1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
|
# mypy: ignore-errors
import itertools
from contextlib import contextmanager, nullcontext
from functools import partial, wraps
from typing import (
Any,
Callable,
Dict,
List,
NewType,
Optional,
Protocol,
Sequence,
Tuple,
Type,
TypeVar,
)
from unittest.mock import patch
import torch
import torch._dynamo.logging
import torch.nn as nn
import torch.utils._pytree as pytree
import torch.utils.dlpack
from torch import Tensor
from torch._decomp.decompositions_for_rng import PhiloxStateTracker, rng_decompositions
from torch._dispatch.python import enable_python_dispatcher
from torch._dynamo import compiled_autograd
from torch._dynamo.utils import (
dynamo_timed,
get_chromium_event_logger,
preserve_rng_state,
)
from torch._guards import detect_fake_mode
from torch._inductor.output_code import OutputCode
from torch._inductor.utils import BoxedBool, InputType
from torch._subclasses import FakeTensor, FakeTensorMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
static_inputs_log = torch._logging.getArtifactLogger(
__name__, "cudagraph_static_inputs"
)
from . import config
from ._aot_autograd.autograd_cache import ( # noqa: F401
AOTAutogradCache,
autograd_cache_key,
should_use_local_autograd_cache,
should_use_remote_autograd_cache,
)
from ._aot_autograd.collect_metadata_analysis import ( # noqa: F401
run_functionalized_fw_and_collect_metadata,
)
from ._aot_autograd.functional_utils import ( # noqa: F401
_check_if_mutation_can_be_in_graph,
are_all_mutations_hidden_from_autograd,
are_all_mutations_under_no_grad_or_inference_mode,
assert_functional_graph,
from_fun,
gen_alias_from_base,
has_data_mutation,
has_metadata_mutation,
is_fun,
sync_functional_tensor,
to_fun,
)
from ._aot_autograd.input_output_analysis import ( # noqa: F401
compute_overlapping_inputs,
create_graph_signature,
create_synthetic_base_metadata,
remove_dupe_metadata,
)
from ._aot_autograd.jit_compile_runtime_wrappers import ( # noqa: F401
aot_dispatch_autograd,
aot_dispatch_base,
aot_dispatch_export,
)
from ._aot_autograd.logging_utils import ( # noqa: F401
callback_set,
describe_input,
format_guard_bug_msg,
get_aot_compilation_context,
get_aot_graph_name,
get_graph_being_compiled,
graph_being_compiled,
model_name,
nth_graph,
set_model_name,
setup_stacktrace_preservation_hooks,
track_graph_compiling,
)
from ._aot_autograd.runtime_wrappers import ( # noqa: F401
AOTDedupeWrapper,
AOTSyntheticBaseWrapper,
)
from ._aot_autograd.schemas import ( # noqa: F401
AOTConfig,
BackwardSignature,
FQN,
GraphInputName,
GraphOutputName,
GraphSignature,
InputAliasInfo,
MutationType,
OutputAliasInfo,
OutputType,
SubclassCreationMeta,
SubclassMeta,
TensorAlias,
ViewAndMutationMeta,
)
from ._aot_autograd.subclass_utils import ( # noqa: F401
requires_subclass_dispatch,
unwrap_tensor_subclasses,
unwrap_tensor_subclasses_with_indices_to_original,
wrap_tensor_subclasses,
wrap_tensor_subclasses_maybe_joint,
)
from ._aot_autograd.traced_function_transforms import ( # noqa: F401
aot_dispatch_subclass,
create_functional_call,
create_functionalized_fn,
create_functionalized_rng_ops_wrapper,
create_joint,
fn_input_mutations_to_outputs,
fn_prepped_for_autograd,
)
from ._aot_autograd.utils import ( # noqa: F401
_get_autocast_states,
_get_symint_hints,
call_func_at_runtime_with_args,
create_tree_flattened_fn,
KNOWN_TYPES,
make_boxed_compiler,
make_boxed_func,
maybe_to_fresh_input,
normalize_as_list,
partial_flatten_asdict,
root_module_when_exporting_non_strict,
strict_zip,
)
from .partitioners import default_partition
zip = strict_zip
# This global counter increments every time we compile a graph with
# AOTAutograd. You can use this to correlate runtime error messages
# with compile time (e.g., if you get an error at runtime saying
# compiled graph 3 failed, you can set a breakpoint at compile time
# for this graph number to investigate further at compile time.)
#
# NB: this is different from get_aot_compilation_context, which tracks
# each underlying graph that is compiled. In contrast, AOT_COUNTER
# corresponds to top-level invocations of aot_module/aot_function;
# one counter is allocated per entire compiled block (but this block
# may involve compiling multiple subgraphs; e.g., for forwards/backwards)
AOT_COUNTER = itertools.count()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# AOT Autograd contains a pretty non-trivial amount of logic to handle edge cases around aliasing and mutation
# that are external to the graph (they show up as side effects in some way when you run the graph).
#
# Take a look at `test_aotdispatch.py TestAOTAutograd.test_input_mutation*` tests for some examples functions
# and what they're compiled graphs looks like.
# Below is a very long comment detailing several edge cases, and showing how AOT Autograd handles them.
#
# Note [AOT Autograd: input data mutations]
#
# If we compile a function that mutates inputs, then those input mutations are real side effects
# that a user expects to see after running the compiled graph.
# However, the graph that we want to send to a backend needs to be *entirely* functional.
# The way we reconcile this difference is that we remove the mutations completely from the graph that we compile
# but we update the graph to return (updated_inputs, user_outputs).
# In the epilogue that runs after the compiled graph is executed, we copy the updated inputs back to the originals.
#
# Example: original user code:
# def f(x):
# x.mul_(2)
# out = x.mul(3)
# return out
#
# After AOT Autograd compiles, we end up with a:
# (a) compiled graph
# (b) autograd.Function.forward() method, that executes the compiled graph
# (c) wrapper function, that calls the autograd.Function.forward() and performs the epilogue
#
# The output of (a, b, c) are all written below.
#
# def compiled_forward_graph(x):
# x_updated = x.mul(2)
# out = x_updated.mul(3)
# return x_updated, out
#
# # x_updated gets a gradient in the compiled backward
# def compiled_backward_graph(grad_x_updated, grad_out):
# grad_x = ...
# return grad_x
#
# def autograd.Function.forward(x):
# x_updated, out = compiled_forward_graph(x)
# return x_updated, out
#
# def compiled_wrapper(x):
# x_updated, out = autograd.Function.apply(x)
# x.copy_(x_updated)
# return out
#
# Another important thing to note is that updated inputs (due to data mutations) *do* participate
# in the compiled backward graph! Since the compiled forward graph gets N extra outputs
# (due to updated inputs showing up as graph outputs),
# The compiled backward gets an additional N inputs.
# That way, during the x.copy_(x_updated) bit in the epilogue, gradients will flow from the updated input
# back to the original input.
# Note [AOT Autograd: input metadata mutations]
#
# For the same reason as input mutations, we also don't put input metadata mutations in the graph.
# Instead, we return the updated version of the input (a view), and mutate the input's metadata outside of the graph
#
# Example: original user code:
# def f(x):
# x.t_()
# out = x.mul(3)
# return out
#
# AOT Autograd output (compiled graph, autograd.Function.forward(), wrapper function):
# def compiled_forward_graph(x):
# x_updated = x.t()
# out = x_updated.mul(3)
# return x_updated, out
#
# # x_updated does *not* get a gradient in the compiled backward
# def compiled_backward_graph(grad_out):
# grad_x = ...
# return grad_x
#
# def autograd.Function.forward(x):
# x_updated, out = compiled_forward_graph(x)
# return x_updated, out
#
# def compiled_wrapper(x):
# x_updated, out = autograd.Function.apply(x)
# x.as_strided_(x_updated)
# return out
# Note [AOT Autograd: outputs aliasing inputs or intermediates!]
#
# AOT Autograd needs special handling for outputs that alias graph inputs or intermediates!
# Why?
# (1) autograd.Function.forward() has a limitation, where views that returned in the forward cannot later be mutated.
# (2) views don't need to be compiled in the graph anyway - it's cheap to generate them outside of the compiled graph,
# in an epilogue.
# For outputs that alias inputs, we do the following:
# (a) *still* return the aliased output as a graph output
# (b) In the AOT Autograd wrapper/epilogue, we don't return that aliased output. Instead, we use it to regenerate the output.
#
# For outputs that alias *intermediates*, we do the following:
# (a) Return the output in the compiled forward, **and** return it's ._base (a graph intermediates) as an output in the forward
# (b) Use (output, graph_intermediate) to regenerate the alias, and return that to the user (instead of the compiled fw output).
# You might wonder why we return the aliased output directly in the graph (and making the graph compute it),
# only to not return it and instead generate a fresh alias off of the intermediate,
# instead of (say) just storing metadata about the size/stride of the output somewhere to generate the alias. There are two reasons:
# (1) Getting the actual alias tensor allows us to use view-replay to generate the alias, instead of an as_strided() call
# (2) Inductor (and other backends) are free to change the memory format of graph outputs, if it results in better performance.
# This can result in problems if a user later tries to .view() that output expecting it to have one set of strides,
# when it has a different set of strides.
# By including the view op directly in the graph, inductor takes that into account when deciding what memory format
# the graph intermediate should be.
#
# Another important thing to note is how our traced backward() graph handles aliases.
# (this applies to outputs aliasing inputs, outputs aliasing intermediates,
# *and* updated inputs returned in the compiled forward due to metadata-only mutations).
# Any outputs that alias (either inputs or intermediates) do NOT participate in the compiled backward graph
# It would be wasteful to include them in the compiled backward(), because we regenerate them eagerly
# at the end of the forward.
#
# Example: original user code:
# def f(x):
# out1 = x.t()
# intermediate = x.mul(2)
# out2 = intermediate.view(-1)
# return out1, out2
#
# AOT Autograd output (compiled graph, autograd.Function.forward(), wrapper function):
# def compiled_forward_graph(x):
# out1 = x.t()
# intermediate = x.mul(2)
# out2 = intermediate.view(-1)
# # the compiled graph also returns the intermediate
# return out1, out2, intermediate
#
# # intermediate gets a gradient in the compiled backward.
# # both output aliases (out1 and out2) do not.
# def compiled_backward_graph(grad_intermediate):
# grad_x = ...
# return grad_x
#
# def autograd.Function.forward(x):
# out1, out2, intermediate = compiled_forward_graph(x)
# return out1, out2, intermediate
#
# def compiled_wrapper(x):
# out1, out2, intermediate = autograd.Function.apply(x)
# # regenerate out1 from the input
# out1_regenerated = out1._view_func(x)
# # regenerate out1 from the intermediate
# out2_regenerated = out2._view_func(intermediate)
# return out1_regenerated, out2_regenerated
# Note [AOT Autograd: mutations to inputs that alias other inputs]
#
# Another edge case that is (only partially) handled today is when an input is mutated, but itself aliases another input.
# AOT Autograd needs to **ensure** that functionalization knows that the two inputs are aliased to each other.
# That way, when the aliased input is accessed later in the graph, functionalization knows to "update" the alias
# given the mutation that occurred.
#
# This is handled by updating the calling convention: we create a "synthetic base" that becomes a new input
# in the compiled function, and we regenerate the original (aliased) inputs directly off of the base
# inside of the compiled function.
#
# This logic is fully encapsulated in aot_wrapper_synthetic_base()
#
# Example: original user code:
# def f(x, x_view):
# x.mul_(2)
# out = x * x_view
# return out
# f(x, x.view(-1))
#
# AOT Autograd output (compiled graph, autograd.Function.forward(), wrapper function):
# def compiled_forward_graph(base)
# x = generate_x(base)
# x_view = generate_x_view(base)
# x_updated = x.mul(2)
# x_view_updated = x_updated.view(-1)
# out = x_updated * x_view_updated
# return x_updated, out
#
# # The calling convention change from (aliases) -> (base) happens
# # *outside* of the autograd.Function.forward().
# # That means the forward() only has 1 input (base),
# # and the backward() only has 1 output (grad_base)
# def compiled_backward_graph(grad_out):
# grad_base = ...
# return grad_base
#
# def autograd.Function.forward(base):
# x_updated, out = compiled_forward_graph(base)
# return x_updated, out
#
# # The compiled wrapper is where we create synthetic bases.
# # The info on which inputs are mutated is also tracked *before* synthetic base creation.
# def compiled_wrapper(x, x_view):
# base = merge_view_inputs(x, x_view)
# x_updated, out = autograd.Function.apply(base)
# # x and x_view are aliased in eager mode, so this mutation to x will automatically affect x_view.
# x.copy_(x_updated)
# return out
# Note [AOT Autograd: Views to avoid tangents aliasing inputs]
#
# We view every forward output when creating out tangent tensors to handle the problematic
# case in which a subclass does extra aliasing between graph outputs/inputs in a way that
# is not visible above the sublass.
#
# Ordinarily, when constructing the joint function that we want to trace in AOTAutograd,
# we're guaranteed that the tangent tensors that we pass
# into the joint are distinct tensors from the primals. This is because when
# decide which forward outputs to create tangents for, we only create tangents
# for forward outputs that are not aliases of inputs (See Note
# [AOT Autograd: outputs aliasing inputs or intermediates!]).
#
# However, when wrapper tensor subclasses enter the picture, it is possible
# to have an output of the forward that is a subclass that is not an
# input / alias of an input, but one of its inner tensors is an alias!
# NestedTensor is an example: Performing an out-of-place pointwise op on a
# NestedTensor constructs a fresh NestedTensor that holds onto the input's
# offsets tensor directly.
#
# Having tangent tensors that are the same as the (primal) forward inputs,
# can cause problems during tracing as make_fx() will specialize on our
# duplicate inputs: If we passed in the same tensor for primals_1 and
# tangents_1 during tracing, make_fx() will happily sub out all usages of
# tangents_1 with primals_1 in the graph, which is not what we want.
#
# To work around this, we view every forward output when creating out tangent
# tensors so that tangents can never be the same as forward inputs even if
# forward inputs alias forward outputs.
# Note [Side-Effectful Tokens in AOTAutograd]
#
# We allow some some side-effectful operators in
# the post-AOTAutograd (functional) graph, such as prints and torchbind operations.
# To ensure that these side-effects are compatible to future graph passes that
# assume that the graph is functional, we will thread "effect tokens" to show
# data dependence between these side-effectful operators. Practically speaking,
# effect tokens are just dummy values (torch.tensor([])). The graph would look
# like the following:
#
# def gm(self, token0, reader):
# token1, frame = with_token(ordered_effect_op, (reader,), token0)
# frame = frame * 2
# token2, frame2 = with_token(ordered_effect_op, (reader,), token1)
# frame2 = frame2 * 2
# return token2, frame, frame2
#
# We will pass the token as an input to the graph, thread it through
# side-effectful operators using the `with_effects` high order operator, and then
# return the updated token as an output.
# So the signature of the graph input would look something like
# (*tokens, *params_buffers, *user_inputs), and the signature of the graph
# output would look something like (*tokens, *outputs).
#
# However, Inductor does not want the concept of tokens in the final generated
# code's input and output. Since changing the graph signature inside of inductor
# is difficult, after generating the forward graph, we will run a pass to
# remove the tokens from the inputgenerate the following graph for Inductor, where
# the tokens are created and sunk within the graph, rather than as inputs and
# outputs:
#
# def gm(self, reader):
# token0 = torch.ops.prims._make_token()
# token1, frame = with_token(ordered_effect_op, (reader,), token0)
# frame = frame * 2
# token2, frame2 = with_token(ordered_effect_op, (reader,), token1)
# frame2 = frame2 * 2
# sink_token = torch.ops.prims._sink_tokens([token2])
# return frame, frame2
#
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
aot_autograd_decompositions = {}
FakifiedFlatArgs = NewType("FakifiedFlatArgs", List[Any])
TOutputCode = TypeVar("TOutputCode", bound=OutputCode)
class AOTDispatchCompiler(Protocol):
"""
Represents a fw or bw_compiler passed to AOTAutograd.
"""
def __call__(
self,
gm: torch.fx.GraphModule,
example_inputs: Sequence[InputType],
) -> Any:
...
# TODO: bikeshed on this name
class SerializableAOTDispatchCompiler(AOTDispatchCompiler):
"""
Represents an AOTDispatchCompiler that returns an OutputCode, and is
therefore cacheable. SerializableAOTDispatchCompiler always return an OutputCode.
A _CompileFxCallable usually gets converted into an AOTDispatchCompiler after binding all of
the kwargs in _CompileFxKwargs.
"""
def __init__(
self,
output_code_ty: Type[TOutputCode],
compiler_fn: Callable[[torch.fx.GraphModule, Sequence[InputType]], TOutputCode],
):
self.output_code_ty = output_code_ty
self.compiler_fn = compiler_fn
def __call__(
self,
gm: torch.fx.GraphModule,
example_inputs: Sequence[InputType],
) -> OutputCode:
return self.compiler_fn(gm, example_inputs)
def process_inputs(
flat_args: List[Any],
aot_config: AOTConfig,
fake_mode: FakeTensorMode,
shape_env: Optional[ShapeEnv],
) -> FakifiedFlatArgs:
with fake_mode:
def convert(idx, x):
if shape_env is not None:
from torch._dynamo.source import ConstantSource
if isinstance(x, int):
# We always specialize on scalar values in export.
if aot_config.is_export:
return x
source = ConstantSource(f"sym_{idx}")
return shape_env.create_symintnode(
shape_env.create_symbol(x, source), hint=x, source=source
)
if isinstance(x, torch.ScriptObject):
return torch._library.fake_class_registry.maybe_to_fake_obj(
fake_mode, x
)
if not isinstance(x, torch.Tensor):
return x
if isinstance(x, FakeTensor):
assert x.fake_mode is fake_mode
return x
if is_traceable_wrapper_subclass(x):
attrs, _ = x.__tensor_flatten__()
if all(isinstance(getattr(x, attr), FakeTensor) for attr in attrs):
assert all(
getattr(x, attr).fake_mode is fake_mode for attr in attrs
)
return x
# see note [Tensor Fakification and Symbol Caching]
symbolic_context = None
source = None
trace = True
if tracing_context := torch._guards.TracingContext.try_get():
if x in tracing_context.tensor_to_context:
symbolic_context = tracing_context.tensor_to_context[x]
source = symbolic_context.tensor_source
# We already fakeified this tensor in Dynamo, don't
# dump the trace for it again
trace = False
if (
idx < aot_config.num_params_buffers
and config.static_weight_shapes
and not symbolic_context
):
# TODO: Ensure that this codepath is never exercised from
# Dynamo
return fake_mode.from_tensor(x, static_shapes=True)
return fake_mode.from_tensor(
x,
static_shapes=False,
symbolic_context=symbolic_context,
source=source,
trace=trace,
)
return FakifiedFlatArgs([convert(idx, x) for idx, x in enumerate(flat_args)])
def construct_fake_mode(
flat_args: List[Any], aot_config: AOTConfig
) -> Tuple[FakeTensorMode, Optional[ShapeEnv]]:
fake_mode = detect_fake_mode(flat_args)
if fake_mode is None:
shape_env = ShapeEnv() if aot_config.dynamic_shapes else None
fake_mode = FakeTensorMode(shape_env=shape_env)
else:
shape_env = fake_mode.shape_env
return (fake_mode, shape_env)
def create_aot_dispatcher_function(
flat_fn,
fake_flat_args: FakifiedFlatArgs,
aot_config: AOTConfig,
fake_mode: FakeTensorMode,
shape_env: Optional[ShapeEnv],
) -> Tuple[Callable, ViewAndMutationMeta]:
with dynamo_timed("create_aot_dispatcher_function", log_pt2_compile_event=True):
return _create_aot_dispatcher_function(
flat_fn, fake_flat_args, aot_config, fake_mode, shape_env
)
def _create_aot_dispatcher_function(
flat_fn,
fake_flat_args: FakifiedFlatArgs,
aot_config: AOTConfig,
fake_mode: FakeTensorMode,
shape_env: Optional[ShapeEnv],
) -> Tuple[Callable, ViewAndMutationMeta]:
"""
Traces the forward and backward graphs of the attr:`flat_fn` to generate a
joint graph. The joint graph is an Fx graph with Aten ops. Please refer to
the tracing mechanism to understand the graph capturing details.
The joint graph is then passed through attr:`partition_fn` to isolate the
forward and backward portions, which are then respectively compiled via the
provided attr:`fw_compiler` and attr:`bw_compiler`.
The resulting compiled forward and backward graphs are then wrapped up in a
``torch.autograd.Function`` object.
The calling convention here is that the first aot_config.num_params_buffers
inputs in flat_args are parameters and buffers, and the rest are inputs.
We use this to assume that parameters/buffer's shapes don't change.
Note: this function is used both by aot_function and aot_export (controlled by aot_config.is_export)
When aot_config.is_export is True, we return an FX graph + metadata
When aot_config.is_export is False, we return an ordinary runtime function
"""
# This is the main entry point.
# TODO: Chillee argues that dynamo itself should pass in fake tensors to
# the list of arguments when compiling; at the moment we do not do this
if aot_config.decompositions is None:
aot_config.decompositions = {}
aot_config.decompositions = {
**aot_autograd_decompositions,
**aot_config.decompositions,
}
if config.functionalize_rng_ops:
# Update the decompositions with functionalized random decompositions
aot_config.decompositions = {
**rng_decompositions,
**aot_config.decompositions,
}
# Check flat_args to see if they're already fake. If so, use that fake
# mode instead.
python_dispatcher_mode = (
enable_python_dispatcher() if shape_env is not None else nullcontext()
)
chromium_log = get_chromium_event_logger()
# See NOTE: [Deferring tensor pack/unpack hooks until runtime]
# If any saved tensor hooks are active, we **don't** want to trace them.
# Instead, we'll let them run at runtime, around the custom autograd.Function
# that we generate in torch.compile.
with torch.autograd.set_multithreading_enabled(
False
), preserve_rng_state(), (
fake_mode
), (
python_dispatcher_mode
), PhiloxStateTracker(), torch._dynamo.utils._disable_saved_tensors_hooks_during_tracing():
from torch._library.fake_class_registry import (
FakeScriptObject,
maybe_to_fake_obj,
)
# Tracing may mutate the states the fake script object,
# so we need to duplicate the fake script objects so that subsequent tracing
# won't be affected.
def _dup_fake_script_obj(fake_flat_args):
return [
maybe_to_fake_obj(detect_fake_mode(fake_flat_args), arg.real_obj)
if isinstance(arg, FakeScriptObject)
else arg
for arg in fake_flat_args
]
needs_autograd = any(
x.requires_grad for x in fake_flat_args if isinstance(x, Tensor)
)
with enable_python_dispatcher():
# Patch set_rng_state as set_rng_state with fake tensors is
# nonsensical. This does not affect the collection of metadata.
with patch("torch.cuda.set_rng_state", lambda *args: None):
mod = root_module_when_exporting_non_strict(flat_fn)
if mod is not None:
ctx = _detect_attribute_assignment(mod)
else:
ctx = nullcontext()
with ctx:
fw_metadata = run_functionalized_fw_and_collect_metadata(
flat_fn,
static_input_indices=aot_config.static_input_indices,
keep_input_mutations=aot_config.keep_inference_input_mutations,
is_train=needs_autograd,
pre_dispatch=aot_config.pre_dispatch,
is_export=aot_config.is_export,
)(*_dup_fake_script_obj(fake_flat_args))
req_subclass_dispatch = requires_subclass_dispatch(
fake_flat_args, fw_metadata
)
chromium_log.try_add_event_data(
"backend_compile", requires_subclass_dispatch=req_subclass_dispatch
)
output_and_mutation_safe = not any(
x.requires_grad
# view-type operations preserve requires_grad even in no_grad.
# Do not count aliases of inputs with requires_grad as reason to make a training graph,
# as AOTAutograd will perform view-replay to regenerate the view outputs at runtime,
# setting their grad_fn properly.
and not (
x.output_type
in (OutputType.alias_of_input, OutputType.is_input)
and fw_metadata.input_info[x.base_idx].requires_grad
)
for x in fw_metadata.output_info
) and not any(
x.requires_grad
and x.mutates_data
and not x.mutations_under_no_grad_or_inference_mode
and not x.mutations_hidden_from_autograd
for x in fw_metadata.input_info
)
if needs_autograd and output_and_mutation_safe:
# We realized that none of the outputs require grad,
# and none of the inputs that require grad are mutated.
# so we actually have an inference graph.
needs_autograd = False
# A bit silly: right now in the subclass codepath, our ViewAndMutationMeta
# changes depending on whether we pass in is_train / keep_input_mutations,
# so we're forced to recompute the metadata.
# TODO: refactor the subclass path of run_functionalized_fw_and_collect_metadata
# so that this is unnecessary.
if req_subclass_dispatch:
fw_metadata = run_functionalized_fw_and_collect_metadata(
flat_fn,
keep_input_mutations=aot_config.keep_inference_input_mutations,
is_train=False,
pre_dispatch=aot_config.pre_dispatch,
static_input_indices=aot_config.static_input_indices,
)(*fake_flat_args)
else:
fw_metadata = ViewAndMutationMeta(
input_info=fw_metadata.input_info,
output_info=fw_metadata.output_info,
num_intermediate_bases=fw_metadata.num_intermediate_bases,
keep_input_mutations=aot_config.keep_inference_input_mutations,
traced_tangents=fw_metadata.traced_tangents,
subclass_inp_meta=fw_metadata.subclass_inp_meta,
subclass_fw_graph_out_meta=fw_metadata.subclass_fw_graph_out_meta,
subclass_tangent_meta=fw_metadata.subclass_tangent_meta,
is_train=False,
tokens=fw_metadata.tokens,
static_input_indices=fw_metadata.static_input_indices,
)
if fw_metadata.num_intermediate_bases > 0:
assert not req_subclass_dispatch, f"""\
torch.compile is currently being used with tensor subclass inputs:
{','.join([str(type(x)) for x in fake_flat_args])}. We are attempting to a compile a graph with two graph outputs
that alias one another, which is currently unsupported in the subclass use case. If you run into this,
please file a github issue"""
if aot_config.is_export:
# aot_export: ban input metadata mutations for now to keep shared code paths simpler.
# Keeping .resize_() in the graph will require some work
# Allowing it but keeping the graph functional will require some calling convention changes.
if len([x for x in fw_metadata.input_info if x.mutates_metadata]) != 0:
raise RuntimeError(
f"""\
Found an input that received a metadata mutation, through e.g. a call to `.resize_()` or `.transpose_()`.
This is currently banned in the aot_export workflow. If you need this functionality, please file a github issue.
fw_metadata={str(fw_metadata)}"""
)
# In export, banning data mutations on inputs that require grad for now.
# This should be rare, and is tricky to get right. When we trace the backward,
# we currently trace with autograd.grad instead of .backward(), which makes it difficult
# to ensure that we run autograd all the way through the input **before** it saw the mutation.
if (
len(
[
x
for x in fw_metadata.input_info
if x.requires_grad and x.mutates_data
]
)
!= 0
):
raise RuntimeError(
f"""\
Found a graph input that requires gradients, and received a mutation.
This is currently banned in the aot_export workflow. If you need this functionality, please file a github issue.
fw_metadata={str(fw_metadata)}"""
)
if req_subclass_dispatch:
raise RuntimeError(
"""\
aot_export is not currently supported with traceable tensor subclass.
If you need this feature, please comment on <CREATE_ISSUE_LINK>"""
)
# Need to decide on a strategy for functionalized RNG: toggling via global config seems bad,
# and turning it on will require a non-trivial calling convention change for any export runtime.
if config.functionalize_rng_ops:
raise RuntimeError(
"""\
Functionalized RNG is not currently supported in the aot_export workflow. Please file a github issue,
or otherwise set torch._functorch.config.functionalize_rng_ops = False."""
)
def choose_dispatcher(needs_autograd, aot_config):
"""
Pick a dispatcher based on the config rules.
"""
if aot_config.is_export:
# export uses just the "graph bits", whereas the other
# two dispatchers include some extra work around handling a runtime epilogue
chromium_log.try_add_event_data(
"backend_compile", dispatch_mode="export"
)
return partial(aot_dispatch_export, needs_autograd=needs_autograd)
elif needs_autograd and not aot_config.pre_dispatch:
chromium_log.try_add_event_data(
"backend_compile", dispatch_mode="autograd"
)
return aot_dispatch_autograd
else:
chromium_log.try_add_event_data(
"backend_compile", dispatch_mode="inference"
)
return aot_dispatch_base
compiler_fn = choose_dispatcher(needs_autograd, aot_config)
compiled_fn, fw_metadata = compiler_fn(
flat_fn,
_dup_fake_script_obj(fake_flat_args),
aot_config,
fw_metadata=fw_metadata,
)
return compiled_fn, fw_metadata
def aot_function(
fn: Callable,
fw_compiler: Callable,
bw_compiler: Optional[Callable] = None,
partition_fn: Callable = default_partition,
decompositions: Optional[Dict] = None,
num_params_buffers: int = 0,
keep_inference_input_mutations: bool = False,
inference_compiler: Optional[Callable] = None,
*,
# Whether or not to trace with dynamic shapes
dynamic=False,
enable_log=True,
) -> Callable:
"""
Traces the forward and backward graph of :attr:`fn` using torch dispatch
mechanism, and then compiles the generated forward and backward graphs
through :attr:`fw_compiler` and :attr:`bw_compiler`.
:func:`aot_function` traces the forward and backward graph ahead of time,
and generates a joint forward and backward graph. :attr:`partition_fn` is
then used to separate out forward and backward graphs. The partitioner
function can be used to perform optimizations such as recomputation. One can
set `decompositions` dictionary to decompose the operators into a sequence
of core or simpler operators supported by the backend compilers.
.. warning::
This API is experimental and likely to change.
Args:
fn (Callable): A Python function that takes one ore more arguments. Must
return one or more Tensors.
fw_compiler (Callable): A Python function that accepts an Fx graph with
Aten ops and input args, and returns a Callable that semantically is
equivalent to the input Fx graph.
bw_compiler (Optional[Callable]): A Python function that accepts an
Fx graph with Aten ops and input args, and returns a Callable that
semantically is equivalent to the input Fx graph. Default: None
(when None, it defaults to the :attr:`fw_compiler`)
partition_fn (Callable): A Python function that takes a joint forward
and backward graph, and partitions it into separate forward and
backward graphs.
decompositions (Dict): A dictionary to define the decomposition of
larger Aten ops into simpler or core Aten ops.
inference_compiler (Optional[Callable]): A Python function that accepts an
Fx graph with Aten ops and input args, and returns a Callable that
semantically is equivalent to the input Fx graph. inference_compiler is invoked
if no autograd is needed. Default: None
(when None, it defaults to the :attr:`fw_compiler`)
Returns:
Returns a ``Callable`` that retains the eager behavior of the original
:attr:`fn`, but with forward and backward graph compiled via
:attr:`fw_compile` and :attr:`bw_compile`.
A simple example usage of :func:`aot_function` is as follows. This example
will print the forward and backward graphs of the function ``fn``
>>> fn = lambda x : x.sin().cos()
>>> def print_compile_fn(fx_module, args):
>>> print(fx_module)
>>> return fx_module
>>> aot_fn = aot_function(fn, print_compile_fn)
>>> x = torch.randn(4, 5, requires_grad=True)
>>> aot_fn(x)
"""
if bw_compiler is None:
bw_compiler = fw_compiler
if inference_compiler is None:
inference_compiler = fw_compiler
aot_config = AOTConfig(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
inference_compiler=inference_compiler,
partition_fn=partition_fn,
decompositions=decompositions,
num_params_buffers=num_params_buffers,
aot_id=next(AOT_COUNTER),
keep_inference_input_mutations=keep_inference_input_mutations,
dynamic_shapes=dynamic,
aot_autograd_arg_pos_to_source=None,
is_export=False,
no_tangents=False,
enable_log=enable_log,
)
cached_res = None
@wraps(fn)
def returned_function(*args, **kwargs):
nonlocal cached_res
# Now flatten the tensor args
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
# Compile the function and save it in the cache
if cached_res is None:
flat_fn, out_spec = create_tree_flattened_fn(fn, args, kwargs)
(fake_mode, shape_env) = construct_fake_mode(flat_args, aot_config)
fake_flat_args: FakifiedFlatArgs = process_inputs(
flat_args, aot_config, fake_mode, shape_env
)
compiled_fn, _ = create_aot_dispatcher_function(
flat_fn,
fake_flat_args,
aot_config,
fake_mode,
shape_env,
)
cached_res = (compiled_fn, out_spec)
cached_fn, out_spec = cached_res
out = cached_fn(flat_args)
return out_spec.unflatten(out)
return returned_function
def aot_module(mod: nn.Module, *args, **kwargs) -> nn.Module:
"""
Traces the forward and backward graph of :attr:`mod` using torch dispatch
tracing mechanism. It is wrapper function, that underneath uses
:func:`aot_function` to perform tracing and compilation.
:func:`aot_module` lifts the parameters and buffers of ``nn.Module`` as inputs
to a new callable which is then compiled through :func:`aot_function`.
.. warning::
This API is experimental and likely to change.
Args:
mod (Callable): A ``nn.Module`` module.
args : args to be passed to :func:`aot_function`
kwargs : kwargs to be passed to :func:`aot_function`
Returns:
Returns a ``nn.Module`` that retains the eager behavior of the original
:attr:`mod`, but with forward and backward graph compiled.
"""
# See Note: [Fake Modules and AOTAutograd]
torch._dynamo.utils.assert_no_fake_params_or_buffers(mod)
def functional_call(named_params, named_buffers, *args, **kwargs):
params_and_buffers = {**named_params, **named_buffers}
return torch.func.functional_call(mod, params_and_buffers, args, kwargs)
named_params = dict(mod.named_parameters(remove_duplicate=False))
named_buffers = dict(mod.named_buffers(remove_duplicate=False))
num_params_buffers = len(named_params) + len(named_buffers)
compiled_f = aot_function(
functional_call, *args, num_params_buffers=num_params_buffers, **kwargs
)
class AOTModule(nn.Module):
def __init__(self) -> None:
super().__init__()
self.orig_module = mod
def forward(self, *args, **kwargs):
return compiled_f(
named_params,
named_buffers,
*args,
**kwargs,
)
return AOTModule()
def aot_module_simplified(
mod: nn.Module,
args,
fw_compiler: AOTDispatchCompiler,
bw_compiler: Optional[AOTDispatchCompiler] = None,
partition_fn: Callable = default_partition,
decompositions: Optional[Dict] = None,
keep_inference_input_mutations=False,
inference_compiler: Optional[AOTDispatchCompiler] = None,
cudagraphs: Optional[BoxedBool] = None,
) -> nn.Module:
"""
This is the simplified or low overhead version of aot_module. For frontends
like TorchDynamo, the input functions/modules to AOT are static and have
unpacked inputs/outputs. This gives us an opportunity to remove the
(1) pytree overhead to parse inputs/outputs,
(2) AOT Autograd cache,
(3) Reading of params/buffers in every forward call
:func:`aot_module_simplified` removes these overheads.
"""
params = {
**dict(mod.named_parameters(remove_duplicate=False)),
**dict(mod.named_buffers(remove_duplicate=False)),
}
params_flat, params_spec = pytree.tree_flatten(params)
params_flat = list(params_flat)
params_len = len(params_flat)
if cudagraphs is None:
cudagraphs = BoxedBool(torch._inductor.config.triton.cudagraphs)
if bw_compiler is None:
bw_compiler = fw_compiler
if inference_compiler is None:
inference_compiler = fw_compiler
seen_sources = set()
full_args = []
# First, the params
full_args.extend(params_flat)
if tracing_context := torch._guards.TracingContext.try_get():
tracing_context.params_flat = params_flat
(
tracing_context.params_flat_unwrap_subclasses,
tracing_context.params_unwrapped_to_flat_index,
) = unwrap_tensor_subclasses_with_indices_to_original(params_flat)
aot_autograd_arg_pos_to_source = None
# Then, the params 1:1 mapped sources, if relevant.
if hasattr(mod, "_param_name_to_source"):
aot_autograd_arg_pos_to_source = []
# We now know this came from dynamo, and (1) we care about guards,
# so setting up aot_autograd_arg_pos_to_source for downstream dedup guards
# can now be done safely. (2) Dynamo logic protects the 1:1 sizing below.
for name in params.keys():
assert name in mod._param_name_to_source, f"{name} not found."
source = mod._param_name_to_source[name]
assert source not in seen_sources, source
seen_sources.add(source)
aot_autograd_arg_pos_to_source.append(source)
# Next, the input args
full_args.extend(args)
static_input_indices = []
if hasattr(mod, "graph"):
# Non dynamo entrypoints can get to here...
for pos, node in enumerate(mod.graph.find_nodes(op="placeholder")):
if hasattr(node, "_dynamo_source"):
# ... but not here!
if aot_autograd_arg_pos_to_source is None:
aot_autograd_arg_pos_to_source = []
source = node._dynamo_source
assert source not in seen_sources, source
seen_sources.add(source)
aot_autograd_arg_pos_to_source.append(source)
source_name = source.name() if source else str(source)
if "tensor_dict" in node.meta and node.meta["tensor_dict"].get(
"_dynamo_static_input_type", None
):
static_inputs_log.debug(
"Adding static input pos %s for source %s", pos, source_name
)
static_input_indices.append(pos)
else:
static_inputs_log.debug(
"Non-static input pos %s for source %s", pos, source_name
)
if aot_autograd_arg_pos_to_source is not None:
assert len(full_args) == len(aot_autograd_arg_pos_to_source)
dynamic_shapes = False
for x in full_args:
if isinstance(x, FakeTensor):
dynamic_shapes = x.fake_mode.shape_env is not None
break
aot_config = AOTConfig(
fw_compiler=fw_compiler,
bw_compiler=bw_compiler,
inference_compiler=inference_compiler,
partition_fn=partition_fn,
decompositions=decompositions,
num_params_buffers=params_len,
aot_id=next(AOT_COUNTER),
keep_inference_input_mutations=keep_inference_input_mutations,
dynamic_shapes=dynamic_shapes,
aot_autograd_arg_pos_to_source=aot_autograd_arg_pos_to_source,
static_input_indices=static_input_indices,
is_export=False,
no_tangents=False,
cache_info=None,
)
fake_mode, shape_env = construct_fake_mode(full_args, aot_config)
fake_flat_args = process_inputs(full_args, aot_config, fake_mode, shape_env)
def dispatch_and_compile():
functional_call = create_functional_call(mod, params_spec, params_len)
with compiled_autograd._disable():
compiled_fn, _ = create_aot_dispatcher_function(
functional_call,
fake_flat_args,
aot_config,
fake_mode,
shape_env,
)
return compiled_fn
# Autograd cache stuff
remote = should_use_remote_autograd_cache()
local = should_use_local_autograd_cache()
# We only care if the forward will return an OutputCode.
if (local or remote) and isinstance(fw_compiler, SerializableAOTDispatchCompiler):
compiled_fn = AOTAutogradCache.load(
dispatch_and_compile,
mod,
fake_flat_args,
aot_config,
cudagraphs,
local,
remote,
)
else:
compiled_fn = dispatch_and_compile()
if isinstance(mod, torch._dynamo.utils.GmWrapper):
# This function is called by the flatten_graph_inputs wrapper, which boxes
# the inputs so that they can be freed before the end of this scope.
# For overhead reasons, this is not the default wrapper, see comment:
# https://github.com/pytorch/pytorch/pull/122535/files#r1560096481
def boxed_forward(runtime_args: List[Any]):
flat_args = []
flat_args.extend(params_flat)
flat_args.extend(runtime_args)
runtime_args.clear()
return compiled_fn(flat_args)
# Just for convenience
boxed_forward.zero_grad = mod.zero_grad
boxed_forward.named_parameters = mod.named_parameters
boxed_forward.named_buffers = mod.named_buffers
return boxed_forward
# TODO: There is something deeply wrong here; compiled_fn running with
# the boxed calling convention, but aot_module_simplified somehow
# historically returned a function that was not the boxed calling
# convention. This should get fixed...
# NB: GraphModule/nn.Module rely on the non-boxed calling convention here
def forward(*runtime_args: Tuple[Any]):
full_args = []
full_args.extend(params_flat)
full_args.extend(runtime_args)
return compiled_fn(full_args)
# Just for convenience
forward.zero_grad = mod.zero_grad
forward.named_parameters = mod.named_parameters
forward.named_buffers = mod.named_buffers
return forward
def aot_export_module(
mod: nn.Module,
args,
*,
decompositions: Optional[Dict] = None,
# If true, we'll return a joint forward-backward graph,
# As well as metadata on the loss + gradients in the backward.
trace_joint: bool,
# If trace_joint is True, we expect your module to return a scalar loss.
# Your module can return multiple outputs, so you must specify which output the loss is.
output_loss_index: Optional[int] = None,
pre_dispatch: bool = False,
# If None, will be infered from inputs and mod.graph.nodes if mod is a graph module, but the inferred result might be wrong.
dynamic_shapes: Optional[bool] = None,
kwargs=None,
) -> Tuple[torch.fx.GraphModule, GraphSignature]:
"""
This function takes in a module, and returns:
(1) an FX graph that can be exported
(2) some metadata about the graph
If `trace_joint=True` we will return a joint graph of the forward + backward.
The traced FX graph will have the following properties compared to the original module:
(1) Inputs and outputs to the module will be pytree-flattened
(2) Parameters and buffers on the module will be lifted into graph inputs,
graph_inputs = (*parameters, *buffers, *user_inputs)
(3) The graph will be fully functionalized
(4) Any input mutations will be converted into additional outputs in the graph,
meaning whoever calls this graph is responsible for applying the mutations
back to the original inputs.
(5) If is_joint is provided the graph will return parameter gradients in addition to user outputs.
The graph output will look like:
graph_outputs = (*updated_inputs, *user_outputs, *param_gradients)
There are also several restrictions on what modules can use this API. In particular:
(1) If trace_joint is specified, we expect the loss function to be **fused**
into the module forward. One of the outputs to the forward must be a scalar loss,
which is specified with `output_loss_index`.
All other outputs to the forward are presumed to not require gradients.
(2) This API cannot capture optimizers (although in theory we could build an API for this).
(3) Metadata mutations on params/buffers/inputs are banned.
(4) Data mutations on anything that requires gradients are banned (parameters)
(5) If an input is mutated, it is not allowed to alias any other inputs.
(6) Parameters must not be duplicated.
"""
if pre_dispatch and trace_joint:
raise RuntimeError("pre_dispatch is not supported when trace_joint is True.")
named_parameters = dict(mod.named_parameters(remove_duplicate=False))
named_buffers = dict(mod.named_buffers(remove_duplicate=False))
params_and_buffers = {
**dict(named_parameters),
**dict(named_buffers),
}
params_and_buffers_flat, params_spec = pytree.tree_flatten(params_and_buffers)
params_and_buffers_flat = tuple(params_and_buffers_flat)
params_len = len(params_and_buffers_flat)
kwargs = kwargs or {}
functional_call = create_functional_call(
mod, params_spec, params_len, store_orig_mod=True
)
num_fw_outs = None
if trace_joint:
# This helper effectively just adds some extra asserts about what the backward will look like:
# Outputs must include a scalar loss, that we compute gradients w.r.t.
# We don't compute gradients w.r.t. anything else: so just in case we detach()
# and other output tensors.
def fn_to_trace(*args):
nonlocal num_fw_outs
out = functional_call(*args)
if output_loss_index is None:
raise RuntimeError(
"""\
If trace_joint=Trueit is required that one of your forward outputs must be a scalar loss.
You must specify the which (index) output is the loss with output_loss_index."""
)
if isinstance(out, (torch.Tensor)):
out = (out,)
if not isinstance(out, (tuple, list)):
raise RuntimeError(
f"Expected forward output to be either a tensor or a list/tuple of tensors. found {type(out)}"
)
for i, o in enumerate(out):
# We only want to create a backward graph w.r.t. the loss that the user passed in.
# This implies that every other output should not require gradients.
# Instead of making this an error (and forcing the user to detach all other outputs
# of their forward),
# we'll automatically detach them here.
if o.requires_grad and i != output_loss_index:
raise RuntimeError(
f"""\
Found an output of the forward that requires gradients, that was not the scalar loss.
We require all outputs to the forward that are not the scalar loss to not require gradient,
because we will only compute a backward graph against the scalar loss.
You can fix this by calling .detach() on each of your forward outputs that is not the loss.
You specified that output index {output_loss_index} is the loss, but we found that
the output at index {i} requires gradients."""
)
out_loss = out[output_loss_index]
num_fw_outs = len(out)
if not out_loss.requires_grad:
raise RuntimeError(
f"""\
The output at index {output_loss_index} was marked as the loss, but it does not require gradients"""
)
if out_loss.numel() != 1:
raise RuntimeError(
f"""\
We require the output marked as the loss (at index {output_loss_index}) to be a scalar, but it has shape {out_loss.shape}"""
)
return out
ctx = nullcontext
else:
# Run under no_grad, so our tracing machinery only traces an inference graph.
# However if pre_dispatch=True, we want to correctly trace set_grad_enabled calls for training.
ctx = nullcontext if pre_dispatch else torch.no_grad
fn_to_trace = functional_call
full_args = []
# First, the params
# NB: It is REQUIRED that parameters come first, Inductor infers "fixed"
# parameters by looking at the difference in parameter count outside
# and inside AOTAutograd, and assumes the prefix of arguments are fixed
# arguments
full_args.extend(params_and_buffers_flat)
# Next, the input args
full_args.extend(args)
with ctx():
fx_g, metadata, in_spec, out_spec = _aot_export_function(
fn_to_trace,
full_args,
decompositions=decompositions,
num_params_buffers=params_len,
no_tangents=True,
pre_dispatch=pre_dispatch,
dynamic_shapes=dynamic_shapes,
kwargs=kwargs,
)
if trace_joint:
@wraps(functional_call)
def flattened_joint(*args):
# The idea here is that the joint graph that AOTAutograd creates has some strict properties:
# (1) It accepts two arguments (primals, tangents), and pytree_flattens them
# (2) It returns a tuple of (fw_outs, gradients)
# This is a very useful convention for anyone who wants to partition the joint graph
# into a separate forward and backward graph.
# However,
# (1) for people exporting a single joint graph, it would be preferable not to have
# any pytrees in the graph.
# (2) We are guaranteed in the aot_export_module case that the forward outputs a loss,
# and there are therefore no tangents that are needed to run the joint graph.
# (3) AOTAutograd creates a grad_input for every input in the forward,
# including None's for inputs that are not grad-requiring tensors.
# we don't want these in our export graph.
# and there are therefore no tangents that are needed to run the joint graph.
# This function "fixes" both of the above by removing any tangent inputs,
# and removing pytrees from the original FX graph.
fake_tangents = [
None
for _ in range(
metadata.num_outputs + metadata.num_mutated_inp_runtime_indices
)
]
fw_outs, gradients = fx_g(args, fake_tangents)
assert len(gradients) == len(args)
output_gradients = []
for i, (a, grad) in enumerate(zip(args, gradients)):
if isinstance(a, torch.Tensor) and a.requires_grad:
assert (
grad is not None
), """\
Found a parameter that did not receive a gradient.
"This is most likely a bug, but if this needs to be supported please comment on this Github issue:
https://github.com/pytorch/pytorch/issues/101192
"""
output_gradients.append(grad)
else:
assert grad is None
return *fw_outs, *output_gradients
fx_g = make_fx(flattened_joint, record_module_stack=True)(*full_args)
user_args_flat = pytree.arg_tree_leaves(*args, **kwargs)
return fx_g, create_graph_signature(
fx_g,
metadata,
in_spec,
out_spec,
user_args_flat=user_args_flat,
params_and_buffers_flat=params_and_buffers_flat,
param_names=list(named_parameters.keys()),
buffer_names=list(named_buffers.keys()),
trace_joint=trace_joint,
num_user_fw_outs=num_fw_outs,
loss_index=output_loss_index,
)
def aot_export_joint_simple(
func: Callable,
args,
*,
trace_joint: bool,
# It looks like the main consequence of this API is that for dynamic shapes,
# it will assume that parms/buffers are static.
# With the new inferred dynamic shapes API, maybe this doesn't matter?
num_params_buffers: int = 0,
decompositions: Optional[Dict] = None,
) -> torch.fx.GraphModule:
"""
A simplified version of export. Used by higher order operators.
This function makes a high-level "no calling convention changes" guarantee:
- If no inputs require grad (so we export an inference graph),
there are *no* calling convention change between the exported graph, and "func".
- If at least one input requires grad (so we trace out and export a joint fw-bw graph),
Then if you were partition the graph into a separate forward and backward graph,
The forward graph will have no calling convention changes compared to "func".
The above also relies on some strong restrictions around which functions this API accepts:
(1) `args` cannot contain any pytrees (they must have been pytree_flattened already)
(2) `func` cannot mutate any inputs
(3) The outputs of `func` cannot alias any inputs.
Note: this function is only lightly tested today. It will probably be tested more heavily by higher order ops.
"""
if trace_joint:
ctx = nullcontext
else:
# Run under no_grad, so our tracing machinery only traces an inference graph.
ctx = torch.no_grad
with ctx():
fx_g, metadata, in_spec, out_spec = _aot_export_function(
func,
args,
decompositions=decompositions,
)
in_spec, _kw_in_spec = in_spec.children_specs
# At this point, we can just directly return the (joint or inference graph) that we traced.
# First though: a bunch of assertions to make sure that our graph doesn't require
# any calling convention changes compared to the original function.
# These restrictions are *in addition to* the general restrictions on export.
# No input mutations
if (
len([x for x in metadata.input_info if x.mutates_data or x.mutates_metadata])
!= 0
):
raise RuntimeError(
f"aot_export_joint_simple does not support input mutations. {str(metadata)}"
)
# No output aliasing
if (
len([x for x in metadata.output_info if x.output_type != OutputType.non_alias])
!= 0
):
raise RuntimeError(
f"aot_export_joint_simple does not support outputs that alias inputs. {str(metadata)}"
)
# No pytrees
if in_spec.is_leaf():
raise RuntimeError(
f"aot_export_joint_simple requires inputs to be a single list/tuple. in_spec={str(in_spec)}"
)
if not all(child.is_leaf() for child in in_spec.children_specs):
raise RuntimeError(
f"aot_export_joint_simple requires individual inputs not to be pytrees. in_spec={str(in_spec)}"
)
if out_spec.is_leaf():
raise RuntimeError(
f"aot_export_joint_simple requires outputs to be a single list/tuple. out_spec={str(out_spec)}"
)
if not all(child.is_leaf() for child in out_spec.children_specs):
raise RuntimeError(
f"aot_export_joint_simple requires individual outputs not to be pytrees. out_spec={str(out_spec)}"
)
# TODO: we might have to temporarily patch config.functionalize_rng
# so that it doesn't run when we're exporting a higher order op.
if config.debug_assert:
# Smoke test that after partitioning, we can run the forward without any calling convention changes.
fw_module, bw_module = aot_config.default_partition( # noqa: F821
fx_g, args, num_fwd_outputs=len(fw_metadata.output_infos) # noqa: F821
)
# Attempt to run the fw_module with the original user inputs
fake_mode = detect_fake_mode(args)
if fake_mode is None:
fake_mode = FakeTensorMode()
with fake_mode:
fw_module(*args)
return fx_g
# Private for now because we aren't providing a contract on what to return
# for joint graphs (we could when there's a clearer use case)
# In the future, we may need to add more export API's that provide their own strong guarantees.
# This is meant as a general helper function for handling various export-y use cases.
def _aot_export_function(
func: Callable,
args,
*,
num_params_buffers: int = 0,
decompositions: Optional[Dict] = None,
# If we're exporting a joint graph and we don't want any tangent inputs in the graph
# (because we are backpropping through a scalar 1 loss),
# we need to explicitly specify not to include tangents in the graph.
# It's not enough just to check that our tangent is a scalar, since we also
# need to know if it is a 1 (no need to make it a graph input), or something else
# (requiring it to be a graph input).
# We don't know this info at trace time though, so we need to make it an explicit config.
no_tangents: bool = False,
pre_dispatch: bool = False,
# If None, `dynamic_shapes` will be infered from inputs, but the inferred result might be wrong.
dynamic_shapes: Optional[bool] = None,
kwargs=None,
) -> Tuple[torch.fx.GraphModule, ViewAndMutationMeta, pytree.TreeSpec, pytree.TreeSpec]:
kwargs = kwargs or {}
flat_fn, out_spec = create_tree_flattened_fn(func, args, kwargs)
flat_args, in_spec = pytree.tree_flatten((args, kwargs))
fake_mode = None
if dynamic_shapes is None:
# Try to infer `dynamic_shapes from inputs and graph nodes
fake_mode = detect_fake_mode(flat_args)
if (
fake_mode is None
and hasattr(func, "_orig_mod")
and isinstance(func._orig_mod, torch.fx.GraphModule)
):
vals = [
node.meta["val"]
for node in func._orig_mod.graph.nodes
if "val" in node.meta
]
fake_mode = detect_fake_mode(vals)
dynamic_shapes = fake_mode is not None and fake_mode.shape_env is not None
# The export use case doesn't care about several bits of AOTConfig
# (1) compilers (we just export the graph)
# (2) partitioners (export is only full graph, user can partition themselves)
aot_config = AOTConfig(
fw_compiler=None,
bw_compiler=None,
inference_compiler=None,
partition_fn=None,
decompositions=decompositions,
num_params_buffers=num_params_buffers,
aot_id=next(AOT_COUNTER),
# For now there's no use case involving keeping input mutations in the graph
# (which we can only do in the inference case anyway).
# We can add this later if we need to.
keep_inference_input_mutations=False,
dynamic_shapes=dynamic_shapes,
aot_autograd_arg_pos_to_source=None,
is_export=True,
no_tangents=no_tangents,
pre_dispatch=pre_dispatch,
)
if fake_mode is None:
fake_mode, shape_env = construct_fake_mode(flat_args, aot_config)
else:
shape_env = fake_mode.shape_env
fake_flat_args = process_inputs(flat_args, aot_config, fake_mode, shape_env)
fx_g, meta = create_aot_dispatcher_function(
flat_fn,
fake_flat_args,
aot_config,
fake_mode,
shape_env,
)
return fx_g, meta, in_spec, out_spec.spec
@contextmanager
def _detect_attribute_assignment(mod: torch.nn.Module):
# Do not allow assignment of tensor attributes during export unless
# the attribute is registered as a buffer.
NN_MODULE_STD_ATTRS = [
"_backward_hooks",
"_backward_pre_hooks",
"_buffers",
"_forward_hooks",
"_forward_hooks_always_called",
"_forward_hooks_with_kwargs",
"_forward_pre_hooks",
"_forward_pre_hooks_with_kwargs",
"_is_full_backward_hook",
"_load_state_dict_post_hooks",
"_load_state_dict_pre_hooks",
"_modules",
"_non_persistent_buffers_set",
"_parameters",
"_state_dict_hooks",
"_state_dict_pre_hooks",
"training",
]
NN_MODULE_LAZY_STD_ATTRS = [
"_initialize_hook",
"_load_hook",
]
STD_ATTRS = {
*NN_MODULE_STD_ATTRS,
*NN_MODULE_LAZY_STD_ATTRS,
}
def _get_attributes(mod):
# return any attributes of a module that are not standard attributes
return {k: v for k, v in mod.__dict__.items() if k not in STD_ATTRS}
def is_leaf(x):
# Ideally is_leaf should not be needed when mapping, but it seems that
# subclasses of a standard container X may sometimes map to X, which
# destroys information and can cause future mapping to fail.
known_subclasses_that_lose_info = (
torch.Size,
# add more here if needed
)
return isinstance(x, known_subclasses_that_lose_info)
# save state of attributes before enter
snapshot = pytree.tree_map(lambda x: x, _get_attributes(mod), is_leaf=is_leaf)
try:
yield
finally:
# after exit, compare state of attributes with snapshot
# to detect which tensor attributes were assigned
assigned_tensor_attributes = []
def _collect_assigned_tensor_attributes(kp, v, _v):
if _v is not v:
attr, *rest = kp
if isinstance(v, torch.Tensor):
assigned_tensor_attributes.append(
f"self.{attr.key}{pytree.keystr(rest)}"
)
# TODO(avik): Assigning all other types are allowed right now.
# Maybe in the future we want to limit this to primitive types?
pytree.tree_map_with_path(
_collect_assigned_tensor_attributes, snapshot, _get_attributes(mod)
)
# restore state of all attributes (including, e.g., of primitive types)
mod.__dict__.update(snapshot)
if assigned_tensor_attributes:
if len(assigned_tensor_attributes) > 1:
noun, verb = "attributes", "were"
else:
noun, verb = "attribute", "was"
raise ValueError(
f"The tensor {noun} {', '.join(assigned_tensor_attributes)} {verb} assigned during export. "
"Such attributes must be registered as buffers using the `register_buffer` API "
"(https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_buffer)."
)
compiled_function = aot_function
compiled_module = aot_module
|