args.append(synthetic_base)
        for curr_view_idx in aliased_input_indices:
            curr_view = fwd_inputs[curr_view_idx]
            base_idx = len(base_args) - 1
            # We store just enough info here so that we can regenerate the view later.
            # Regeneration: curr_view._view_func(args[base_idx])
            inner_calling_convention_meta[curr_view_idx] = (base_idx, curr_view)
    if len(base_args) == 0:
        assert len(other_args) == len(fwd_inputs)
        # If no synthetic bases are necessary, just return the original inputs.
        return fwd_inputs, None
    else:
        from torch.fx.experimental.symbolic_shapes import SymIntEqByExpr

        def make_hashable(arg):
            if isinstance(arg, torch.SymInt):
                # Since only nested SymInt objects can be hashed, we wrap them with
                # SymIntEqByExpr, which is a hashable wrapper of SymInts.
                return SymIntEqByExpr(arg)
            return arg

        # Otherwise, return:
        # (1) The new args according to the updated calling convention: (synthetic_bases, other_args)
        # (2) Metadata telling functionalization how to generate the inner argument list given the outer calling convention.
        #     We post-process it into a list, where meta[i] tells you info about the i'th argument in the inner calling convention.
        args_to_functionalization = base_args + other_args
        arg_to_old_idx_map = {
            make_hashable(arg): i for (i, arg) in enumerate(fwd_inputs)
        }
        for i, other_arg in enumerate(other_args):
            new_idx = len(base_args) + i
            old_idx = arg_to_old_idx_map[make_hashable(other_arg)]
            inner_calling_convention_meta[old_idx] = new_idx
        # post process into a list
        post_processed_calling_convention_meta: List[
            Union[int, Tuple[int, torch.Tensor]]
        ] = [-1 for _ in range(len(inner_calling_convention_meta))]
        for k, v in inner_calling_convention_meta.items():
            post_processed_calling_convention_meta[k] = v
        # Quick assert: every argument in the inner calling convention should be accounted for.
        for x in post_processed_calling_convention_meta:
            assert x != -1
        return args_to_functionalization, post_processed_calling_convention_meta


@dataclass
class AutogradLazyBackwardCompileInfo:
    bw_module: Callable
    placeholder_list: List[Any]
    saved_context: Optional[TracingContext]
    saved_compile_context: Optional[CompileContext]


# This is wrapped in a class just for namespacing purposes
# No need to make it into an actual CompilerWrapper because it doesn't fit the abstract as cleanly
class AOTDispatchAutograd:
    @staticmethod
    def process_runtime_tangent(x, meta: Union[PlainTensorMeta, SubclassCreationMeta]):
        if not isinstance(x, torch.Tensor):
            return x, [x]

        if isinstance(x, FakeTensor):
            if not x.is_contiguous(memory_format=meta.memory_format):
                x = x.contiguous(memory_format=meta.memory_format)
            return x, [x]

        expected_type: Optional[type] = torch.Tensor
        expected_meta = None
        if isinstance(meta, SubclassCreationMeta):
            expected_type = meta.original_subclass_type
            expected_meta = meta.meta

        runtime_type = type(x)
        runtime_meta = None
        runtime_subclass_keys: Sequence[str] = []

        if is_traceable_wrapper_subclass(x):
            runtime_subclass_keys, runtime_meta = x.__tensor_flatten__()

        def maybe_coerce(x):
            same_type: bool = expected_type == runtime_type
            same_meta: bool = expected_meta == runtime_meta

            if same_type and same_meta:
                return x

            if not hasattr(x, "__coerce_same_metadata_as_tangent__"):
                return None

            if same_type:
                # Backward Compatibility, as some Subclass impls can have original 1-arg function.
                return x.__coerce_same_metadata_as_tangent__(expected_meta)

            return x.__coerce_same_metadata_as_tangent__(expected_meta, expected_type)

        # Coerce to expected type and metadata
        orig_x = x
        x = maybe_coerce(x)
        if x is None:
            raise RuntimeError(
                f"""
During the backward, we encountered a tensor subclass where we guessed its
metadata incorrectly.

Expected metadata: {str(expected_meta)}, expected type: {str(expected_type)}

Runtime metadata: {str(runtime_meta)}, runtime type: {str(runtime_type)}

shape: {str(orig_x.shape)}
To fix this, your tensor subclass must implement the dunder method __force_to_same_metadata__.
"""
            )

        # Coerce to expected memory format
        if not x.is_contiguous(memory_format=meta.memory_format):
            x = x.contiguous(memory_format=meta.memory_format)

        if not is_traceable_wrapper_subclass(x):
            return x, [x]

        assert isinstance(meta, SubclassCreationMeta)
        if orig_x is not x:
            runtime_subclass_keys = x.__tensor_flatten__()[0]

        assert len(meta.attrs) == len(runtime_subclass_keys)
        leaves = []
        for i, (attr, attr_meta) in enumerate(meta.attrs.items()):
            elem = getattr(x, attr)
            new_elem, elem_leaves = AOTDispatchAutograd.process_runtime_tangent(
                elem, attr_meta
            )
            if new_elem is not elem:
                setattr(x, attr, new_elem)
            leaves.extend(elem_leaves)

        return x, leaves

    @staticmethod
    def post_compile(
        compiled_fw_func,  # fw_module after compilation + wrappers
        compiled_bw_func,  # bw_module after compilation + wrappers
        maybe_subclass_meta: Optional[SubclassMeta],
        num_symints_saved_for_bw_: int,
        backward_state_indices: List[int],
        disable_amp: bool,
        indices_of_inps_to_detach: List[int],
        lazy_backward_info: Optional[AutogradLazyBackwardCompileInfo],
        aot_config: AOTConfig,
        *,
        fw_metadata: ViewAndMutationMeta,  # runtime metadata
        try_save_cache_entry: Optional[Callable],  # Save cache entry after compilation
    ):
        class CompiledFunction(torch.autograd.Function):
            compiled_fw = compiled_fw_func
            compiled_bw = compiled_bw_func
            metadata: ViewAndMutationMeta = fw_metadata  # type: ignore[assignment]
            maybe_subclass_metadata: Optional[SubclassMeta] = maybe_subclass_meta
            num_symints_saved_for_bw = num_symints_saved_for_bw_
            _compiled_autograd_should_lift = False
            _aot_id = aot_config.aot_id
            _lazy_backward_info = lazy_backward_info

            @staticmethod
            def _compiled_autograd_key(ctx):
                return (ctx._autograd_function_id, *ctx.symints)

            @staticmethod
            def forward(ctx, *deduped_flat_tensor_args):
                args = deduped_flat_tensor_args
                if backward_state_indices:
                    bw_state = args[backward_state_indices[0]]
                    assert isinstance(bw_state, BackwardState)
                    ctx._compiled_autograd_backward_state = bw_state

                # There is a pretty complicated calling convention around what the compiled fw returns.
                # The full list of outputs and their relative order is:
                # (*tokens, *mutated_inputs, *fw_outs, *fw_intermediate_bases, *saved_tensors, *saved_symints)
                # - Note that in the synthetic bases case, mutated_inputs will correspond to an updated version
                #   of the original view, and not the synthetic base
                # - Note that donated buffer logic requires (*saved_tensors, *saved_symints) showing up last
                #   in the fw output order.
                fw_outs = call_func_at_runtime_with_args(
                    CompiledFunction.compiled_fw,
                    args,
                    disable_amp=disable_amp,
                )

                num_outputs = CompiledFunction.metadata.num_outputs
                num_outputs_aliased = CompiledFunction.metadata.num_outputs_aliased
                num_mutated_runtime_inps = (
                    CompiledFunction.metadata.num_mutated_inp_runtime_indices
                )
                num_forward_returns = CompiledFunction.metadata.num_forward_returns

                # Partitioners must put symint arguments at the end separate from tensor arguments
                tensors_saved_for_backwards = fw_outs[
                    CompiledFunction.metadata.tensors_saved_for_backwards_slice
                ]
                assert all(
                    isinstance(x, torch.Tensor) for x in tensors_saved_for_backwards
                )
                # See Note [Detaching saved tensors in AOTAutograd]
                ctx.save_for_backward(
                    *(
                        x.detach() if x._is_view() else x
                        for x in tensors_saved_for_backwards
                    )
                )
                symint_outs = fw_outs[
                    CompiledFunction.metadata.symints_saved_for_backwards_slice
                ]
                assert all(
                    isinstance(x, (int, float, torch.SymInt, torch.SymFloat))
                    for x in symint_outs
                ), str([type(x) for x in symint_outs])
                ctx.symints = symint_outs

                raw_returns = fw_outs[0:num_forward_returns]

                # Wrap all autograd.Function.forward() outputs that are aliases
                # so that autograd.Function doesn't treat them as tensors
                if num_mutated_runtime_inps > 0:
                    for i, idx in enumerate(
                        CompiledFunction.metadata.mutated_inp_runtime_indices
                    ):
                        # We could make this faster by only looping over inputs with metadata-only mutations
                        # (instead of looping over inputs with either data or metadata mutations), but there shouldn't be many.
                        info = CompiledFunction.metadata.input_info[idx]
                        if info.mutates_metadata and not info.mutates_data:
                            raw_return_idx = i
                            raw_returns[raw_return_idx] = TensorAlias(
                                raw_returns[raw_return_idx]
                            )

                    if config.debug_assert:
                        user_mutated_inputs_raw = raw_returns[
                            0:num_mutated_runtime_inps
                        ]
                        mut_inp_infos = [
                            x
                            for x in CompiledFunction.metadata.input_info
                            if x.mutates_data or x.mutates_metadata
                        ]
                        assert len(user_mutated_inputs_raw) == len(mut_inp_infos)

                if CompiledFunction.metadata.num_unsafe_view_outputs > 0:
                    for idx in CompiledFunction.metadata.unsafe_view_out_indices:
                        raw_return_idx = num_mutated_runtime_inps + idx
                        o = raw_returns[raw_return_idx]
                        raw_returns[raw_return_idx] = torch.ops.aten._unsafe_view(
                            o, o.shape
                        )

                if num_outputs_aliased > 0:
                    for idx in CompiledFunction.metadata.aliased_out_indices:
                        raw_return_idx = num_mutated_runtime_inps + idx
                        raw_returns[raw_return_idx] = TensorAlias(
                            raw_returns[raw_return_idx]
                        )

                    if config.debug_assert:
                        intermediates_raw = raw_returns[
                            num_mutated_runtime_inps + num_outputs :
                        ]
                        assert not any(
                            isinstance(x, TensorAlias) for x in intermediates_raw
                        )

                # invariant: intermediate bases always require gradients, so we don't have to
                # consider marking them as non-differentiable.
                raw_returns_not_including_intermediate_bases = raw_returns[
                    : num_mutated_runtime_inps + num_outputs
                ]
                raw_returns_meta = [
                    x
                    for x in CompiledFunction.metadata.input_info
                    if x.mutation_type == MutationType.MUTATED_OUT_GRAPH
                ] + CompiledFunction.metadata.output_info

                fw_outs_not_requiring_grad = [
                    x
                    for (i, x) in enumerate(
                        raw_returns_not_including_intermediate_bases
                    )
                    if isinstance(x, torch.Tensor)
                    and not raw_returns_meta[i].requires_grad
                ]
                ctx.mark_non_differentiable(*fw_outs_not_requiring_grad)
                ctx._materialize_non_diff_grads = False
                return tuple(raw_returns)

            @staticmethod
            def backward(ctx, *flat_args):
                all_args = CompiledFunction._backward_prologue(ctx, *flat_args)

                def impl_fn(double_ctx=None):
                    out = CompiledFunction._backward_impl(ctx, all_args)
                    return CompiledFunction._backward_epilogue(ctx, out)

                needs_grad = torch.is_grad_enabled() and any(
                    t.requires_grad for t in all_args if isinstance(t, torch.Tensor)
                )
                if needs_grad:
                    # double backward
                    return CompiledFunction._double_backward(ctx, impl_fn, all_args)
                else:
                    return impl_fn()

            @staticmethod
            def _double_backward(ctx, impl_fn, all_args):
                # Ensure that the graph is connected, and error if double backward is performed.
                # See comment for why once_differentiable is not sufficient:
                # https://github.com/pytorch/pytorch/pull/92348/files#r1072962107
                class CompiledFunctionBackward(torch.autograd.Function):
                    # CompiledFunctionBackward is not yet supported in dynamo skipfiles
                    _compiled_autograd_should_lift = False
                    _aot_id = aot_config.aot_id

                    @staticmethod
                    def forward(double_ctx, *unused_args):
                        return impl_fn(double_ctx)

                    @staticmethod
                    def backward(double_ctx, *args):
                        raise RuntimeError(
                            "torch.compile with aot_autograd does not currently support double backward"
                        )

                CompiledFunctionBackward._compiled_autograd_key = (  # type: ignore[method-assign]
                    CompiledFunction._compiled_autograd_key
                )

                return CompiledFunctionBackward.apply(*all_args)

            @staticmethod
            def _raise_if_functorch_active():
                # not ideal but prevent the user from seeing a nasty traceback - See #138422
                stack = torch._C._functorch.peek_interpreter_stack()
                torch._check(
                    stack is None,
                    lambda: (
                        "It looks like you're trying to call a compiled backward function within vmap/grad/vjp, "
                        "which isn't supported. Try wrapping vmap inside torch.compile, or skip compiling the "
                        "backward function."
                    ),
                )

            @staticmethod
            def _backward_prologue(ctx, *flat_args):
                # Calling convention: we expect a grad_out passed to the backward:
                # - for every output of the fw that does *not* alias an input or graph intermediate
                # - for every updated_input generated by the fw that does *not* alias an input (aka only data-mutations)
                # - for every graph intermediate that we need to use to generate an output later.
                # The other outputs in the autograd.Function.forward that do *not* show up in the backward include:
                # - outputs that alias inputs or graph intermediates
                # - updated inputs due to metadata-only mutations.
                # We need to return them in the forward, but ensure that they all do not get gradients in the backward,
                # and we filter them out here before passing the remaining grad_outputs into the compiled backward.
                CompiledFunction._raise_if_functorch_active()

                num_intermediate_bases = (
                    CompiledFunction.metadata.num_intermediate_bases
                )
                num_mutated_runtime_inps = (
                    CompiledFunction.metadata.num_mutated_inp_runtime_indices
                )
                expected_grad_outs = (
                    CompiledFunction.metadata.num_outputs
                    + num_mutated_runtime_inps
                    + num_intermediate_bases
                )
                deterministic = CompiledFunction.metadata.deterministic
                global_deterministic = torch.are_deterministic_algorithms_enabled()
                if deterministic is not None:
                    torch._check(
                        not (not deterministic and global_deterministic),
                        lambda: (
                            "This compiled backward function is being run with "
                            "torch.use_deterministic_algorithms(True), "
                            "but it was previously generated during the forward function while "
                            "torch.use_deterministic_algorithms(False) was set."
                        ),
                    )

                assert len(flat_args) == expected_grad_outs
                out_info = CompiledFunction.metadata.output_info

                inp_tangents, out_tangents, intermediate_base_tangents = (
                    flat_args[:num_mutated_runtime_inps],
                    flat_args[
                        num_mutated_runtime_inps : num_mutated_runtime_inps
                        + CompiledFunction.metadata.num_outputs
                    ],
                    flat_args[
                        num_mutated_runtime_inps
                        + CompiledFunction.metadata.num_outputs :
                    ],
                )
                # input_info contains info on *every* input,
                # But in the backward(), we are only given grad outputs for every mutated input
                # We then need to filter out the grad outputs that correspond to metadata-only mutations or don't require grad
                input_info = CompiledFunction.metadata.input_info
                inp_tangents_filtered = [
                    x
                    for x, info_idx in zip(
                        inp_tangents,
                        CompiledFunction.metadata.mutated_inp_runtime_indices,
                    )
                    if input_info[info_idx].mutates_data
                    and input_info[info_idx].requires_grad
                ]
                # We also need to filter out grad outputs that correspond to outputs aliasing inputs/intermediates
                out_tangents_filtered = [
                    x
                    for x, info in zip(out_tangents, out_info)
                    if info.output_type
                    in [
                        OutputType.non_alias,
                        OutputType.unsafe_view_alias,
                        OutputType.custom_function_view,
                    ]
                    and issubclass(info.raw_type, torch.Tensor)
                    and info.requires_grad
                ]
                # intermediate bases always require gradients, and always participate in the backward graph.
                flat_bw_args_with_grads = [
                    *inp_tangents_filtered,
                    *out_tangents_filtered,
                    *intermediate_base_tangents,
                ]
                num_flat_bw_args_with_grads = len(flat_bw_args_with_grads)

                # sanity asserts
                # metadata_only_inps = [
                #     x for x, info_idx in zip(inp_tangents, mutated_inp_indices)
                #     if not input_info[info_idx].mutates_data
                # ]
                # aliased_outputs = [
                #     x for x, info in zip(out_tangents, out_info) if info.output_type != OutputType.non_alias]
                # assert all(x is None for x in metadata_only_inps)
                # assert all(x is None for x in aliased_outputs)
                # TODO: replace this with FunctionalizedRngRuntimeWrapper
                rng_args = []
                if CompiledFunction.metadata.is_rng_op_functionalized:
                    # Add the seed and offset to args
                    rng_args = CUDARngStateHelper.get_torch_state_as_tuple()

                bw_tokens = [None] * CompiledFunction.metadata.num_backward_tokens

                # - note: donated buffer logic requires (*ctx.symints, *ctx.saved_tensors) showing up first
                #   in the bw output order.

                # Every dereference of ctx.saved_tensors incurs saved_tensors_hooks calls
                # There are tests that count these calls, saving to var.
                ctx_saved_tensors = ctx.saved_tensors
                num_ctx_saved_tensors = len(ctx_saved_tensors)
                all_args = [
                    *ctx.symints,
                    *ctx_saved_tensors,
                    *flat_bw_args_with_grads,
                    *bw_tokens,
                    *rng_args,
                ]
                del ctx_saved_tensors

                # Note: [AOTAutograd Backward Guards]
                # During AOTDispatch, we eagerly create and trace out a joint fw-bw graph.
                # Doing so requires us to "guess" about some of the metadata of our grad_outputs.
                #
                # In particular: if an output to the forward is a plain tensor or a subclass,
                # its corresponding grad_output in the backward **may or may not** be
                # a plain tensor or a subclass. The main cases are:
                # (1) If an output is a plain tensor, its grad_out will also be a plain tensor,
                #     *unless* the output is used in some subclass compute later in the forward graph,
                #     which will cause its grad_output to become a subclass
                # (2) If an output is a subclass, its grad_out will also be a subclass,
                #     *unless* the output of the forward did not actually participate in the gradient computation,
                #     in which case autograd will insert a plain tensor of zeros for the grad_output.
                #     We could avoid this case with `torch.autograd.Function.set_materialize_grads`,
                #     although this is not turned on today in AOTAutgrad and would require more work.
                #
                # Today, we make a guess on subclass-ness based on the above examples,
                # and hard-error in the backward if we guessed wrong.
                #
                # In the future, we should add backward guards that would allow us to
                # properly handle this case instead of erroring: we would need to retrace the backward graph,
                # since we might produce an entirely different trace if our grad_outputs are subclass or not.
                del flat_bw_args_with_grads

                tangents_start_idx = (
                    len(all_args)
                    - num_flat_bw_args_with_grads
                    - len(rng_args)
                    - len(bw_tokens)
                )
                assert tangents_start_idx == len(ctx.symints) + num_ctx_saved_tensors
                tangents_end_idx = len(all_args) - len(rng_args) - len(bw_tokens)

                # TODO: figure out how to refactor the backward properly
                # so I can use aot_dispatch_subclass_wrapper() here.
                if CompiledFunction.maybe_subclass_metadata is not None:
                    tangents = all_args[tangents_start_idx:tangents_end_idx]

                    if len(tangents) != len(
                        CompiledFunction.metadata.subclass_tangent_meta
                    ):
                        raise RuntimeError(
                            "The grad inputs should be same number as forward output tangents"
                        )

                    flat_processed_tangents = list(
                        itertools.chain.from_iterable(
                            (
                                AOTDispatchAutograd.process_runtime_tangent(
                                    t,
                                    m,
                                )[1]
                            )
                            for t, m in zip(
                                tangents,
                                CompiledFunction.metadata.subclass_tangent_meta,
                            )
                        )
                    )

                    all_args = (
                        runtime_unwrap_tensor_subclasses(
                            all_args[:tangents_start_idx],
                            # SymInts that are inputs to the backward graph are
                            # already included in the "all_args" list.
                            # Any symints coming from tensor subclasses should always
                            # come from primals, and so they will show up as extra
                            # arguments to the forward graph, and they will be saved
                            # as activation in the backward graph.
                            append_symints=False,
                        )
                        + flat_processed_tangents
                        + runtime_unwrap_tensor_subclasses(
                            all_args[tangents_end_idx:],
                            append_symints=False,
                        )
                    )
                else:
                    all_args = [
                        (
                            AOTDispatchAutograd.process_runtime_tangent(
                                t,
                                CompiledFunction.metadata.subclass_tangent_meta[
                                    i - tangents_start_idx
                                ],
                            )[0]
                            if (tangents_start_idx <= i < tangents_end_idx)
                            else t
                        )
                        for i, t in enumerate(all_args)
                    ]

                # Backward with forward inputs mutations is not supported in double backward.
                if (
                    torch.is_grad_enabled()
                    and CompiledFunction.metadata.indices_of_inputs_that_requires_grad_with_mutations_in_bw
                ):
                    raise RuntimeError(
                        "aot_autograd does not support input mutations with requires_grad in backward for create_graph=True"
                    )

                return all_args

            @staticmethod
            def _backward_impl(ctx, all_args):
                if ctx._is_compiled_autograd_tracing():
                    if lazy_backward_info is None:
                        raise RuntimeError(
                            """This compiled backward function was saved by AOTAutogradCache, which does not support
                        compiled autograd. Please turn off AOTAutogradCache using `TORCHINDUCTOR_AUTOGRAD_CACHE=0`."""
                        )
                    bw_module = lazy_backward_info.bw_module
                    # For compiled autograd, run raw FX graph so that it can be inlined into the larger graph
                    symints = ctx._get_compiled_autograd_symints()
                    assert len(symints) == len(ctx.symints)
                    all_args[: len(symints)] = symints
                    if backward_state_indices:
                        assert ctx._compiled_autograd_backward_state.proxy is not None
                        all_args.append(ctx._compiled_autograd_backward_state)
                    context = torch._C._DisableAutocast if disable_amp else nullcontext
                    with context():
                        return normalize_as_list(bw_module(*all_args))

                assert (
                    not backward_state_indices
                ), "BackwardState requires CompiledAutograd"
                ctx.maybe_clear_saved_tensors()

                saved_tensors_use_once = (
                    not torch._C._autograd._get_current_graph_task_keep_graph()
                )

                if CompiledFunction.compiled_bw is None:
                    assert lazy_backward_info is not None

                    if not saved_tensors_use_once:
                        fw_metadata.bw_donated_idxs = []
                        # Update bw_donated_idxs if using lazy_backward_info from `aot_dispatch_autograd`
                        if (
                            hasattr(lazy_backward_info, "saved_context")
                            and hasattr(lazy_backward_info.saved_context, "fw_metadata")
                            and hasattr(
                                lazy_backward_info.saved_context.fw_metadata,  # type: ignore[union-attr]
                                "bw_donated_idxs",
                            )
                        ):
                            lazy_backward_info.saved_context.fw_metadata.bw_donated_idxs = (  # type: ignore[union-attr]
                                []
                            )

                    bw_module = lazy_backward_info.bw_module
                    placeholder_list = lazy_backward_info.placeholder_list
                    saved_context = lazy_backward_info.saved_context
                    saved_compile_context = lazy_backward_info.saved_compile_context

                    context = torch._C._DisableAutocast if disable_amp else nullcontext
                    metrics_context = get_metrics_context()
                    with tracing(saved_context), compile_context(
                        saved_compile_context
                    ), context(), track_graph_compiling(
                        aot_config, "backward"
                    ), metrics_context, dynamo_timed(
                        "backward._backward_impl",
                        phase_name="entire_backward_compile",
                        log_pt2_compile_event=True,
                        dynamo_compile_column_us="backward_cumulative_compile_time_us",
                    ):
                        metrics_context.update_outer({"is_forward": False})
                        CompiledFunction.compiled_bw = aot_config.bw_compiler(
                            bw_module, placeholder_list
                        )
                        # Maybe save cache entry
                        if try_save_cache_entry is not None:
                            try_save_cache_entry(
                                CompiledFunction.compiled_bw,
                                fw_metadata,
                                aot_config,
                            )

                if (
                    torch._functorch.config.donated_buffer
                    and not saved_tensors_use_once
                    and fw_metadata.bw_donated_idxs != []
                ):
                    torch._check(
                        False,
                        lambda: (
                            "This backward function was compiled with non-empty donated "
                            "buffers which requires create_graph=False and retain_graph=False. "
                            "Please keep backward(create_graph=False, retain_graph=False) "
                            "across all backward() function calls, or set "
                            "torch._functorch.config.donated_buffer=False to disable "
                            "donated buffer."
                        ),
                    )

                out = call_func_at_runtime_with_args(
                    CompiledFunction.compiled_bw,
                    all_args,
                    steal_args=True,
                    disable_amp=disable_amp,
                )
                return out

            @staticmethod
            def _backward_epilogue(ctx, out):
                # Toss out the backward output tokens
                num_bw_tokens = CompiledFunction.metadata.num_backward_tokens
                if num_bw_tokens > 0:
                    out = out[:-num_bw_tokens]

                # TODO: replace this with FunctionalizedRngRuntimeWrapper.post_compile
                out = FunctionalizedRngRuntimeWrapper()._functionalized_rng_runtime_epilogue(
                    CompiledFunction.metadata, out, offset_index=len(out) - 1
                )
                out = tuple(out)

                # TODO: figure out how to refactor the backward properly so I can use aot_dispatch_subclass_wrapper() here.
                if CompiledFunction.maybe_subclass_metadata is not None:
                    assert (
                        CompiledFunction.maybe_subclass_metadata.grad_input_metas
                        is not None
                    )
                    outs_wrapped = wrap_tensor_subclasses(
                        out,
                        subclass_metas=CompiledFunction.maybe_subclass_metadata.grad_input_metas,
                        included_subclass_symints=True,
                        is_runtime=True,
                    )
                    return outs_wrapped
                return out

        compiled_function = RuntimeWrapper(
            indices_of_inps_to_detach=indices_of_inps_to_detach,
            trace_joint=True,
            disable_amp=disable_amp,
        ).post_compile(
            CompiledFunction.apply,
            aot_config,
            runtime_metadata=fw_metadata,
        )

        return compiled_function


@dataclass
class DebugAssertWrapper(CompilerWrapper):
    flat_requires_grad: List[Optional[bool]] = field(default_factory=list)

    def post_compile(
        self,
        compiled_fn,
        aot_config: AOTConfig,
        *,
        runtime_metadata: ViewAndMutationMeta,
    ):
        @wraps(compiled_fn)
        def debug_compiled_function(args: List[Any]):
            # TODO: Check aliasing relationships
            # TODO: Check strides for metadata mutation
            # (NB: ideally, this logic is factored out of this function and
            # you move these debug checks there)

            # Check requires grad.  Bad case is when we compiled with
            # requires_grad = False, but input requires_grad = True
            # (vice versa is OK; we compute a gradient and then throw
            # it away when it hits the input.)
            for i, a in enumerate(args):
                can_require_grad = self.flat_requires_grad[i]
                if can_require_grad is None:
                    assert not isinstance(a, Tensor)
                elif not can_require_grad:
                    assert not a.requires_grad, format_guard_bug_msg(
                        aot_config,
                        f"{describe_input(i, aot_config)} would not require grad",
                    )

            return compiled_fn(args)

        return debug_compiled_function


def pre_compile(
    wrappers: List[CompilerWrapper],
    flat_fn: Callable,
    flat_args: List[Any],
    aot_config: AOTConfig,
    *,
    fw_metadata: ViewAndMutationMeta,
) -> Tuple[Callable, List[Tensor], ViewAndMutationMeta]:
    """
    Runs a sequence of wrappers on the given function and arguments.
    Mutates wrappers in place.
    """
    for wrapper in wrappers:
        flat_fn, flat_args, fw_metadata = wrapper.pre_compile(
            flat_fn, flat_args, aot_config, fw_metadata=fw_metadata
        )
    return flat_fn, flat_args, fw_metadata


def post_compile(
    wrappers: List[CompilerWrapper],
    compiled_fn: Callable,
    aot_config: AOTConfig,
    *,
    runtime_metadata: ViewAndMutationMeta,
) -> Tuple[Callable, ViewAndMutationMeta]:
    """
    Runs a sequence of wrappers on the given function. Should be called after pre_compile()
    """
    for wrapper in reversed(wrappers):
        compiled_fn = wrapper.post_compile(
            compiled_fn, aot_config, runtime_metadata=runtime_metadata
        )
    return compiled_fn, runtime_metadata


def make_runtime_safe(
    fw_metadata: ViewAndMutationMeta,
    maybe_subclass_meta: Optional[SubclassMeta],
):
    """
    Calls make_runtime_safe on all ViewAndMutationMetas.
    Modifies both arguments. Allows ViewAndMutationMetas to
    be safely cached in AOTAutogradCache.
    """
    fw_metadata.make_runtime_safe()
    if maybe_subclass_meta is not None:
        maybe_subclass_meta.fw_metadata.make_runtime_safe()
        if maybe_subclass_meta.grad_input_metas:
            for meta in maybe_subclass_meta.grad_input_metas:
                if isinstance(meta, SubclassCreationMeta):
                    meta.make_runtime_safe()