File: utils.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (40 lines) | stat: -rw-r--r-- 976 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# mypy: allow-untyped-defs
import contextlib
from typing import Tuple, Union

import torch
from torch._C._functorch import (
    get_single_level_autograd_function_allowed,
    set_single_level_autograd_function_allowed,
    unwrap_if_dead,
)
from torch.utils._exposed_in import exposed_in


__all__ = [
    "exposed_in",
    "argnums_t",
    "enable_single_level_autograd_function",
    "unwrap_dead_wrappers",
]


@contextlib.contextmanager
def enable_single_level_autograd_function():
    try:
        prev_state = get_single_level_autograd_function_allowed()
        set_single_level_autograd_function_allowed(True)
        yield
    finally:
        set_single_level_autograd_function_allowed(prev_state)


def unwrap_dead_wrappers(args):
    # NB: doesn't use tree_map_only for performance reasons
    result = tuple(
        unwrap_if_dead(arg) if isinstance(arg, torch.Tensor) else arg for arg in args
    )
    return result


argnums_t = Union[int, Tuple[int, ...]]