File: fx_minifier.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (501 lines) | stat: -rw-r--r-- 17,369 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# mypy: ignore-errors

import copy
import math
import os
import sys
from dataclasses import dataclass
from functools import partial, wraps
from typing import Callable, List

import torch
import torch.fx as fx
from torch.hub import tqdm
from torch.multiprocessing.reductions import StorageWeakRef
from torch.utils._content_store import ContentStoreWriter

from .compile_utils import get_outputs, get_placeholders


is_tuple = object()


@dataclass
class LoadTensorMeta:
    size: List[int]
    stride: List[int]
    dtype: torch.dtype
    device: torch.device


class ConcreteProp(torch.fx.Interpreter):
    def __init__(self, mod, *, writer=None, skip_offload=False):
        super().__init__(mod)
        self.writer = writer
        self.skip_offload = skip_offload
        self.seen_storages = set()

    def run_node(self, n):
        self.pbar.update(1)
        r = super().run_node(n)
        name = n.name

        if isinstance(r, torch.Tensor):
            if self.writer is None:
                n.meta["concrete_value"] = r
            else:
                if StorageWeakRef(r.untyped_storage()) in self.seen_storages:
                    # Refuse to offload tensors which alias other live
                    # tensors, because this will violate operator contracts
                    n.meta["concrete_value"] = None
                else:
                    if not self.skip_offload:
                        self.writer.write_tensor(os.path.join("eager", name), r)
                    n.meta["concrete_value"] = LoadTensorMeta(
                        r.size(), r.stride(), r.dtype, r.device
                    )
                    self.seen_storages.add(StorageWeakRef(r.untyped_storage()))
        else:
            n.meta["concrete_value"] = is_tuple

        return r

    def propagate(self, *args):
        with tqdm(
            desc="Saving intermediates for delta debugging",
            total=len(self.module.graph.nodes),
            disable=self.writer is None,
        ) as pbar:
            self.pbar = pbar
            r = super().run(*args)
            if not self.skip_offload:
                pbar.set_description(
                    "Saved!  To skip next time, run with --skip-saving-eager-intermediates"
                )
            return r


def is_load_tensor_node(node):
    return (
        node.op == "call_function"
        and node.target is torch.ops.debugprims.load_tensor.default
    )


# inplace modifies node/inps
def _convert_node_to_placeholder(graph, node, inps):
    if node.op == "output" or node.op == "placeholder":
        return False

    if is_load_tensor_node(node):
        return False

    concrete_val = node.meta.get("concrete_value", None)

    if isinstance(concrete_val, torch.Tensor):
        node.op = "placeholder"
        node.target = node.name
        node.args = ()
        node.kwargs = {}

        inps.append(concrete_val)
        return True

    elif concrete_val is None:
        return False

    elif concrete_val is is_tuple:
        r = False
        for tuple_user in list(node.users):
            r = _convert_node_to_placeholder(graph, tuple_user, inps) or r
        # NB: We must not erase the node at this point, because
        # we are iterating over the nodes and this would change
        # the iteration order
        # graph.erase_node(node)
        return r

    elif isinstance(concrete_val, LoadTensorMeta):
        node.op = "call_function"
        node.target = torch.ops.debugprims.load_tensor.default
        node.args = (
            os.path.join("eager", node.name),
            concrete_val.size,
            concrete_val.stride,
        )
        node.kwargs = {
            "device": concrete_val.device,
            "dtype": concrete_val.dtype,
        }
        return True

    return False


def create_minified_hlo_graph(minified_fx_graph, inputs):
    """
    Takes minified FX graph as primary input, and ports it to HLO via StableHLO
    Provides minified HLO graph as output, and archive them to local directory
    """
    hlo_dir = f"{os.getcwd()}/hlo_files"
    os.makedirs(hlo_dir, exists_ok=True)

    from torch_xla.stablehlo import save_torch_model_as_stablehlo

    save_torch_model_as_stablehlo(minified_fx_graph, inputs, hlo_dir)


def dump_state(fx_g, inps):
    print(
        f"""
# Working Repro with {len(fx_g.graph.nodes)} nodes
inps = {[(i.shape, i.dtype, i.device.type) for i in inps]}
inps = [torch.zeros(())] + [torch.ones(shape, dtype=dtype, device=device) for (shape, dtype, device) in inps]
{fx_g.code}
"""
    )


def is_power_of_two(n):
    if n == 0:
        return False
    return (n & (n - 1)) == 0


@dataclass
class ReproState:
    graph: fx.Graph
    inps: List[torch.Tensor]

    def __post_init__(self):
        ph_nodes = get_placeholders(self.graph)
        assert len(ph_nodes) == len(self.inps)


def minifier(
    fail_f: fx.GraphModule,
    inps,
    module_fails,
    dump_state: Callable = dump_state,
    *,
    save_dir=None,
    offload_to_disk=False,
    skip_offload=False,
    skip_sanity=False,
    max_granularity=None,
):
    """
    Minimizes a FX graph with given inputs, such that the resulting FX graph still returns True for module_fails.

    Does 2 main strategies:
    1. Truncates suffix: Removes some suffix from the graph and sets a new output.
    2. Delta Debugging: Tries replacing half of the graph with inputs. If fails,
        tries replacing quarter of the graph, etc.

    >>> # xdoctest: +SKIP(failing)
    >>> failing_function = fx.symbolic_trace(f)
    >>> minimize(failing_function, [torch.randn(5)], lambda fx_g, inps: fx_g(*inps))

    note: module_fails returns True if it fails.
    """
    assert isinstance(inps, (tuple, list))

    failing_graph = fail_f.graph
    cur_size = len(failing_graph.nodes)

    if max_granularity is not None and not is_power_of_two(max_granularity):
        raise RuntimeError(f"max_granularity {max_granularity} not power of two")

    num_queries = 0

    def deepcopy_fx_graph(fx_graph):
        return fx.GraphModule(fail_f, copy.deepcopy(fx_graph)).graph

    def graph_fails(graph, inps):
        nonlocal num_queries
        graph = copy.deepcopy(graph)
        num_queries += 1
        mod = fx.GraphModule(fail_f, graph)
        mod.graph.lint()
        return module_fails(mod, inps)

    writer = None
    if offload_to_disk:
        writer = ContentStoreWriter(save_dir)

    ConcreteProp(fail_f, writer=writer, skip_offload=skip_offload).propagate(*inps)
    if not skip_sanity and not graph_fails(failing_graph, inps):
        raise RuntimeError("Input graph did not fail the tester")
    print(f"Started off with {cur_size} nodes", file=sys.stderr)

    def _register_strategy(strategy: Callable, name: str):
        @wraps(strategy)
        def new_func(old_state: ReproState, granularity=1):
            print(file=sys.stderr)
            print(
                f"Strategy: {name} (G: {granularity}) "
                f"({len(old_state.graph.nodes)} nodes, {len(old_state.inps)} inputs)",
                file=sys.stderr,
            )
            new_state = strategy(
                deepcopy_fx_graph(old_state.graph), list(old_state.inps), granularity
            )
            if new_state is not None:
                new_nodes = len(new_state.graph.nodes)
                old_nodes = len(old_state.graph.nodes)
                new_inps = len(new_state.inps)
                old_inps = len(old_state.inps)
                new_outs = len(get_outputs(new_state.graph))
                old_outs = len(get_outputs(old_state.graph))
                progress_made = False
                if new_nodes < old_nodes:
                    progress_made = True
                    print(
                        f"SUCCESS: Went from {old_nodes} to {new_nodes} nodes",
                        file=sys.stderr,
                    )
                if new_inps > old_inps:
                    progress_made = True
                    print(
                        f"SUCCESS: Went from {old_inps} to {new_inps} inputs",
                        file=sys.stderr,
                    )
                if new_outs < old_outs:
                    progress_made = True
                    print(
                        f"SUCCESS: Went from {old_outs} to {new_outs} outputs",
                        file=sys.stderr,
                    )

                if not progress_made:
                    raise RuntimeError("Success raised but no progress made?")

                if not graph_fails(new_state.graph, new_state.inps):
                    print(
                        "WARNING: Something went wrong, not applying this minification",
                        file=sys.stderr,
                    )
                    return None
                return new_state
            else:
                print(f"FAIL: {name}", file=sys.stderr)
            return None

        return new_func

    def register_strategy(name: str):
        return partial(_register_strategy, name=name)

    @register_strategy("Truncate suffix")
    def remove_suffix(cur_graph, cur_inps, granularity):
        tested = set()
        new_graph = fx.Graph()
        env = {}
        for idx, node in enumerate(cur_graph.nodes):
            new_node = new_graph.node_copy(node, lambda x: env[x])
            if node.op not in ["placeholder", "output"]:
                # If idx is divisible by (granularity * 2), it would have been checked already.
                if (
                    idx % granularity == 0
                    and (idx % (granularity * 2) != 0)
                    and idx not in tested
                ):
                    output_node = new_graph.output((new_node,))
                    if len(new_graph.nodes) < len(cur_graph.nodes) and graph_fails(
                        new_graph, cur_inps
                    ):
                        return ReproState(new_graph, cur_inps)
                    else:
                        tested.add(idx)
                        new_graph.erase_node(output_node)
            env[node] = new_node
        return None

    @register_strategy("Remove outputs")
    def remove_outputs(cur_graph, cur_inps, granularity):
        granularity = max(1, granularity // 2)
        for idx, node in enumerate(cur_graph.nodes):
            node.idx = idx
            if node.op == "output":
                output = node
                break

        if isinstance(output.args[0], fx.Node):
            return None

        output_args = sorted(
            output.args[0], key=lambda x: x.idx if isinstance(x, fx.Node) else int(1e9)
        )
        if len(output_args) == 1:
            return None

        for idx in range(0, len(output_args), granularity):
            output.args = (output_args[:idx] + output_args[idx + granularity :],)
            if graph_fails(cur_graph, cur_inps):
                return ReproState(cur_graph, cur_inps)
        return None

    def remove_unused_inputs_unchecked(cur_state: ReproState):
        cur_graph = cur_state.graph
        cur_inps = cur_state.inps
        ph_nodes = get_placeholders(cur_graph)
        assert len(ph_nodes) == len(cur_inps)

        new_inps = []
        for idx in range(len(ph_nodes)):
            if len(ph_nodes[idx].users) == 0:
                cur_graph.erase_node(ph_nodes[idx])
            else:
                new_inps.append(cur_inps[idx])
        if len(new_inps) < len(cur_inps):
            return ReproState(cur_graph, new_inps)
        return None

    def remove_unused_inputs_checked(cur_state: ReproState):
        new_state = remove_unused_inputs_unchecked(cur_state)
        if new_state is not None and graph_fails(new_state.graph, new_state.inps):
            return new_state
        return None

    def _remove_unused_wrapper(cur_graph, cur_inps, granularity):
        return remove_unused_inputs_checked(ReproState(cur_graph, cur_inps))

    remove_unused_inputs = register_strategy("Remove unused inputs")(
        _remove_unused_wrapper
    )

    @register_strategy("Eliminate dead code")
    def eliminate_dead_code(cur_graph, cur_inps, granularity):
        if cur_graph.eliminate_dead_code() and graph_fails(cur_graph, cur_inps):
            return ReproState(cur_graph, cur_inps)
        return None

    def _consolidate_placeholders(cur_graph, inps):
        new_graph = fx.Graph()
        env = {}
        seen_non_placeholder = False

        # Move all placeholders to the front; also, if any load_tensor
        # is at the front, convert it into an input (because it can be live
        # all the time)
        for node in cur_graph.nodes:
            if node.op == "placeholder":
                new_node = new_graph.node_copy(node, lambda x: env[x])
                env[node] = new_node
            elif not seen_non_placeholder and is_load_tensor_node(node):
                new_node = new_graph.placeholder(node.name)
                env[node] = new_node
                inps.append(
                    torch.ops.debugprims.load_tensor.default(*node.args, **node.kwargs)
                )
            else:
                seen_non_placeholder = True

        # Move everyone else
        for node in cur_graph.nodes:
            if node not in env:
                new_node = new_graph.node_copy(node, lambda x: env[x])
                env[node] = new_node
        return new_graph

    @register_strategy("Delta Debugging")
    def delta_debugging(cur_graph: fx.Graph, cur_inps, granularity):
        num_nodes = len(cur_graph.nodes)
        for start_range in range(0, num_nodes, granularity):
            is_removing = False
            new_graph = deepcopy_fx_graph(cur_graph)
            new_inps = cur_inps[:]
            end_range = min(num_nodes, start_range + granularity)
            for idx in range(start_range, end_range):
                new_node = list(new_graph.nodes)[idx]
                if _convert_node_to_placeholder(new_graph, new_node, new_inps):
                    is_removing = True
            if not is_removing:
                continue
            new_graph.eliminate_dead_code()
            new_graph = _consolidate_placeholders(new_graph, new_inps)
            new_state = remove_unused_inputs_unchecked(ReproState(new_graph, new_inps))
            if new_state is None:
                new_state = ReproState(new_graph, new_inps)
            if graph_fails(new_state.graph, new_state.inps):
                return ReproState(new_state.graph, new_state.inps)

        return None

    @register_strategy("Consolidate Inputs")
    def consolidate_inputs(cur_graph, cur_inps, granularity):
        old_len = len(cur_inps)
        cur_graph = _consolidate_placeholders(cur_graph, cur_inps)
        if len(cur_inps) > old_len and graph_fails(cur_graph, cur_inps):
            return ReproState(cur_graph, cur_inps)
        return None

    failing_state = ReproState(failing_graph, inps)

    def try_granularity(failing_state, granularity, use_non_granular):
        print(f"Trying granularity {granularity}", file=sys.stderr)

        strategies = []
        num_nodes = len(failing_state.graph.nodes)
        num_outputs = len(get_outputs(failing_state.graph))
        if num_outputs > num_nodes // 2:
            strategies += [remove_outputs]

        if use_non_granular:
            strategies += [
                eliminate_dead_code,
                remove_unused_inputs,
                consolidate_inputs,
            ]

        strategies += [remove_suffix, delta_debugging]

        for strategy in strategies:
            new_state = strategy(failing_state, granularity)
            if new_state is not None:
                return new_state
        return None

    while True:
        dump_state(fx.GraphModule(fail_f, failing_state.graph), failing_state.inps)
        granularity = int(2 ** (math.floor(math.log2(len(failing_state.graph.nodes)))))
        if max_granularity is not None:
            granularity = min(max_granularity, granularity)
        new_state = try_granularity(failing_state, granularity, use_non_granular=True)
        if new_state is not None:
            failing_state = new_state
            continue

        granularity //= 2
        has_progress = False
        while granularity >= 1:
            new_state = try_granularity(
                failing_state, granularity, use_non_granular=False
            )
            if new_state is not None:
                failing_state = new_state
                has_progress = True
                break
            granularity //= 2
        if has_progress:
            continue

        new_state = remove_outputs(failing_state, 1)
        if new_state is not None:
            failing_state = new_state
            continue

        break

    if not graph_fails(failing_state.graph, failing_state.inps):
        raise RuntimeError("Uh oh, something went wrong :( Final graph is not failing")

    print(f"Made {num_queries} queries", file=sys.stderr)
    failing_fx = fx.GraphModule(fail_f, failing_state.graph)

    # If XLA debugging environment is enabled, create minified HLO graph as well
    if "XLA_HLO_DEBUG" in os.environ:
        create_minified_hlo_graph(failing_fx, failing_state.inps)

    dump_state(failing_fx, failing_state.inps)
    print("Wrote minimal repro out to repro.py", file=sys.stderr)
    return failing_fx, failing_state.inps