File: schemas.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (911 lines) | stat: -rw-r--r-- 39,355 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
# mypy: allow-untyped-defs
"""
The various dataclasses, Enums, namedtuples etc used in AOTAutograd. This includes
input/output types, metadata, config, function signatures etc.
"""

import collections
import dataclasses
import functools
from dataclasses import dataclass, field
from enum import Enum
from typing import Any, Callable, Dict, Iterable, List, NewType, Optional, Set, Union

import torch
import torch.utils._pytree as pytree
from torch._guards import Source
from torch._ops import OpOverload
from torch._subclasses import FakeTensor
from torch._subclasses.fake_tensor import is_fake
from torch.utils._python_dispatch import is_traceable_wrapper_subclass

from .. import config
from .functional_utils import (
    _check_if_mutation_can_be_in_graph,
    FunctionalTensorMetadataEq,
)
from .utils import strict_zip


zip = strict_zip


OutputType = Enum(
    "OutputType",
    (
        # output is not an alias
        "non_alias",
        # output aliases an input
        "alias_of_input",
        # output **is** an input tensor
        "is_input",
        # output has a ._base tensor, which is a graph intermediate.
        # We need to return its ._base as a graph output,
        # so its requires_grad info is populated correctly.
        # Instructs the runtime code to regenerate the current output
        # from a base tensor, graph_intermediates[base_idx]
        "alias_of_intermediate_save_as_output",
        # Same as above; but we don't need to explicitly add its ._base
        # as a graph output, because it already **is** a graph output.
        "alias_of_intermediate",
        # Same as above; but the output's ._base is **already** a user output.
        # Instructs the runtime code to regenerate the current output from
        # a base tensor, user_outputs[base_idx]
        "alias_of_intermediate_base_is_user_output",
        # See Note [Intermediate Bases Optimization]
        "unsafe_view_alias",
        # output is an alias, but has a custom autograd.Function backward.
        # In this case, we don't want to do view-replay, since we won't be able to replay the custom function.
        # Instead, we'll treat this output "normally", and trace its backward into the graph.
        "custom_function_view",
    ),
)


# This class stores info about every user output.
@dataclass(frozen=True)
class OutputAliasInfo:
    # Tells us if this output is:
    # (1) a regular (non-aliased) output
    # (2) an alias of a forward input
    # (3) **is** a forward input (special case of "alias_of_input")
    # (4) an alias of an intermediate (aka an alias of an output of the inner traced forward)
    # (5) an alias of an intermediate, that explicitly requires returning the intermediate
    #     as a graph output
    # (6) an alias of an intermediate, where that intermediate is also a user output
    output_type: OutputType
    # The raw type of the output (torch.Tensor, SymInt, etc)
    raw_type: type
    # If (1) above, then
    # - base_idx is None
    # If (2) or (3) above, then
    # - Tells us that the base of this alias is user_fwd_input[base_idx]
    #   (This is an index into the inputs *before* we make synthetic bases)
    # If (4) or (5) above, then
    # - Tells us that the base of this alias is output_graph_intermediates[base_idx]
    #   here, this refers to the index of the *direct* traced
    # If (6) above, then:
    # - Tells us that the base of this alias is output_user_fwds[base_idx]
    #   here, this refers to the index of the *direct* traced
    base_idx: Optional[int]
    # If it is a Tensor, what the dynamic dims are (otherwise is None)
    dynamic_dims: Optional[Set[int]]
    # requires_grad
    requires_grad: bool
    # FunctionalTensorWrapper that represents this output.
    #
    # Provides us the means to replay views from it.
    #
    # We need to wrap the actual FunctionalTensorWrapper with this class so that
    # we only compare the tensor's metadata. That's because with the transformations
    # of the model throughout AOTAutograd, the sequence of ViewMeta and the base
    # tensor might change.
    functional_tensor: Optional[FunctionalTensorMetadataEq] = None


class MutationType(Enum):
    NOT_MUTATED = 1
    MUTATED_IN_GRAPH = 2
    MUTATED_OUT_GRAPH = 3


# This class tells us info about user inputs.
@dataclass(frozen=True)
class InputAliasInfo:
    is_leaf: bool
    mutates_data: bool
    mutates_metadata: bool
    mutations_hidden_from_autograd: bool
    mutations_under_no_grad_or_inference_mode: bool
    mutation_inductor_storage_resize: bool
    mutates_storage_metadata: bool
    requires_grad: bool
    keep_input_mutations: bool

    def __post_init__(self):
        if self.mutates_storage_metadata:
            # For convenience, we guarantee that this is always true.
            # In practice, If we call .set_(), then at runtime there is no need
            # to additionally fix  up the tensor metadata, since our runtime
            # call to inp.set_(updated_inp) will already have the right metadata
            assert self.mutates_metadata

    @functools.cached_property
    def mutation_type(self) -> MutationType:
        if (
            (not self.mutates_data)
            and (not self.mutates_metadata)
            and not (self.mutation_inductor_storage_resize)
        ):
            return MutationType.NOT_MUTATED

        if _check_if_mutation_can_be_in_graph(
            self.keep_input_mutations,
            self.mutates_data,
            self.mutates_metadata,
            self.mutations_hidden_from_autograd,
            self.mutations_under_no_grad_or_inference_mode,
            self.mutates_storage_metadata,
            self.mutation_inductor_storage_resize,
            self.requires_grad,
        ):
            return MutationType.MUTATED_IN_GRAPH

        return MutationType.MUTATED_OUT_GRAPH


@dataclass
class PlainTensorMeta:
    unwrapped_idx: int
    memory_format: Optional[torch.memory_format] = None


@dataclass
class SubclassCreationMeta:
    """
    Used for AOTDispatch.
    This dataclass gives us the information we need to reconstruct a tensor subclass
    from our flat inputs.
    Why is this important? The graph that we'd like to trace out contains flat tensor inputs,
    But the user's original model may have subclass inputs and outputs.
    So we need to wrap/unwrap subclasses as necessary to translate between the user's
    view (subclass inps/outs), and the backend compiler's view (graph with no subclass args).

    Complications arise mostly from the fact that a subclass can hold more than one inner tensor;
    So for a given subclass input/output, we need to carefully track which indices map
    to the subclass tensor in the corresponding "dense-tensor-only" graph.
    """

    # In the inner graph that only takes in dense tensor inputs,
    # this maps to the first index of "tensors that should go in this subclass wrapper"
    flat_tensor_start_idx: int
    # arg_count is inclusive of the arg_counts of any
    # inner tensor subclasses: If I have a TwoTensor and
    # both of its inner elements are TwoTensors, then the
    # arg_count of the outer-most sublass will be 4
    arg_count: int
    # Mark where or not symints were included. This flag is only used in one assertion
    # in "wrap_tensor_subclasses"
    included_subclass_symints: bool
    # meta and attrs are produced by the subclass's __tensor_flatten__.
    # We need to keep them around along with outer_size / outer_stride to plumb them
    # into __tensor_unflatten__
    attrs: Dict[str, Union["SubclassCreationMeta", PlainTensorMeta]]
    outer_size: Iterable[Union[None, int, torch.SymInt]]
    outer_stride: Iterable[Union[None, int, torch.SymInt]]
    meta: Any
    # Stores the original subclass itself.
    # This is needed because we need the autograd metadata on the original subclass
    # (this is guaranteed to be a wrapper subclass that holds a fake tensor,
    #  so holding onto this at runtime shouldn't leak memory)
    # This field is nulled out after calling make_runtime_safe()
    original_subclass: Optional[torch.Tensor]

    # Used at runtime to determine the subclass type, so we don't need to save the original subclass
    original_subclass_type: Optional[type] = None
    memory_format: Optional[torch.memory_format] = None

    def compute_outer_size_and_stride(
        self,
        all_args,
        *,
        curr_start_idx: int,
    ):
        from .subclass_utils import compute_symint_placeholders

        def compute(outer, start_idx):
            placeholders = compute_symint_placeholders(outer)
            has_symbolic = any(placeholders)

            if has_symbolic:
                start = curr_start_idx
                end = start_idx + sum(placeholders)
                it_args = iter(all_args[start:end])
                it_placeholders = iter(placeholders)
                return pytree.tree_map_only(
                    lambda _: next(it_placeholders), lambda _: next(it_args), outer
                ), start + len(placeholders)
            else:
                return outer, start_idx

        outer_size, next_idx = compute(self.outer_size, curr_start_idx)
        outer_stride, _ = compute(self.outer_stride, next_idx)
        return outer_size, outer_stride

    def creation_fn(
        self,
        all_args,
        *,
        is_runtime: bool,
    ):
        inner_tensors = {}

        curr_start_idx = self.flat_tensor_start_idx
        for attr, creation_meta in self.attrs.items():
            if isinstance(creation_meta, PlainTensorMeta):
                subclass = all_args[curr_start_idx]
                curr_start_idx += 1
            else:
                subclass = creation_meta.creation_fn(
                    all_args,
                    is_runtime=is_runtime,
                )
                curr_start_idx += creation_meta.arg_count
            inner_tensors[attr] = subclass

        if is_runtime:
            assert self.original_subclass_type is not None
            original_subclass_type = self.original_subclass_type
        else:
            original_subclass_type = type(self.original_subclass)

        if is_runtime:
            outer_size, outer_stride = self.compute_outer_size_and_stride(
                all_args,
                curr_start_idx=curr_start_idx,
            )
        else:
            outer_size, outer_stride = self.outer_size, self.outer_stride

        rebuilt = original_subclass_type.__tensor_unflatten__(  # type: ignore[attr-defined]
            inner_tensors, self.meta, outer_size, outer_stride
        )

        if not is_runtime:
            # After wrapping up the inner dense tensors into a subclass, we need to make sure that our new wrapper
            # has correct autograd metadata, since we'll be tracing through the autograd engine with the subclass.
            # We don't trace through the autograd engine at runtime though, so no need
            # to compute this extra metadata then!
            torch._mirror_autograd_meta_to(self.original_subclass, rebuilt)  # type: ignore[attr-defined]

        return rebuilt

    def make_runtime_safe(self):
        def _make_size_runtime_safe(x: Union[None, int, torch.SymInt]) -> Optional[int]:
            dummy = -1
            if isinstance(x, torch.SymInt):
                # Replace nested ints by a dummy value (-1) as NJT ignores
                # the outer_size/outer_stride at runtime.
                return dummy if x.node.is_nested_int() else None
            return x

        assert self.original_subclass is not None
        self.original_subclass_type = type(self.original_subclass)
        self.original_subclass = None

        # Note: NJT outer_size in AOTDispatcher
        # `_make_size_runtime_safe` replaces any nested int with a dummy value (-1)
        # to prevent serializing a SymInt at runtime. Internally, nested tensor __tensor_unflatten__
        # is designed to safely ignore this dummy value.
        # For more details, see: https://github.com/pytorch/pytorch/blob/5141ade8e30c64e873e14dcc8de233da45d15025/torch/nested/_internal/nested_tensor.py#L266-L299  # noqa: B950
        self.outer_size = tuple(map(_make_size_runtime_safe, self.outer_size))
        self.outer_stride = tuple(map(_make_size_runtime_safe, self.outer_stride))

        # Recurse on nested subclass info
        for creation_meta in self.attrs.values():
            if isinstance(creation_meta, SubclassCreationMeta):
                creation_meta.make_runtime_safe()

    def __post_init__(self):
        # sanity assert to make sure we don't leak memory
        assert is_fake(self.original_subclass)

        # This saves the type of subclass nested structure to compare
        # against runtime tangent inputs. We do wanna compute this at AOT
        # time as it is invoked in hot-path
        from .subclass_utils import get_types_for_subclass

        self.subclass_type = get_types_for_subclass(self.original_subclass)


# This class encapsulates all aliasing + mutation info we need about the forward graph
# See a more detailed overview of the edge case handling at
# https://docs.google.com/document/d/19UoIh_SVrMy_b2Sx5ZaeOJttm6P0Qmyss2rdBuyfoic/edit
@dataclass(eq=False)
class ViewAndMutationMeta:
    # length = # user inputs
    # This gives us info about every input, and what sort of mutation happened to it (if any)
    input_info: List[InputAliasInfo]

    # length = # user outputs
    # This gives us info about every output (mostly around whether it aliases other tensors)
    output_info: List[OutputAliasInfo]

    # length = the number of intermediate bases appended as outputs to the end of the forward graph.
    # Note: this is not necessarily the same thing as:
    #   len([x for x in output_info if x.output_type == OutputType.alias_of_intermediate])
    # Because outputs might share a ._base, or an output's ._base might itself be
    # another user output (in both cases, we won't redundantly append bases to the end of the graph)
    num_intermediate_bases: int

    # For inference only: instructs us to keep data-only input mutations directly in the graph
    keep_input_mutations: bool

    # length = (# inputs w data mutations) + (# user outputs that are non_aliasing tensors)
    #        + (# intermediate bases)
    # These are the FakeTensor (or potential SymInt) outputs that we traced from our
    # metadata pass of the user's forward function.
    # Their only use today is to pass them as a best-guess for tangents when tracing the joint.
    # Stashing them as part of our "metadata" makes it simpler if we want to run our analysis
    # pass once, and re-use the output throughout AOTAutograd
    traced_tangents: List[Any]

    # Each of these is a list telling us about subclasses for the inputs/outputs/grad_outs
    # They are used throughout AOTDispatch to tell us how to generate a list of subclass tensors,
    # Given a (potentially larger) list of plain torch tensors.

    # Taking subclass_inp_meta as an example:
    #   subclass_inp_meta[i] = j (an int) tells us:
    #     "The i'th user input is not a subclass, and corresponds to inputs[j] of the plain-tensor graph."
    #   subclass_inp_meta[i] = SubclassCreationMeta(flat_tensor_start_idx=3, arg_count=2)
    #     "The i'th user input is subclass holding two inner tensors, which are
    #      inputs[3] and inputs[4] of the plain-tensor graph".

    # length = # user inputs
    subclass_inp_meta: List[Union[PlainTensorMeta, SubclassCreationMeta]]
    # So, the full set of outputs to the forward graph looks something like:
    # (*mutated_inps, *user_outs, *intermediate_bases, *saved_for_bw_tensors)
    # where the first 3 of those 4 can be subclasses
    # (but not saved_for_bw tensors, since these are internal to the compiler
    # and not user visible, so there's no point in wrapping/unwrapping them at runtime).
    # This list contains subclass information on all of the fw graph outputs
    # except for saved_for_bw_tensors.
    subclass_fw_graph_out_meta: List[Union[PlainTensorMeta, SubclassCreationMeta]]
    # length = # backward graph inputs
    subclass_tangent_meta: List[Union[PlainTensorMeta, SubclassCreationMeta]]
    # TODO: we should kill this
    # (need to default it to not break internal)
    is_train: bool = False

    # length = (# inputs w data mutations) + (# user outputs that are non_aliasing tensors)
    #        + (# intermediate bases)
    # At runtime, we don't keep the traced_tangents around since they're not serializable.
    # Instead, we keep any necessary subclass metadata necessary about each traced_tangent.
    # This list is generated after calling make_runtime_safe().
    traced_tangent_metas: Optional[List[Any]] = None

    num_symints_saved_for_bw: Optional[int] = None

    # The grad_enabled mutation that will be emitted in the runtime_wrapper epilogue
    # NOTE: AOTAutograd will assume that the ambient `is_grad_enabled` is the grad mode
    # that is intended to be in effect prior to running the graph, in keeping with
    # equivalence to eager mode. It is the responsibility of upstream graph acquisition
    # to reset the grad mode to its pre-graph value prior to calling aot_autograd.
    grad_enabled_mutation: Optional[bool] = None

    # Keeps track of whether `torch.use_deterministic_algorithms` was turned on
    # when the forward was run. If deterministic mode was turned off during the
    # forward, but is turned on during the backward call, then an error is
    # raised
    deterministic: Optional[bool] = None

    # Keeps track of which input indices store parameters (which we will treat as static)
    static_input_indices: List[int] = field(default_factory=list)

    # Map of effect type (ex. _EffectType.ORDERED) to token.  If there are
    # side-effectful operators, FunctionalTensorMode will populate this
    # dictionary telling us how many tokens we will need during tracing.
    tokens: Dict[Any, torch.Tensor] = field(default_factory=dict)

    # Only filled in if/when we trace the joint function
    # If an input requires grad and is mutated in the backward, it is only safe to keep the mutation
    # in the graph if gradients are disabled while the backward runs
    # (grad mode is disabled by default when users run the backward, but can be turned on with create_graph=True)
    # At runtime during the backward, we use this list of indices to error properly if we find out
    # that it was not safe to include a backward mutation in the graph.
    indices_of_inputs_that_requires_grad_with_mutations_in_bw: List[int] = field(
        default_factory=list
    )

    # Indexes of saved tensors which are donated buffer.
    # Donated buffer means the tensor is not alias of any forward user input, forward user output,
    # and backward output.
    bw_donated_idxs: Optional[List[int]] = None

    # Number of tokens used in backward, appended at the end of backward outputs.
    # Filled after tracing joint function.
    num_backward_tokens: int = 0

    def __post_init__(self):
        # pre-compute the indices of the inputs that are mutated.
        # When keep_input_mutations is set, we don't need to worry about our epilogue
        # handling data-only mutations, because we keep them directly in the graph.

        mutated_inp_runtime_indices = [
            i
            for i, m in enumerate(self.input_info)
            if (m.mutation_type == MutationType.MUTATED_OUT_GRAPH)
        ]

        mutated_graph_handled_indices = [
            i
            for i, m in enumerate(self.input_info)
            if m.mutation_type == MutationType.MUTATED_IN_GRAPH
        ]
        self.mutated_graph_handled_indices = mutated_graph_handled_indices
        self.num_mutated_graph_handled_indices = len(self.mutated_graph_handled_indices)

        mutated_graph_handled_indices_seen_by_autograd = [
            i
            for i in mutated_graph_handled_indices
            if not self.input_info[i].mutations_hidden_from_autograd
        ]

        self.mutated_graph_handled_indices_seen_by_autograd = (
            mutated_graph_handled_indices_seen_by_autograd
        )
        self.num_mutated_graph_handled_indices_seen_by_autograd = len(
            self.mutated_graph_handled_indices_seen_by_autograd
        )

        aliased_out_indices = [
            i
            for i, m in enumerate(self.output_info)
            if m.output_type
            not in [
                OutputType.non_alias,
                OutputType.unsafe_view_alias,
                OutputType.custom_function_view,
            ]
        ]
        unsafe_view_out_indices = [
            i
            for i, m in enumerate(self.output_info)
            if m.output_type is OutputType.unsafe_view_alias
        ]

        # This is pre-computed in post_init for perf.
        # It contains the index of every element
        # of input_info that corresponds to a mutation (data or metadata or both)
        self.mutated_inp_runtime_indices = mutated_inp_runtime_indices
        self.num_mutated_inp_runtime_indices = len(self.mutated_inp_runtime_indices)

        # This is pre-computed for perf.
        # It contains the index of every element
        # of output_info that corresponds to an alias (either of an input or intermediate)
        self.aliased_out_indices = aliased_out_indices
        self.unsafe_view_out_indices = unsafe_view_out_indices
        self.num_outputs = len(self.output_info)
        self.num_outputs_non_aliased = len(
            [
                x
                for x in self.output_info
                if x.output_type
                in [
                    OutputType.non_alias,
                    OutputType.unsafe_view_alias,
                    OutputType.custom_function_view,
                ]
            ]
        )
        self.num_outputs_aliased_to_inputs = len(
            [
                x
                for x in self.output_info
                if x.output_type
                in [
                    OutputType.alias_of_input,
                    OutputType.is_input,
                ]
            ]
        )
        self.num_unsafe_view_outputs = len(self.unsafe_view_out_indices)
        self.num_outputs_aliased_to_intermediates = len(
            [
                x
                for x in self.output_info
                if x.output_type
                in [
                    OutputType.alias_of_intermediate,
                    OutputType.alias_of_intermediate_save_as_output,
                    OutputType.alias_of_intermediate_base_is_user_output,
                ]
            ]
        )
        self.num_outputs_aliased = (
            self.num_outputs_aliased_to_inputs
            + self.num_outputs_aliased_to_intermediates
        )

        self.dynamic_outputs = any(o.dynamic_dims for o in self.output_info)
        # See Note: [AOTAutograd Backward Guards]
        # This is pre-computed for fast asserts on the types of our grad_outputs in the backward.
        # Eventually, we should kill this and replace with real backward guards.
        # (we want to precompute the "runtime" types, so replace FakeTensor with torch.Tensor)
        self.output_types = [
            torch.Tensor if isinstance(x, FakeTensor) else type(x)
            for x in self.traced_tangents
        ]

        self.is_rng_op_functionalized = config.functionalize_rng_ops
        # All of the above metadata is collected by tracing the fw function.
        # However, extra outputs for rng offsets behave differently. Both fwd
        # and bwd graphs have their own outputs for the total consumed offsets.
        # Unlike mutated inputs, we don't have to worry about sending the right
        # set of tensors between fwd and bwd. Fwd and bwd offsets are
        # independent and simpler to handle. Therefore, we track them
        # separately.
        self.num_outputs_rng_offset = 1 if self.is_rng_op_functionalized else 0

        # Our forward() returns both (tokens, mutated_inputs, outputs, output_intermediate_bases, saved_tensors, saved_symints)
        # Tokens will be split out before mutations/view handling and we do not count them here.
        self.num_forward_returns = (
            self.num_mutated_inp_runtime_indices
            + self.num_outputs
            + self.num_intermediate_bases
        )
        # In case of functionalization of rng ops, the fw_module returns one
        # additional output for rng offset. This rng offset is used right
        # away to advance the rng state, and is not passed on to the raw
        # outputs. However, we need to know the exact boundary to identify
        # which tensors to be saved for the bwd graph.  num_forward captures
        # this information.
        self.num_forward = self.num_forward_returns + self.num_outputs_rng_offset

    def make_runtime_safe(self):
        """
        There are various fields in ViewAndMutationMeta that aren't serializable. This function is called after all tracing
        is completed to simplify certain fields in the metadata so that they can be safely cached.

        Doing so may lose information (in the case of traced_tangents), but none of the information is needed at runtime.
        """
        # TODO: This function is only a best effort: there are other fields that may not be cache safe
        # (i.e., there's no guarantee that tensor_flatten() returns a serializable result), or that
        # SubclassCreationMeta is cache safe.
        assert self.traced_tangent_metas is None

        def extract_metadata(t):
            if isinstance(t, torch.Tensor) and is_traceable_wrapper_subclass(t):
                (inner_tensors, flatten_spec) = t.__tensor_flatten__()  # type: ignore[attr-defined]
                # Technically, we only need the flatten_spec, not the inner tensors.
                # However, some Tensor subclasses (like TwoTensor) may have flatten_spec = None.
                # And we want to be able to assert that this metadata is non-None,
                # to distinguish between "this was a tensor subclass with no metadata" vs.
                # "this wasn't a tensor subclass at all".
                return (inner_tensors, flatten_spec)
            else:
                return None

        self.traced_tangent_metas = [extract_metadata(t) for t in self.traced_tangents]
        # Clear traced tangents at runtime
        self.traced_tangents = []
        new_output_info = []
        for out in self.output_info:
            if config.view_replay_for_aliased_outputs:
                new_out = out
            else:
                # If we're not using view_replay, remove the functional tensor.
                # Functional tensors are unfortunately not serializable,
                # so doing this is required for AOTAutograd caching.
                new_out = dataclasses.replace(out, functional_tensor=None)
            new_output_info.append(new_out)
        self.output_info = new_output_info
        for inp_meta in self.subclass_inp_meta:
            if isinstance(inp_meta, SubclassCreationMeta):
                inp_meta.make_runtime_safe()
        for inp_meta in self.subclass_fw_graph_out_meta:
            if isinstance(inp_meta, SubclassCreationMeta):
                inp_meta.make_runtime_safe()
        for inp_meta in self.subclass_tangent_meta:
            if isinstance(inp_meta, SubclassCreationMeta):
                inp_meta.make_runtime_safe()

    @property
    def tensors_saved_for_backwards_slice(self):
        assert self.num_symints_saved_for_bw is not None
        if self.num_symints_saved_for_bw > 0:
            return slice(self.num_forward, -self.num_symints_saved_for_bw)
        else:
            return slice(self.num_forward, None)

    @property
    def symints_saved_for_backwards_slice(self):
        assert self.num_symints_saved_for_bw is not None
        if self.num_symints_saved_for_bw > 0:
            return slice(-self.num_symints_saved_for_bw, None)
        else:
            return slice(0, 0)  # empty slice

    def __eq__(self, other):
        if not isinstance(other, ViewAndMutationMeta):
            return NotImplemented
        return (
            self.input_info == other.input_info
            and self.output_info == other.output_info
            and self.num_intermediate_bases == other.num_intermediate_bases
            and self.keep_input_mutations == other.keep_input_mutations
            and self.is_rng_op_functionalized == other.is_rng_op_functionalized
            and self.num_outputs_rng_offset == other.num_outputs_rng_offset
            and len(self.traced_tangents) == len(other.traced_tangents)
            and all(
                x.shape == y.shape and x.dtype == y.dtype
                for x, y, in zip(self.traced_tangents, other.traced_tangents)
            )
            and self.num_backward_tokens == other.num_backward_tokens
        )


@dataclass(eq=False)
class SubclassMeta:
    # A copy of all forward metadata, but computed on the *dense* tensor forward (after desugaring subclasses)
    # So for example, if the user had a model containing two `TwoTensor` inputs,
    # Then `SubclassMeta.fw_metadata.input_infos` would have length 4 here.
    fw_metadata: ViewAndMutationMeta

    # Note: [Computing Subclass Metadata about grad_inputs]
    # Given a list of flattened, plain tensor grad_inputs, this tells us how to reconstruct the grad_input subclasses
    #
    # You might think: why not just assume that all grad_inputs will have the same subclass-ness as the original inputs?
    # (AOTAutograd generally assumes other properties, e.g. that grad_outputs are contiguous)
    #
    # This doesn't really work though. take this example:
    #
    # def f(DoubleTensor, DenseTensor):
    #     return DoubleTensor  * DenseTensor
    #
    # In the above example, the .grad field of *both* DoubleTensor and DenseTensor will be a DoubleTensor.
    # When we trace out a joint fw-bw graph, we'll end up returning two subclasses for the two grad_inputs.
    # This means that our backward graph will return 4 outputs (two dense tensors for each DoubleTensor grad_input)
    # and we need to properly store the metadata that tells us how to turn these 4 outputs back into DoubleTensors.
    #
    # Note that this info **cannot** easily be figured out from ViewAndMutationMeta.
    # We can only compute this info by tracing the entire joint and examining the grad_inputs that we computed.
    #
    # See Note: [AOTAutograd Backward Guards]
    # This will also eventually require us to install backward guards,
    # in case we made incorrect assumptions about the subclass-ness of our grad_outputs
    #
    # Optional field because we don't compute for inference graphs
    grad_input_metas: Optional[
        List[Union[PlainTensorMeta, SubclassCreationMeta]]
    ] = None

    def __init__(self) -> None:
        # The fields in this class get set after its construction.
        pass


# This class exists because:
# - the autograd.Function.forward() in aot autograd returns outputs that might alias inputs
# - we only care about the metadata on those aliases, so we can regenerate them.
#   We do not want them to participate in the autograd.Function.
# We do that by wrapping them in an opaque class, so the autograd.Function
# does not know to treat them as tensors.
@dataclass(frozen=True)
class TensorAlias:
    alias: torch.Tensor


@dataclass
class BackwardSignature:
    """
    Provides information about the backward section of an exported
    joint forward-backward graph.
    For a particular fx GraphModule, this class contains information on:
    (1) A mapping from each gradient (backwards output) to the parameter
        it corresponds to (forward input)
    (2) A mapping from each gradient (backwards output) to the user input
        it corresponds to (forward input)
    (3) Which of the forward outputs corresponds to the loss, that we backprop on.

    Each string name is the `node.name` of the corresponding node in the fx graph.
    """

    gradients_to_parameters: Dict[str, str]
    gradients_to_user_inputs: Dict[str, str]
    loss_output: str


GraphOutputName = NewType("GraphOutputName", str)
GraphInputName = NewType("GraphInputName", str)
FQN = NewType("FQN", str)


@dataclass
class GraphSignature:
    """
    Provides information about an exported module.
    For a particular fx GraphModule, this class contains information on:
    (1) Which graph inputs are parameters, buffers, or user inputs
    (2) (for params/buffers) a mapping from the name of each graph argument
        to its parameter/buffer FQN in the original nn.Module.
    (3) If there are input mutations, these are represented as extra outputs
        in the fx GraphModule. We provide a mapping from these
        extra output names to the names of the actual inputs.
    (4) The pytree metadata on how to flatten/unflatten inputs and outputs.
        The corresponding FX GraphModule only accepts and returns
        pytree-flattened inputs/outputs.
    (5) (Optionally) if the FX is a joint forward-backward graph, we provide
        a signature on the backward section of the joint graph.
    """

    parameters: List[FQN]
    buffers: List[FQN]

    user_inputs: List[GraphInputName]
    user_outputs: List[GraphOutputName]
    inputs_to_parameters: Dict[GraphInputName, FQN]
    inputs_to_buffers: Dict[GraphInputName, FQN]

    # If the user's module mutates a buffer,
    # it's represented in the graph as an extra graph output.
    # This dict is a mapping from
    # "graph outputs that correspond to updated buffers"
    # to the FQN names of those mutated buffers.
    buffers_to_mutate: Dict[GraphOutputName, FQN]
    user_inputs_to_mutate: Dict[GraphOutputName, GraphInputName]

    in_spec: pytree.TreeSpec
    out_spec: pytree.TreeSpec

    backward_signature: Optional[BackwardSignature]

    input_tokens: List[GraphInputName]
    output_tokens: List[GraphOutputName]

    @classmethod
    def from_tracing_metadata(
        cls,
        *,
        in_spec: pytree.TreeSpec,
        out_spec: pytree.TreeSpec,
        graph_input_names: List[str],
        graph_output_names: List[str],
        view_mutation_metadata: ViewAndMutationMeta,
        named_parameters: List[str],
        named_buffers: List[str],
        num_user_inputs: int,
        num_user_outputs: int,
        loss_index: Optional[int],
        backward_signature: Optional[BackwardSignature],
    ) -> "GraphSignature":
        graph_inputs = graph_input_names
        graph_outputs = graph_output_names
        parameters = list(named_parameters)
        buffers = list(named_buffers)
        num_tokens = len(view_mutation_metadata.tokens)

        # Calling convention assumptions:
        # (1) graph inputs = (input_tokens, params, buffers, user_inputs)
        # (2) graph outputs = (output_tokens, mutated_inputs, user_outs, param_gradients)
        # (If we are capturing an inference graph, this convention is identical
        #  except that param_gradients is empty)
        # See Note [Side-Effectful Tokens in AOTAutograd] for information on tokens

        # Address input calling conventions:
        start, stop = 0, num_tokens
        input_tokens = graph_inputs[start:stop]

        start, stop = stop, stop + len(parameters)
        inputs_to_parameters = dict(zip(graph_inputs[start:stop], parameters))

        start, stop = stop, stop + len(buffers)
        inputs_to_buffers = dict(
            zip(
                graph_inputs[start:stop],
                buffers,
            )
        )

        start, stop = stop, stop + num_user_inputs
        user_inputs = graph_inputs[start:stop]

        # We should've gone through all the inputs now
        assert len(graph_inputs) - stop == 0

        # Address output calling conventions:
        start, stop = 0, num_tokens
        output_tokens = graph_outputs[start:stop]

        names = [*input_tokens, *parameters, *buffers, *user_inputs]
        mutations = []
        for idx, input_info in enumerate(view_mutation_metadata.input_info):
            if input_info.mutates_data:
                # Only buffers can be mutated, not parameters
                assert idx >= len(parameters)
                mutations.append(names[idx + num_tokens])

        assert len(mutations) == view_mutation_metadata.num_mutated_inp_runtime_indices

        start, stop = (
            stop,
            stop + view_mutation_metadata.num_mutated_inp_runtime_indices,
        )
        outputs_to_mutations = dict(zip(graph_outputs[start:stop], mutations))

        user_inputs_to_mutate = {}
        buffers_to_mutate = {}
        for output_name, mutation_name in outputs_to_mutations.items():
            if mutation_name in user_inputs:
                user_inputs_to_mutate[output_name] = mutation_name
            else:
                assert mutation_name in buffers
                buffers_to_mutate[output_name] = mutation_name

        start, stop = stop, stop + num_user_outputs
        user_outputs = graph_outputs[start:stop]

        unused_outputs = len(graph_outputs) - stop
        if backward_signature is not None:
            unused_outputs -= len(backward_signature.gradients_to_parameters) + len(
                backward_signature.gradients_to_user_inputs
            )
        assert unused_outputs == 0

        return GraphSignature(
            parameters=parameters,  # type: ignore[arg-type]
            buffers=buffers,  # type: ignore[arg-type]
            user_inputs=user_inputs,  # type: ignore[arg-type]
            user_outputs=user_outputs,  # type: ignore[arg-type]
            inputs_to_buffers=inputs_to_buffers,  # type: ignore[arg-type]
            inputs_to_parameters=inputs_to_parameters,  # type: ignore[arg-type]
            user_inputs_to_mutate=user_inputs_to_mutate,
            buffers_to_mutate=buffers_to_mutate,  # type: ignore[arg-type]
            in_spec=in_spec,
            out_spec=out_spec,
            backward_signature=backward_signature,
            input_tokens=input_tokens,  # type: ignore[arg-type]
            output_tokens=output_tokens,  # type: ignore[arg-type]
        )


@dataclass
class AOTAutogradCacheInfo:
    cache_key: str
    start_time_ns: int


@dataclass
class AOTConfig:
    """
    Configuration for AOTDispatcher
    """

    fw_compiler: Callable
    bw_compiler: Callable
    partition_fn: Callable
    decompositions: Dict[OpOverload, Callable]
    num_params_buffers: int
    aot_id: int
    keep_inference_input_mutations: bool
    is_export: bool = False
    no_tangents: bool = False
    dynamic_shapes: bool = False
    aot_autograd_arg_pos_to_source: Optional[List[Source]] = None
    static_input_indices: Optional[List[int]] = None
    inference_compiler: Optional[Callable] = None
    enable_log: bool = True
    # this is always false outside of export.
    pre_dispatch: bool = False
    # Key to use for AOTAutogradCache
    cache_info: Optional[AOTAutogradCacheInfo] = None

    def __post_init__(self):
        if self.pre_dispatch:
            assert self.is_export, "Can only have pre_dispatch IR for export."


SubclassTracingInfo = collections.namedtuple(
    "SubclassTracingInfo",
    ["plain_tensor_trace_fn", "plain_tensor_args", "maybe_subclass_meta"],
)