1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
|
# mypy: allow-untyped-defs
"""
The various dataclasses, Enums, namedtuples etc used in AOTAutograd. This includes
input/output types, metadata, config, function signatures etc.
"""
import collections
import dataclasses
import functools
from dataclasses import dataclass, field
from enum import Enum
from typing import Any, Callable, Dict, Iterable, List, NewType, Optional, Set, Union
import torch
import torch.utils._pytree as pytree
from torch._guards import Source
from torch._ops import OpOverload
from torch._subclasses import FakeTensor
from torch._subclasses.fake_tensor import is_fake
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
from .. import config
from .functional_utils import (
_check_if_mutation_can_be_in_graph,
FunctionalTensorMetadataEq,
)
from .utils import strict_zip
zip = strict_zip
OutputType = Enum(
"OutputType",
(
# output is not an alias
"non_alias",
# output aliases an input
"alias_of_input",
# output **is** an input tensor
"is_input",
# output has a ._base tensor, which is a graph intermediate.
# We need to return its ._base as a graph output,
# so its requires_grad info is populated correctly.
# Instructs the runtime code to regenerate the current output
# from a base tensor, graph_intermediates[base_idx]
"alias_of_intermediate_save_as_output",
# Same as above; but we don't need to explicitly add its ._base
# as a graph output, because it already **is** a graph output.
"alias_of_intermediate",
# Same as above; but the output's ._base is **already** a user output.
# Instructs the runtime code to regenerate the current output from
# a base tensor, user_outputs[base_idx]
"alias_of_intermediate_base_is_user_output",
# See Note [Intermediate Bases Optimization]
"unsafe_view_alias",
# output is an alias, but has a custom autograd.Function backward.
# In this case, we don't want to do view-replay, since we won't be able to replay the custom function.
# Instead, we'll treat this output "normally", and trace its backward into the graph.
"custom_function_view",
),
)
# This class stores info about every user output.
@dataclass(frozen=True)
class OutputAliasInfo:
# Tells us if this output is:
# (1) a regular (non-aliased) output
# (2) an alias of a forward input
# (3) **is** a forward input (special case of "alias_of_input")
# (4) an alias of an intermediate (aka an alias of an output of the inner traced forward)
# (5) an alias of an intermediate, that explicitly requires returning the intermediate
# as a graph output
# (6) an alias of an intermediate, where that intermediate is also a user output
output_type: OutputType
# The raw type of the output (torch.Tensor, SymInt, etc)
raw_type: type
# If (1) above, then
# - base_idx is None
# If (2) or (3) above, then
# - Tells us that the base of this alias is user_fwd_input[base_idx]
# (This is an index into the inputs *before* we make synthetic bases)
# If (4) or (5) above, then
# - Tells us that the base of this alias is output_graph_intermediates[base_idx]
# here, this refers to the index of the *direct* traced
# If (6) above, then:
# - Tells us that the base of this alias is output_user_fwds[base_idx]
# here, this refers to the index of the *direct* traced
base_idx: Optional[int]
# If it is a Tensor, what the dynamic dims are (otherwise is None)
dynamic_dims: Optional[Set[int]]
# requires_grad
requires_grad: bool
# FunctionalTensorWrapper that represents this output.
#
# Provides us the means to replay views from it.
#
# We need to wrap the actual FunctionalTensorWrapper with this class so that
# we only compare the tensor's metadata. That's because with the transformations
# of the model throughout AOTAutograd, the sequence of ViewMeta and the base
# tensor might change.
functional_tensor: Optional[FunctionalTensorMetadataEq] = None
class MutationType(Enum):
NOT_MUTATED = 1
MUTATED_IN_GRAPH = 2
MUTATED_OUT_GRAPH = 3
# This class tells us info about user inputs.
@dataclass(frozen=True)
class InputAliasInfo:
is_leaf: bool
mutates_data: bool
mutates_metadata: bool
mutations_hidden_from_autograd: bool
mutations_under_no_grad_or_inference_mode: bool
mutation_inductor_storage_resize: bool
mutates_storage_metadata: bool
requires_grad: bool
keep_input_mutations: bool
def __post_init__(self):
if self.mutates_storage_metadata:
# For convenience, we guarantee that this is always true.
# In practice, If we call .set_(), then at runtime there is no need
# to additionally fix up the tensor metadata, since our runtime
# call to inp.set_(updated_inp) will already have the right metadata
assert self.mutates_metadata
@functools.cached_property
def mutation_type(self) -> MutationType:
if (
(not self.mutates_data)
and (not self.mutates_metadata)
and not (self.mutation_inductor_storage_resize)
):
return MutationType.NOT_MUTATED
if _check_if_mutation_can_be_in_graph(
self.keep_input_mutations,
self.mutates_data,
self.mutates_metadata,
self.mutations_hidden_from_autograd,
self.mutations_under_no_grad_or_inference_mode,
self.mutates_storage_metadata,
self.mutation_inductor_storage_resize,
self.requires_grad,
):
return MutationType.MUTATED_IN_GRAPH
return MutationType.MUTATED_OUT_GRAPH
@dataclass
class PlainTensorMeta:
unwrapped_idx: int
memory_format: Optional[torch.memory_format] = None
@dataclass
class SubclassCreationMeta:
"""
Used for AOTDispatch.
This dataclass gives us the information we need to reconstruct a tensor subclass
from our flat inputs.
Why is this important? The graph that we'd like to trace out contains flat tensor inputs,
But the user's original model may have subclass inputs and outputs.
So we need to wrap/unwrap subclasses as necessary to translate between the user's
view (subclass inps/outs), and the backend compiler's view (graph with no subclass args).
Complications arise mostly from the fact that a subclass can hold more than one inner tensor;
So for a given subclass input/output, we need to carefully track which indices map
to the subclass tensor in the corresponding "dense-tensor-only" graph.
"""
# In the inner graph that only takes in dense tensor inputs,
# this maps to the first index of "tensors that should go in this subclass wrapper"
flat_tensor_start_idx: int
# arg_count is inclusive of the arg_counts of any
# inner tensor subclasses: If I have a TwoTensor and
# both of its inner elements are TwoTensors, then the
# arg_count of the outer-most sublass will be 4
arg_count: int
# Mark where or not symints were included. This flag is only used in one assertion
# in "wrap_tensor_subclasses"
included_subclass_symints: bool
# meta and attrs are produced by the subclass's __tensor_flatten__.
# We need to keep them around along with outer_size / outer_stride to plumb them
# into __tensor_unflatten__
attrs: Dict[str, Union["SubclassCreationMeta", PlainTensorMeta]]
outer_size: Iterable[Union[None, int, torch.SymInt]]
outer_stride: Iterable[Union[None, int, torch.SymInt]]
meta: Any
# Stores the original subclass itself.
# This is needed because we need the autograd metadata on the original subclass
# (this is guaranteed to be a wrapper subclass that holds a fake tensor,
# so holding onto this at runtime shouldn't leak memory)
# This field is nulled out after calling make_runtime_safe()
original_subclass: Optional[torch.Tensor]
# Used at runtime to determine the subclass type, so we don't need to save the original subclass
original_subclass_type: Optional[type] = None
memory_format: Optional[torch.memory_format] = None
def compute_outer_size_and_stride(
self,
all_args,
*,
curr_start_idx: int,
):
from .subclass_utils import compute_symint_placeholders
def compute(outer, start_idx):
placeholders = compute_symint_placeholders(outer)
has_symbolic = any(placeholders)
if has_symbolic:
start = curr_start_idx
end = start_idx + sum(placeholders)
it_args = iter(all_args[start:end])
it_placeholders = iter(placeholders)
return pytree.tree_map_only(
lambda _: next(it_placeholders), lambda _: next(it_args), outer
), start + len(placeholders)
else:
return outer, start_idx
outer_size, next_idx = compute(self.outer_size, curr_start_idx)
outer_stride, _ = compute(self.outer_stride, next_idx)
return outer_size, outer_stride
def creation_fn(
self,
all_args,
*,
is_runtime: bool,
):
inner_tensors = {}
curr_start_idx = self.flat_tensor_start_idx
for attr, creation_meta in self.attrs.items():
if isinstance(creation_meta, PlainTensorMeta):
subclass = all_args[curr_start_idx]
curr_start_idx += 1
else:
subclass = creation_meta.creation_fn(
all_args,
is_runtime=is_runtime,
)
curr_start_idx += creation_meta.arg_count
inner_tensors[attr] = subclass
if is_runtime:
assert self.original_subclass_type is not None
original_subclass_type = self.original_subclass_type
else:
original_subclass_type = type(self.original_subclass)
if is_runtime:
outer_size, outer_stride = self.compute_outer_size_and_stride(
all_args,
curr_start_idx=curr_start_idx,
)
else:
outer_size, outer_stride = self.outer_size, self.outer_stride
rebuilt = original_subclass_type.__tensor_unflatten__( # type: ignore[attr-defined]
inner_tensors, self.meta, outer_size, outer_stride
)
if not is_runtime:
# After wrapping up the inner dense tensors into a subclass, we need to make sure that our new wrapper
# has correct autograd metadata, since we'll be tracing through the autograd engine with the subclass.
# We don't trace through the autograd engine at runtime though, so no need
# to compute this extra metadata then!
torch._mirror_autograd_meta_to(self.original_subclass, rebuilt) # type: ignore[attr-defined]
return rebuilt
def make_runtime_safe(self):
def _make_size_runtime_safe(x: Union[None, int, torch.SymInt]) -> Optional[int]:
dummy = -1
if isinstance(x, torch.SymInt):
# Replace nested ints by a dummy value (-1) as NJT ignores
# the outer_size/outer_stride at runtime.
return dummy if x.node.is_nested_int() else None
return x
assert self.original_subclass is not None
self.original_subclass_type = type(self.original_subclass)
self.original_subclass = None
# Note: NJT outer_size in AOTDispatcher
# `_make_size_runtime_safe` replaces any nested int with a dummy value (-1)
# to prevent serializing a SymInt at runtime. Internally, nested tensor __tensor_unflatten__
# is designed to safely ignore this dummy value.
# For more details, see: https://github.com/pytorch/pytorch/blob/5141ade8e30c64e873e14dcc8de233da45d15025/torch/nested/_internal/nested_tensor.py#L266-L299 # noqa: B950
self.outer_size = tuple(map(_make_size_runtime_safe, self.outer_size))
self.outer_stride = tuple(map(_make_size_runtime_safe, self.outer_stride))
# Recurse on nested subclass info
for creation_meta in self.attrs.values():
if isinstance(creation_meta, SubclassCreationMeta):
creation_meta.make_runtime_safe()
def __post_init__(self):
# sanity assert to make sure we don't leak memory
assert is_fake(self.original_subclass)
# This saves the type of subclass nested structure to compare
# against runtime tangent inputs. We do wanna compute this at AOT
# time as it is invoked in hot-path
from .subclass_utils import get_types_for_subclass
self.subclass_type = get_types_for_subclass(self.original_subclass)
# This class encapsulates all aliasing + mutation info we need about the forward graph
# See a more detailed overview of the edge case handling at
# https://docs.google.com/document/d/19UoIh_SVrMy_b2Sx5ZaeOJttm6P0Qmyss2rdBuyfoic/edit
@dataclass(eq=False)
class ViewAndMutationMeta:
# length = # user inputs
# This gives us info about every input, and what sort of mutation happened to it (if any)
input_info: List[InputAliasInfo]
# length = # user outputs
# This gives us info about every output (mostly around whether it aliases other tensors)
output_info: List[OutputAliasInfo]
# length = the number of intermediate bases appended as outputs to the end of the forward graph.
# Note: this is not necessarily the same thing as:
# len([x for x in output_info if x.output_type == OutputType.alias_of_intermediate])
# Because outputs might share a ._base, or an output's ._base might itself be
# another user output (in both cases, we won't redundantly append bases to the end of the graph)
num_intermediate_bases: int
# For inference only: instructs us to keep data-only input mutations directly in the graph
keep_input_mutations: bool
# length = (# inputs w data mutations) + (# user outputs that are non_aliasing tensors)
# + (# intermediate bases)
# These are the FakeTensor (or potential SymInt) outputs that we traced from our
# metadata pass of the user's forward function.
# Their only use today is to pass them as a best-guess for tangents when tracing the joint.
# Stashing them as part of our "metadata" makes it simpler if we want to run our analysis
# pass once, and re-use the output throughout AOTAutograd
traced_tangents: List[Any]
# Each of these is a list telling us about subclasses for the inputs/outputs/grad_outs
# They are used throughout AOTDispatch to tell us how to generate a list of subclass tensors,
# Given a (potentially larger) list of plain torch tensors.
# Taking subclass_inp_meta as an example:
# subclass_inp_meta[i] = j (an int) tells us:
# "The i'th user input is not a subclass, and corresponds to inputs[j] of the plain-tensor graph."
# subclass_inp_meta[i] = SubclassCreationMeta(flat_tensor_start_idx=3, arg_count=2)
# "The i'th user input is subclass holding two inner tensors, which are
# inputs[3] and inputs[4] of the plain-tensor graph".
# length = # user inputs
subclass_inp_meta: List[Union[PlainTensorMeta, SubclassCreationMeta]]
# So, the full set of outputs to the forward graph looks something like:
# (*mutated_inps, *user_outs, *intermediate_bases, *saved_for_bw_tensors)
# where the first 3 of those 4 can be subclasses
# (but not saved_for_bw tensors, since these are internal to the compiler
# and not user visible, so there's no point in wrapping/unwrapping them at runtime).
# This list contains subclass information on all of the fw graph outputs
# except for saved_for_bw_tensors.
subclass_fw_graph_out_meta: List[Union[PlainTensorMeta, SubclassCreationMeta]]
# length = # backward graph inputs
subclass_tangent_meta: List[Union[PlainTensorMeta, SubclassCreationMeta]]
# TODO: we should kill this
# (need to default it to not break internal)
is_train: bool = False
# length = (# inputs w data mutations) + (# user outputs that are non_aliasing tensors)
# + (# intermediate bases)
# At runtime, we don't keep the traced_tangents around since they're not serializable.
# Instead, we keep any necessary subclass metadata necessary about each traced_tangent.
# This list is generated after calling make_runtime_safe().
traced_tangent_metas: Optional[List[Any]] = None
num_symints_saved_for_bw: Optional[int] = None
# The grad_enabled mutation that will be emitted in the runtime_wrapper epilogue
# NOTE: AOTAutograd will assume that the ambient `is_grad_enabled` is the grad mode
# that is intended to be in effect prior to running the graph, in keeping with
# equivalence to eager mode. It is the responsibility of upstream graph acquisition
# to reset the grad mode to its pre-graph value prior to calling aot_autograd.
grad_enabled_mutation: Optional[bool] = None
# Keeps track of whether `torch.use_deterministic_algorithms` was turned on
# when the forward was run. If deterministic mode was turned off during the
# forward, but is turned on during the backward call, then an error is
# raised
deterministic: Optional[bool] = None
# Keeps track of which input indices store parameters (which we will treat as static)
static_input_indices: List[int] = field(default_factory=list)
# Map of effect type (ex. _EffectType.ORDERED) to token. If there are
# side-effectful operators, FunctionalTensorMode will populate this
# dictionary telling us how many tokens we will need during tracing.
tokens: Dict[Any, torch.Tensor] = field(default_factory=dict)
# Only filled in if/when we trace the joint function
# If an input requires grad and is mutated in the backward, it is only safe to keep the mutation
# in the graph if gradients are disabled while the backward runs
# (grad mode is disabled by default when users run the backward, but can be turned on with create_graph=True)
# At runtime during the backward, we use this list of indices to error properly if we find out
# that it was not safe to include a backward mutation in the graph.
indices_of_inputs_that_requires_grad_with_mutations_in_bw: List[int] = field(
default_factory=list
)
# Indexes of saved tensors which are donated buffer.
# Donated buffer means the tensor is not alias of any forward user input, forward user output,
# and backward output.
bw_donated_idxs: Optional[List[int]] = None
# Number of tokens used in backward, appended at the end of backward outputs.
# Filled after tracing joint function.
num_backward_tokens: int = 0
def __post_init__(self):
# pre-compute the indices of the inputs that are mutated.
# When keep_input_mutations is set, we don't need to worry about our epilogue
# handling data-only mutations, because we keep them directly in the graph.
mutated_inp_runtime_indices = [
i
for i, m in enumerate(self.input_info)
if (m.mutation_type == MutationType.MUTATED_OUT_GRAPH)
]
mutated_graph_handled_indices = [
i
for i, m in enumerate(self.input_info)
if m.mutation_type == MutationType.MUTATED_IN_GRAPH
]
self.mutated_graph_handled_indices = mutated_graph_handled_indices
self.num_mutated_graph_handled_indices = len(self.mutated_graph_handled_indices)
mutated_graph_handled_indices_seen_by_autograd = [
i
for i in mutated_graph_handled_indices
if not self.input_info[i].mutations_hidden_from_autograd
]
self.mutated_graph_handled_indices_seen_by_autograd = (
mutated_graph_handled_indices_seen_by_autograd
)
self.num_mutated_graph_handled_indices_seen_by_autograd = len(
self.mutated_graph_handled_indices_seen_by_autograd
)
aliased_out_indices = [
i
for i, m in enumerate(self.output_info)
if m.output_type
not in [
OutputType.non_alias,
OutputType.unsafe_view_alias,
OutputType.custom_function_view,
]
]
unsafe_view_out_indices = [
i
for i, m in enumerate(self.output_info)
if m.output_type is OutputType.unsafe_view_alias
]
# This is pre-computed in post_init for perf.
# It contains the index of every element
# of input_info that corresponds to a mutation (data or metadata or both)
self.mutated_inp_runtime_indices = mutated_inp_runtime_indices
self.num_mutated_inp_runtime_indices = len(self.mutated_inp_runtime_indices)
# This is pre-computed for perf.
# It contains the index of every element
# of output_info that corresponds to an alias (either of an input or intermediate)
self.aliased_out_indices = aliased_out_indices
self.unsafe_view_out_indices = unsafe_view_out_indices
self.num_outputs = len(self.output_info)
self.num_outputs_non_aliased = len(
[
x
for x in self.output_info
if x.output_type
in [
OutputType.non_alias,
OutputType.unsafe_view_alias,
OutputType.custom_function_view,
]
]
)
self.num_outputs_aliased_to_inputs = len(
[
x
for x in self.output_info
if x.output_type
in [
OutputType.alias_of_input,
OutputType.is_input,
]
]
)
self.num_unsafe_view_outputs = len(self.unsafe_view_out_indices)
self.num_outputs_aliased_to_intermediates = len(
[
x
for x in self.output_info
if x.output_type
in [
OutputType.alias_of_intermediate,
OutputType.alias_of_intermediate_save_as_output,
OutputType.alias_of_intermediate_base_is_user_output,
]
]
)
self.num_outputs_aliased = (
self.num_outputs_aliased_to_inputs
+ self.num_outputs_aliased_to_intermediates
)
self.dynamic_outputs = any(o.dynamic_dims for o in self.output_info)
# See Note: [AOTAutograd Backward Guards]
# This is pre-computed for fast asserts on the types of our grad_outputs in the backward.
# Eventually, we should kill this and replace with real backward guards.
# (we want to precompute the "runtime" types, so replace FakeTensor with torch.Tensor)
self.output_types = [
torch.Tensor if isinstance(x, FakeTensor) else type(x)
for x in self.traced_tangents
]
self.is_rng_op_functionalized = config.functionalize_rng_ops
# All of the above metadata is collected by tracing the fw function.
# However, extra outputs for rng offsets behave differently. Both fwd
# and bwd graphs have their own outputs for the total consumed offsets.
# Unlike mutated inputs, we don't have to worry about sending the right
# set of tensors between fwd and bwd. Fwd and bwd offsets are
# independent and simpler to handle. Therefore, we track them
# separately.
self.num_outputs_rng_offset = 1 if self.is_rng_op_functionalized else 0
# Our forward() returns both (tokens, mutated_inputs, outputs, output_intermediate_bases, saved_tensors, saved_symints)
# Tokens will be split out before mutations/view handling and we do not count them here.
self.num_forward_returns = (
self.num_mutated_inp_runtime_indices
+ self.num_outputs
+ self.num_intermediate_bases
)
# In case of functionalization of rng ops, the fw_module returns one
# additional output for rng offset. This rng offset is used right
# away to advance the rng state, and is not passed on to the raw
# outputs. However, we need to know the exact boundary to identify
# which tensors to be saved for the bwd graph. num_forward captures
# this information.
self.num_forward = self.num_forward_returns + self.num_outputs_rng_offset
def make_runtime_safe(self):
"""
There are various fields in ViewAndMutationMeta that aren't serializable. This function is called after all tracing
is completed to simplify certain fields in the metadata so that they can be safely cached.
Doing so may lose information (in the case of traced_tangents), but none of the information is needed at runtime.
"""
# TODO: This function is only a best effort: there are other fields that may not be cache safe
# (i.e., there's no guarantee that tensor_flatten() returns a serializable result), or that
# SubclassCreationMeta is cache safe.
assert self.traced_tangent_metas is None
def extract_metadata(t):
if isinstance(t, torch.Tensor) and is_traceable_wrapper_subclass(t):
(inner_tensors, flatten_spec) = t.__tensor_flatten__() # type: ignore[attr-defined]
# Technically, we only need the flatten_spec, not the inner tensors.
# However, some Tensor subclasses (like TwoTensor) may have flatten_spec = None.
# And we want to be able to assert that this metadata is non-None,
# to distinguish between "this was a tensor subclass with no metadata" vs.
# "this wasn't a tensor subclass at all".
return (inner_tensors, flatten_spec)
else:
return None
self.traced_tangent_metas = [extract_metadata(t) for t in self.traced_tangents]
# Clear traced tangents at runtime
self.traced_tangents = []
new_output_info = []
for out in self.output_info:
if config.view_replay_for_aliased_outputs:
new_out = out
else:
# If we're not using view_replay, remove the functional tensor.
# Functional tensors are unfortunately not serializable,
# so doing this is required for AOTAutograd caching.
new_out = dataclasses.replace(out, functional_tensor=None)
new_output_info.append(new_out)
self.output_info = new_output_info
for inp_meta in self.subclass_inp_meta:
if isinstance(inp_meta, SubclassCreationMeta):
inp_meta.make_runtime_safe()
for inp_meta in self.subclass_fw_graph_out_meta:
if isinstance(inp_meta, SubclassCreationMeta):
inp_meta.make_runtime_safe()
for inp_meta in self.subclass_tangent_meta:
if isinstance(inp_meta, SubclassCreationMeta):
inp_meta.make_runtime_safe()
@property
def tensors_saved_for_backwards_slice(self):
assert self.num_symints_saved_for_bw is not None
if self.num_symints_saved_for_bw > 0:
return slice(self.num_forward, -self.num_symints_saved_for_bw)
else:
return slice(self.num_forward, None)
@property
def symints_saved_for_backwards_slice(self):
assert self.num_symints_saved_for_bw is not None
if self.num_symints_saved_for_bw > 0:
return slice(-self.num_symints_saved_for_bw, None)
else:
return slice(0, 0) # empty slice
def __eq__(self, other):
if not isinstance(other, ViewAndMutationMeta):
return NotImplemented
return (
self.input_info == other.input_info
and self.output_info == other.output_info
and self.num_intermediate_bases == other.num_intermediate_bases
and self.keep_input_mutations == other.keep_input_mutations
and self.is_rng_op_functionalized == other.is_rng_op_functionalized
and self.num_outputs_rng_offset == other.num_outputs_rng_offset
and len(self.traced_tangents) == len(other.traced_tangents)
and all(
x.shape == y.shape and x.dtype == y.dtype
for x, y, in zip(self.traced_tangents, other.traced_tangents)
)
and self.num_backward_tokens == other.num_backward_tokens
)
@dataclass(eq=False)
class SubclassMeta:
# A copy of all forward metadata, but computed on the *dense* tensor forward (after desugaring subclasses)
# So for example, if the user had a model containing two `TwoTensor` inputs,
# Then `SubclassMeta.fw_metadata.input_infos` would have length 4 here.
fw_metadata: ViewAndMutationMeta
# Note: [Computing Subclass Metadata about grad_inputs]
# Given a list of flattened, plain tensor grad_inputs, this tells us how to reconstruct the grad_input subclasses
#
# You might think: why not just assume that all grad_inputs will have the same subclass-ness as the original inputs?
# (AOTAutograd generally assumes other properties, e.g. that grad_outputs are contiguous)
#
# This doesn't really work though. take this example:
#
# def f(DoubleTensor, DenseTensor):
# return DoubleTensor * DenseTensor
#
# In the above example, the .grad field of *both* DoubleTensor and DenseTensor will be a DoubleTensor.
# When we trace out a joint fw-bw graph, we'll end up returning two subclasses for the two grad_inputs.
# This means that our backward graph will return 4 outputs (two dense tensors for each DoubleTensor grad_input)
# and we need to properly store the metadata that tells us how to turn these 4 outputs back into DoubleTensors.
#
# Note that this info **cannot** easily be figured out from ViewAndMutationMeta.
# We can only compute this info by tracing the entire joint and examining the grad_inputs that we computed.
#
# See Note: [AOTAutograd Backward Guards]
# This will also eventually require us to install backward guards,
# in case we made incorrect assumptions about the subclass-ness of our grad_outputs
#
# Optional field because we don't compute for inference graphs
grad_input_metas: Optional[
List[Union[PlainTensorMeta, SubclassCreationMeta]]
] = None
def __init__(self) -> None:
# The fields in this class get set after its construction.
pass
# This class exists because:
# - the autograd.Function.forward() in aot autograd returns outputs that might alias inputs
# - we only care about the metadata on those aliases, so we can regenerate them.
# We do not want them to participate in the autograd.Function.
# We do that by wrapping them in an opaque class, so the autograd.Function
# does not know to treat them as tensors.
@dataclass(frozen=True)
class TensorAlias:
alias: torch.Tensor
@dataclass
class BackwardSignature:
"""
Provides information about the backward section of an exported
joint forward-backward graph.
For a particular fx GraphModule, this class contains information on:
(1) A mapping from each gradient (backwards output) to the parameter
it corresponds to (forward input)
(2) A mapping from each gradient (backwards output) to the user input
it corresponds to (forward input)
(3) Which of the forward outputs corresponds to the loss, that we backprop on.
Each string name is the `node.name` of the corresponding node in the fx graph.
"""
gradients_to_parameters: Dict[str, str]
gradients_to_user_inputs: Dict[str, str]
loss_output: str
GraphOutputName = NewType("GraphOutputName", str)
GraphInputName = NewType("GraphInputName", str)
FQN = NewType("FQN", str)
@dataclass
class GraphSignature:
"""
Provides information about an exported module.
For a particular fx GraphModule, this class contains information on:
(1) Which graph inputs are parameters, buffers, or user inputs
(2) (for params/buffers) a mapping from the name of each graph argument
to its parameter/buffer FQN in the original nn.Module.
(3) If there are input mutations, these are represented as extra outputs
in the fx GraphModule. We provide a mapping from these
extra output names to the names of the actual inputs.
(4) The pytree metadata on how to flatten/unflatten inputs and outputs.
The corresponding FX GraphModule only accepts and returns
pytree-flattened inputs/outputs.
(5) (Optionally) if the FX is a joint forward-backward graph, we provide
a signature on the backward section of the joint graph.
"""
parameters: List[FQN]
buffers: List[FQN]
user_inputs: List[GraphInputName]
user_outputs: List[GraphOutputName]
inputs_to_parameters: Dict[GraphInputName, FQN]
inputs_to_buffers: Dict[GraphInputName, FQN]
# If the user's module mutates a buffer,
# it's represented in the graph as an extra graph output.
# This dict is a mapping from
# "graph outputs that correspond to updated buffers"
# to the FQN names of those mutated buffers.
buffers_to_mutate: Dict[GraphOutputName, FQN]
user_inputs_to_mutate: Dict[GraphOutputName, GraphInputName]
in_spec: pytree.TreeSpec
out_spec: pytree.TreeSpec
backward_signature: Optional[BackwardSignature]
input_tokens: List[GraphInputName]
output_tokens: List[GraphOutputName]
@classmethod
def from_tracing_metadata(
cls,
*,
in_spec: pytree.TreeSpec,
out_spec: pytree.TreeSpec,
graph_input_names: List[str],
graph_output_names: List[str],
view_mutation_metadata: ViewAndMutationMeta,
named_parameters: List[str],
named_buffers: List[str],
num_user_inputs: int,
num_user_outputs: int,
loss_index: Optional[int],
backward_signature: Optional[BackwardSignature],
) -> "GraphSignature":
graph_inputs = graph_input_names
graph_outputs = graph_output_names
parameters = list(named_parameters)
buffers = list(named_buffers)
num_tokens = len(view_mutation_metadata.tokens)
# Calling convention assumptions:
# (1) graph inputs = (input_tokens, params, buffers, user_inputs)
# (2) graph outputs = (output_tokens, mutated_inputs, user_outs, param_gradients)
# (If we are capturing an inference graph, this convention is identical
# except that param_gradients is empty)
# See Note [Side-Effectful Tokens in AOTAutograd] for information on tokens
# Address input calling conventions:
start, stop = 0, num_tokens
input_tokens = graph_inputs[start:stop]
start, stop = stop, stop + len(parameters)
inputs_to_parameters = dict(zip(graph_inputs[start:stop], parameters))
start, stop = stop, stop + len(buffers)
inputs_to_buffers = dict(
zip(
graph_inputs[start:stop],
buffers,
)
)
start, stop = stop, stop + num_user_inputs
user_inputs = graph_inputs[start:stop]
# We should've gone through all the inputs now
assert len(graph_inputs) - stop == 0
# Address output calling conventions:
start, stop = 0, num_tokens
output_tokens = graph_outputs[start:stop]
names = [*input_tokens, *parameters, *buffers, *user_inputs]
mutations = []
for idx, input_info in enumerate(view_mutation_metadata.input_info):
if input_info.mutates_data:
# Only buffers can be mutated, not parameters
assert idx >= len(parameters)
mutations.append(names[idx + num_tokens])
assert len(mutations) == view_mutation_metadata.num_mutated_inp_runtime_indices
start, stop = (
stop,
stop + view_mutation_metadata.num_mutated_inp_runtime_indices,
)
outputs_to_mutations = dict(zip(graph_outputs[start:stop], mutations))
user_inputs_to_mutate = {}
buffers_to_mutate = {}
for output_name, mutation_name in outputs_to_mutations.items():
if mutation_name in user_inputs:
user_inputs_to_mutate[output_name] = mutation_name
else:
assert mutation_name in buffers
buffers_to_mutate[output_name] = mutation_name
start, stop = stop, stop + num_user_outputs
user_outputs = graph_outputs[start:stop]
unused_outputs = len(graph_outputs) - stop
if backward_signature is not None:
unused_outputs -= len(backward_signature.gradients_to_parameters) + len(
backward_signature.gradients_to_user_inputs
)
assert unused_outputs == 0
return GraphSignature(
parameters=parameters, # type: ignore[arg-type]
buffers=buffers, # type: ignore[arg-type]
user_inputs=user_inputs, # type: ignore[arg-type]
user_outputs=user_outputs, # type: ignore[arg-type]
inputs_to_buffers=inputs_to_buffers, # type: ignore[arg-type]
inputs_to_parameters=inputs_to_parameters, # type: ignore[arg-type]
user_inputs_to_mutate=user_inputs_to_mutate,
buffers_to_mutate=buffers_to_mutate, # type: ignore[arg-type]
in_spec=in_spec,
out_spec=out_spec,
backward_signature=backward_signature,
input_tokens=input_tokens, # type: ignore[arg-type]
output_tokens=output_tokens, # type: ignore[arg-type]
)
@dataclass
class AOTAutogradCacheInfo:
cache_key: str
start_time_ns: int
@dataclass
class AOTConfig:
"""
Configuration for AOTDispatcher
"""
fw_compiler: Callable
bw_compiler: Callable
partition_fn: Callable
decompositions: Dict[OpOverload, Callable]
num_params_buffers: int
aot_id: int
keep_inference_input_mutations: bool
is_export: bool = False
no_tangents: bool = False
dynamic_shapes: bool = False
aot_autograd_arg_pos_to_source: Optional[List[Source]] = None
static_input_indices: Optional[List[int]] = None
inference_compiler: Optional[Callable] = None
enable_log: bool = True
# this is always false outside of export.
pre_dispatch: bool = False
# Key to use for AOTAutogradCache
cache_info: Optional[AOTAutogradCacheInfo] = None
def __post_init__(self):
if self.pre_dispatch:
assert self.is_export, "Can only have pre_dispatch IR for export."
SubclassTracingInfo = collections.namedtuple(
"SubclassTracingInfo",
["plain_tensor_trace_fn", "plain_tensor_args", "maybe_subclass_meta"],
)
|