1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
# mypy: allow-untyped-defs
import functools
import itertools
from typing import Any, Callable, List
import torch
import torch._prims_common as utils
import torch._subclasses.functional_tensor
import torch.utils._pytree as pytree
from torch._C import DispatchKey
from torch._higher_order_ops.utils import (
_maybe_run_with_interpreter,
_set_compilation_env,
autograd_not_implemented,
first_slice_copy,
reenter_make_fx,
unique_graph_id,
)
from torch._inductor.utils import is_pointwise_use
from torch._ops import HigherOrderOperator
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx.experimental.proxy_tensor import (
disable_proxy_modes_tracing,
ProxyTorchDispatchMode,
track_tensor_tree,
)
aten = torch._ops.ops.aten
def wrap_combine_fn_flat(*args, combine_fn, spec, num_leaves):
assert len(args) == 2 * num_leaves
lhs = pytree.tree_unflatten(args[:num_leaves], spec)
rhs = pytree.tree_unflatten(args[num_leaves:], spec)
combined = combine_fn(lhs, rhs)
combined_leaves = pytree.tree_leaves(combined)
assert num_leaves == len(combined_leaves)
return combined_leaves
def _interleave(a, b, dim):
# https://stackoverflow.com/questions/60869537/how-can-i-interleave-5-pytorch-tensors
if b_trunc := (a.shape[dim] == b.shape[dim] + 1):
pad = (
[0] * ((b.ndim - dim - 1) * 2 + 1)
+ [1]
+ [0] * (b.ndim * 2 - ((b.ndim - dim - 1) * 2 + 2))
)
b = torch.nn.functional.pad(b, pad)
stacked = torch.stack([a, b], dim=dim + 1)
interleaved = torch.flatten(stacked, start_dim=dim, end_dim=dim + 1)
if b_trunc:
# TODO: find torch alternative for slice_along dim for torch.jit.script to work
interleaved = aten.slice(interleaved, dim, 0, b.shape[dim] + a.shape[dim] - 1)
return interleaved
def safe_map(f, *args):
args = list(map(list, args))
n = len(args[0])
for arg in args[1:]:
if len(arg) != n:
raise ValueError("length mismatch: {list(map(len, args))}")
def nf(a):
return f(*a)
return list(map(nf, zip(*args)))
class AssociativeScanOp(HigherOrderOperator):
def __init__(self):
super().__init__("associative_scan")
def __call__(self, combine_fn, xs, dim):
return super().__call__(combine_fn, xs, dim)
associative_scan_op = AssociativeScanOp()
def associative_scan(
combine_fn: Callable[[pytree.PyTree, pytree.PyTree], pytree.PyTree],
xs: pytree.PyTree,
dim: int,
reverse: bool = False,
combine_mode: str = "pointwise",
) -> torch.Tensor:
r"""
Performs an inclusive scan with an associative combine function.
.. warning::
`torch.associative_scan` is a prototype feature in PyTorch. It currently
does not support autograd and you may run into miscompiles.
Read more about feature classification at:
https://pytorch.org/blog/pytorch-feature-classification-changes/#prototype
This operator requires runtime code generation and so requires support for
``torch.compile``. Further, only CUDA device codegen is supported at the moment.
Args:
combine_fn (Callable): A binary callable with type ``(Tensor, Tensor) -> Tensor``,
or if input is a pytree ``(pytree, pytree) -> pytree``.
This function must be pure, i.e., no lifted arguments are supported at the moment,
satisfy the associative property and have no side-effects.
xs (torch.Tensor): The input tensor, or nested pytree of tensors.
All inputs are expected to have the same shape.
dim (int): the dimension to scan over
reverse (bool): A boolean stating if the scan should be reversed with respect to ``dim``, default ``False``.
combine_mode (str): A string indicating whether the ``combine_fn`` is ``pointwise`` or ``generic``, default ``pointwise``.
If ``combine_mode=pointwise``, ``combine_fn`` must be pure, may only contain pointwise operations
and ``xs`` must be CUDA tensors.
In all other cases ``combine_mode=generic`` should be used.
Note: ``combine_mode=pointwise`` is more efficient than ``combine_mode=generic``.
Example::
def add(x: torch.Tensor, y: torch.Tensor):
return x + y
cumsum = associative_scan(add, x, dim)
"""
if not callable(combine_fn):
raise ValueError("Combine_fn must be a callable, but got {combine_fn}")
if not isinstance(dim, int):
raise ValueError("Dim must be an int, but got " + str(type(dim)))
if combine_mode not in ["pointwise", "generic"]:
raise ValueError(
"Combine_mode must either 'pointwise' or 'generic', but got {combine_mode}"
)
if not torch._dynamo.is_compiling():
with _set_compilation_env(), torch._dynamo.utils.disable_cache_limit():
return torch.compile(associative_scan, fullgraph=True)(
combine_fn, xs, dim, reverse=reverse, combine_mode=combine_mode
)
leaves, spec = pytree.tree_flatten(xs)
if combine_mode == "pointwise" and not all(l.device.type == "cuda" for l in leaves):
raise ValueError(
"For combine_mode='pointwise', all input tensors need to be on CUDA"
)
if len(leaves) == 0:
raise ValueError("Expected at least 1 xs leaf")
if any(not isinstance(x, torch.Tensor) for x in leaves):
raise ValueError("xs leaves must be a Tensor")
if any(x.is_sparse for x in leaves):
raise ValueError("xs leaves must dense Tensors, consider using `to_dense()`")
if any(x.ndim <= dim for x in leaves):
raise ValueError(
"All xs leaves must at least have 'dim' number of dimensions and scan dimension > 0"
)
if any(x.shape[dim] == 0 for x in leaves):
raise ValueError(
"All xs leaves must at least have 'dim' number of dimensions and scan dimension > 0"
)
if reverse:
leaves = [torch.flip(elem, [dim]) for elem in leaves]
ndim = leaves[0].ndim
dim = utils.canonicalize_dim(ndim, dim)
# Call the combine_fn with only a slice along the scan dim
# and check whether the output leaves have the same slice dimensions
sliced_leaves = [first_slice_copy(leaf, dim) for leaf in leaves]
out = combine_fn(
pytree.tree_unflatten(sliced_leaves, spec),
pytree.tree_unflatten(sliced_leaves, spec),
)
out_leaves = pytree.tree_leaves(out)
if len(leaves) != len(out_leaves):
raise RuntimeError(
"The number of leaves of the pytree of the output of the operator needs to match the length of the pytree of the input"
)
if any(
x.shape != x_sliced.shape
or x.dtype != x_sliced.dtype
or x.device != x_sliced.device
or x.stride() != x_sliced.stride()
for x, x_sliced in zip(out_leaves, sliced_leaves)
):
raise RuntimeError(
f"The metadata of the output of the operator needs to match the meta data of the xs pytree"
f"\n xs metadata : {[(x.shape, x.dtype, x.device, x.stride()) for x in sliced_leaves]}"
f"\n operator output metadata: {[(x.shape, x.dtype, x.device, x.stride()) for x in out_leaves]}"
)
if combine_mode == "generic":
# The generic_associative_scan implementation calls the combine_fn with a `batch` along the scan dimension
# For example, consider:
# def add(x: torch.Tensor, y: torch.Tensor):
# return x + y
# leaves = torch.tensor([[0.0, 1.0, 2.0, 3.0]
# [0.0, 1.0, 2.0, 3.0]])
# which has shape 2 x 4;
# dim = 1;
# In the first iteration of `_scan` the combine_fn gets invoked with
# combine_fn([torch.tensor([[0.0, 2.0],
# [0.0, 2.0]])],
# [torch.tensor([[1.0, 3.0],
# [1.0, 3.0]])])
# The arguments are of shape 2 x 2, but can be evaluated in parallel along the scan dimension.
# TODO: In case of the additional inputs, we the in_dims should be set to None
combine_fn = functools.partial(
wrap_combine_fn_flat,
combine_fn=torch.vmap(
combine_fn,
in_dims=(
pytree.tree_unflatten([dim] * len(leaves), spec),
pytree.tree_unflatten([dim] * len(leaves), spec),
),
out_dims=dim,
),
spec=spec,
num_leaves=len(leaves),
)
result_flat = generic_associative_scan(combine_fn, leaves, dim)
else:
combine_fn = functools.partial(
wrap_combine_fn_flat,
combine_fn=combine_fn,
spec=spec,
num_leaves=len(leaves),
)
result_flat = associative_scan_op(combine_fn, leaves, dim)
if reverse:
result_flat = [torch.flip(elem, [dim]) for elem in result_flat]
return pytree.tree_unflatten(result_flat, spec)
def generic_associative_scan(operator, leaves, dim=0):
r"""
This function performs the associative_scan operation.
The algorithm works by recursively collecting neighbours of ``leaves`` and subsequently
applying the ``operator`` on all pairs in parallel along ``dim``.
The results of the recursive calls are later combined.
Args:
operator (Callable): A binary callable with type ``(Tensor, Tensor) -> Tensor``,
or if input is a pytree ``(pytree, pytree) -> pytree``.
This function must be pure, pointwise, and satisfy the associative property.
leaves (torch.Tensor): A list of torch.Tensors converted from the pytree of
``xs`` provided to ``associative_scan``.
All inputs are expected to have the same shape.
dim (int): the dimension to scan over
Example::
def add(x: torch.Tensor, y: torch.Tensor):
return x + y
leaves = torch.tensor([0.0, 1.0, 2.0, 3.0])
First iteration of _scan ->
# odd_elems -> apply operator on all neighbours
# odd_elems = operator([torch.tensor([0.0, 2.0])],
# [torch.tensor([1.0, 3.0])])
odd_elems = torch.tensor([1.0, 5.0])
Second iteration of _scan ->
# odd_elems = operator([torch.tensor([1.0])],
# [torch.tensor([5.0])])
odd_elems = torch.tensor([6.0])
# even_elems -> apply operator on all odd_elems and
# every second element of ``elems``, starting from the second element.
# even_elems is expanded with the first element of ``elems``
even_elems = [1.0]
# Merges odd_elems and even_elems
res = torch.tensor([1.0, 6.0])
# even_elems -> apply operator on all odd_elems and
# every second element of ``elems``, starting from the second element.
# even_elems is expanded with the first element of ``elems``
even_elems = [0.0, 3.0]
# Merges odd_elems and even_elems
res = torch.tensor([0.0, 1.0, 3.0, 6.0])
"""
def _scan(elems):
"""Perform the actual recursive scan on ``elems``."""
num_elems = elems[0].shape[dim]
if num_elems < 2:
return elems
reduced_elems = operator(
*[aten.slice(elem, dim, 0, -1, 2) for elem in elems],
*[aten.slice(elem, dim, 1, None, 2) for elem in elems],
)
# Recursively compute scan for partially reduced tensors.
odd_elems = _scan(reduced_elems)
if num_elems % 2 == 0:
even_elems = operator(
*[aten.slice(e, dim, 0, -1) for e in odd_elems],
*[aten.slice(e, dim, 2, None, 2) for e in elems],
)
else:
even_elems = operator(
*odd_elems,
*[aten.slice(e, dim, 2, None, 2) for e in elems],
)
# The first element of a scan is the same as the first element
# of the original `elems`.
even_elems = [
torch.cat([aten.slice(elem, dim, 0, 1), result], dim=dim)
if result.shape.numel() > 0 and elem.shape[dim] > 0
else result
if result.shape.numel() > 0
else aten.slice(
elem, dim, 0, 1
) # Jax allows/ignores concat with 0-dim, Pytorch does not
for (elem, result) in zip(elems, even_elems)
]
return list(
safe_map(functools.partial(_interleave, dim=dim), even_elems, odd_elems)
)
scans = _scan(leaves)
return scans
def trace_associative_scan(
proxy_mode, func_overload, combine_fn: Callable, xs: List[torch.Tensor], dim: int
):
with disable_proxy_modes_tracing():
sample_xs = [first_slice_copy(x, dim) for x in itertools.chain(xs, xs)]
combine_graph = reenter_make_fx(combine_fn)(*sample_xs)
outputs = None
for node in combine_graph.graph.nodes:
if node.op == "output":
assert outputs is None
assert len(node.args) == 1
outputs = node.args[0]
if not all(is_pointwise_use(use) or use.op == "output" for use in node.users):
raise ValueError(
"For combine_mode='pointwise', the combine_fn needs to be pointwise"
)
assert outputs is not None
assert len(outputs) == len(
xs
), f"expected combine_fn to return {len(xs)} results but got {len(outputs)}"
for i, o in zip(xs, outputs):
o_meta = o.meta["tensor_meta"]
assert o_meta.dtype == i.dtype, (
f"combine_fn output type mismatch, expected {i.dtype} "
+ f"but got {o_meta.dtype}"
)
_, combine_graph_name = unique_graph_id(proxy_mode, prefix="scan_combine_graph")
proxy_mode.tracer.root.register_module(combine_graph_name, combine_graph)
args = (combine_graph, xs, dim)
proxy_args = pytree.tree_map(proxy_mode.tracer.unwrap_proxy, args)
out_proxy = proxy_mode.tracer.create_proxy(
"call_function", func_overload, proxy_args, {}, name="associative_scan"
)
with disable_proxy_modes_tracing():
out = [aten.clone(x) for x in xs]
return track_tensor_tree(out, out_proxy, constant=None, tracer=proxy_mode.tracer)
@associative_scan_op.py_impl(DispatchKey.CompositeExplicitAutograd)
def associative_scan_op_dense(combine_fn, xs, dim):
return generic_associative_scan(combine_fn, xs, dim)
associative_scan_op.py_impl(DispatchKey.Autograd)(
autograd_not_implemented(associative_scan_op, deferred_error=True)
)
@associative_scan_op.py_impl(ProxyTorchDispatchMode)
def associative_scan_proxy_mode(mode, combine_fn, xs, dim):
return trace_associative_scan(mode, associative_scan_op, combine_fn, xs, dim)
@associative_scan_op.py_impl(FakeTensorMode)
def assoiciative_scan_fake_tensor_mode(mode, combine_fn, xs, dim):
with mode:
return [x.clone() for x in xs]
@associative_scan_op.py_functionalize_impl
def associative_scan_functionalize(ctx, combine_fn, xs, dim):
unwrapped_xs = ctx.unwrap_tensors(xs)
with ctx.redispatch_to_next() as m:
functional_combine_fn = ctx.functionalize(
_maybe_run_with_interpreter(combine_fn)
)
ret = associative_scan_op(functional_combine_fn, unwrapped_xs, dim)
return ctx.wrap_tensors(ret)
def _fake_associative_scan(combine_fn, xs, dim, reverse=False): # noqa: F811
inp_leaves, spec = pytree.tree_flatten(xs)
result_flat: List[Any] = []
num_leaves = len(inp_leaves)
op = reversed if reverse else lambda x: x
for ind in op(range(inp_leaves[0].size(dim))):
r = [
inp_leaves[leave_ind][(slice(None),) * dim + (ind,)]
for leave_ind in range(num_leaves)
]
if (ind > 0 and not reverse) or (
ind < (inp_leaves[0].size(dim) - 1) and reverse
):
r = combine_fn(
pytree.tree_unflatten(result_flat[-1], spec),
pytree.tree_unflatten(r, spec),
)
r_flat, _ = pytree.tree_flatten(r)
result_flat.append(r_flat)
results = [
torch.stack([e[leave_ind] for e in op(result_flat)], dim)
for leave_ind in range(num_leaves)
]
return pytree.tree_unflatten(results, spec)
|